Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T20:20:09.316Z Has data issue: false hasContentIssue false

A deep subaqueous fan depositional model for the Palaeoarchaean (3.46 Ga) Marble Bar Cherts, Warrawoona Group, Western Australia

Published online by Cambridge University Press:  02 April 2012

NICOLAS OLIVIER*
Affiliation:
Université de Lyon, Lyon, France CNRS UMR 5276 Laboratoire de géologie de Lyon, Université Lyon 1, Villeurbanne, France
GILLES DROMART
Affiliation:
Université de Lyon, Lyon, France CNRS UMR 5276 Laboratoire de géologie de Lyon, Université Lyon 1, Villeurbanne, France ChemCam team, Mars Science Laboratory project
NICOLAS COLTICE
Affiliation:
Université de Lyon, Lyon, France CNRS UMR 5276 Laboratoire de géologie de Lyon, Université Lyon 1, Villeurbanne, France
NICOLAS FLAMENT
Affiliation:
Université de Lyon, Lyon, France CNRS UMR 5276 Laboratoire de géologie de Lyon, Université Lyon 1, Villeurbanne, France Earthbyte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia
PATRICE REY
Affiliation:
Earthbyte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia
RÉMI SAUVESTRE
Affiliation:
Ecole Normale Supérieure de Lyon, Lyon, France
*
Author for correspondence: [email protected]

Abstract

The 3.46 Ga Marble Bar Chert Member of the East Pilbara Craton, Western Australia, is one of the earliest and best-preserved sedimentary successions on Earth. Here, we interpret the finely laminated thin-bedded cherts, mixed conglomeratic beds, chert breccia beds and chert folded beds of the Marble Bar Chert Member as the product of low-density turbidity currents, high-density turbidity currents, mass transport complexes and slumps, respectively. Integrated into a channel-levee depositional model, the Marble Bar Chert Member constitutes the oldest documented deep-sea fan on Earth, with thin-bedded cherts, breccia beds and slumps composing the outer levee facies tracts, and scours and conglomeratic beds representing the channel systems.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. 2006. Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–18.CrossRefGoogle ScholarPubMed
Broucke, O., Temple, F., Rouby, D., Robin, C., Calassou, S., Nalpas, T. & Guillocheau, F. 2004. The role of deformation processes on the geometry of mud-dominated turbiditic systems, Oligocene and Lower–Middle Miocene of the Lower Congo basin (West African Margin). Marine and Petroleum Geology 21, 321–48.CrossRefGoogle Scholar
Buick, R. & Barns, K. R. 1984. Cherts in the Warrawoona Group: Early Archean silicified sediments deposited in shallow-water environments. University of Western Australia, Geological Department & University Extension, Publication 9, 3753.Google Scholar
Buick, R., Thornett, J. R., McNaughton, N. J., Smith, J. B., Barley, M. E. & Savage, M. 1995. Record of emergent continental crust ~3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–7.CrossRefGoogle Scholar
Dromart, G., Ferry, S. & Atrops, F. 1993. Allochtonous deep-water limestone conglomerates and relative sea-level changes: the Upper Jurassic-Berriasian of South-East France. In Sequence Stratigraphy and Facies Associations (eds Posamentier, H., Summerhayes, C. & Allen, G. P.), pp. 295305. International Association of Sedimentologists Special Publication no. 18.CrossRefGoogle Scholar
Fedo, C. M., Myers, J. S. & Appel, P. W. U. 2001. Depositional setting and paleogeographic implications of earth's oldest supracrustal rocks, the 3.7 Ga Isua Greenstone belt, West Greenland. Sedimentary Geology 141–142, 6177.CrossRefGoogle Scholar
Gervais, A., Mulder, N., Savoye, B., Migeon, S. & Cremer, M. R. 2001. Recent processes of levee formation on the Zaire deep-sea fan. Comptes Rendus de l'Académie des Sciences de Paris 332, 371–8.Google Scholar
Hickman, A. H. 1983. Geology of the Pilbara Block and its environs. Western Australia Geological Survey Bulletin 127, 1268.Google Scholar
Hickman, A. H. & Lipple, S. L. 1978. Explanatory Notes on the Marble Bar 1:250 000 Geological Sheet, Western Australia. Perth: Geological Survey of Western Australia, 24 pp.Google Scholar
Hoashi, M., Bevacqua, D. C., Otake, T., Watanabe, Y., Hickman, A. H., Utsunomiya, S. & Ohmoto, H. 2009. Primary haematite in an oxygenated sea 3.46 billion years ago. Nature Geosciences 2, 301–6.CrossRefGoogle Scholar
Kato, Y. & Nakamura, K. 2003. Origin and global tectonic significance of Early Archaean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Precambrian Research 125, 191243.Google Scholar
Kojima, S., Hanamuro, T., Hayashi, K., Haruna, M. & Ohmoto, H. 1998. Sulphide minerals in Early Archaean chemical sedimentary rocks of the eastern Pilbara district, Western Australia. Mineralogy and Petrology 64, 219–35.CrossRefGoogle Scholar
Konhauser, K. 2009. Deepening the early oxygen debate. Nature Geosciences 2, 241–2.CrossRefGoogle Scholar
Lascelles, D. L. 2007. Black smokers and density currents: a uniformitarian model for the genesis of banded iron-formations. Ore Geology Reviews 32, 381411.CrossRefGoogle Scholar
Migeon, S., Savoye, B., Zanella, E., Mulder, T., Faugères, J.-C. & Weber, O. 2001. Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): significance for sediment transport and deposition and for the mechanisms of sediment-wave construction. Marine and Petroleum Geology 18, 179208.CrossRefGoogle Scholar
Minami, M., Shimizu, H., Masuda, A. & Adachi, M. 1995. Two Archean Sm-Nd ages of 3.2 and 2.5 Ga for the Marble Bar Chert, Warrawoona Group, Pilbara Block, Western Australia. Geochemical Journal, 29, 347–62.CrossRefGoogle Scholar
Mutti, E. 1977. Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group (south-central Pyrenees, Spain). Sedimentology 24, 107–31.CrossRefGoogle Scholar
Mutti, E. & Normark, W. R. 1987. Comparing examples of modern and ancient turbidite systems. In Marine Clastic Sedimentology (eds Legett, J. K. & Zuffa, G. G.), pp. 138. London: Graham & Trotman.Google Scholar
Normark, W. R., Damuth, J. E. & he Leg 155 Sedimentology Group. 1997. Sedimentary facies and associated depositional elements of the Amazon Fan. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 155 (eds Flood, R. D., Piper, D. J. W., Klaus, A. & Peterson, L. C.), pp. 611–52. College Station, Texas.Google Scholar
Nutman, A. P. 2006. Antiquity of the oceans and continents. Elements 2, 223–7.Google Scholar
Oliver, N. S. H. & Cawood, P. A. 2001. Early tectonic dewatering and brecciation on the overturned sequence at Marble Bar, Pilbara Craton, Western Australia: dome-related or not? Precambrian Research 105, 115.CrossRefGoogle Scholar
Orberger, B., Rouchon, V., Westall, F., de Vries, S. T., Pinti, D. L., Wagner, C., Wirth, R. & Hashizume, K. 2006. Microfacies and origin of some Archean cherts (Pilbara, Australia). In Processes on the Early Earth (eds Reimold, W. U. & Gibson, R. L.), pp. 133–56. Geological Society of America Special Paper no. 405.Google Scholar
Piper, D. J. W. & Deptuck, M. 1997. Fine-grained turbidites of the Amazon fan: facies characterization and interpretation. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 155 (eds Flood, R. D., Piper, D. J. W., Klaus, A. & Peterson, L. C.), pp. 79108. College Station, Texas.Google Scholar
Piper, D. J. W. & Stow, D. A. V. 1991. Fine-grained turbidites. In Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.), pp. 360–66. New York: Springer-Verlag.Google Scholar
Richards, M., Bowman, M. & Reading, H. 1998. Submarine-fan systems I: characterization and stratigraphic prediction. Marine and Petroleum Geology 15, 689717.Google Scholar
Robert, F. & Chaussidon, M. 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443, 969–72.Google Scholar
Robin, C., Gorican, S., Guillocheau, F., Razin, P., Dromart, G. & Mosaffa, H. 2010. Mesozoic deep-water carbonate deposits from the southern Tethyan passive margin in Iran (Pichakun nappes, Neyriz area): biostratigraphy, facies sedimentology and sequence stratigraphy. In Tectonic and Stratigraphic Evolution of Zagros and Makran During the Mesozoic–Cenozoic (eds Leturmy, P. & Robin, C.), pp. 179210. Geological Society of London, Special Publication no. 330.Google Scholar
Rosing, M. T. 1999. 13C-depleted carbon microparticles in > 3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–6.CrossRefGoogle ScholarPubMed
Schopf, J. W. 1993. Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260, 640–6.CrossRefGoogle ScholarPubMed
Schopf, J. W, Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J. & Czaja, A. D. 2002. Laser-Raman imagery of Earth's earliest fossils. Nature 416, 73–6.CrossRefGoogle ScholarPubMed
Sugitani, K. 1992. Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, Western Australia: evidence for Archean seawater enriched in hydrothermally-derived iron and silica. Precambrian Research 57, 2147.CrossRefGoogle Scholar
van den Boorn, S. H. J. M., van Bergen, M. J., Nijman, W. & Vroon, P. Z. 2007. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes. Geology 35, 939–42.Google Scholar
van den Boorn, S. H. J. M., van Bergen, M. J., Vroon, P. Z., de Vries, S. T. & Nijman, W. 2010. Silicon isotope and trace element constraints on the origin of ~3.5 Ga cherts: implications for Early Archaean marine environments. Geochimica et Cosmochimica Acta 74, 1077–103.Google Scholar
Van Kranendonk, M. J. 2006. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sciences Reviews 74, 197240.CrossRefGoogle Scholar
Van Kranendonk, M. J., Smithies, R. H., Hickman, A. H. & Champion, D. C. 2007. Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19, 138.CrossRefGoogle Scholar