Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T14:14:38.509Z Has data issue: false hasContentIssue false

The Cuyano proto-ocean between the Chilenia and Cuyania terranes: rifting and plume interaction during the Neoproterozoic – early Palaeozoic evolution of the SW Gondwana margin

Published online by Cambridge University Press:  27 April 2021

Sofía B. Pérez Luján*
Affiliation:
Grupo de Sismotectónica, Centro de Investigaciones de la Geósfera y la Biósfera (CIGEOBIO) - CONICET, San Juan J5402DCS, Argentina Departamento de Geología, Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de San Juan, San Juan J5402DCS, Argentina
Florencia L. Boedo
Affiliation:
CONICET – Universidad de Buenos Aires, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Buenos Aires C1428EGA, Argentina
Juan P. Ariza
Affiliation:
Departamento de Geología, Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de San Juan, San Juan J5402DCS, Argentina Instituto Geofísico Sismológico Volponi – CONICET, Universidad Nacional de San Juan, San Juan 5407, Argentina
Graciela I. Vujovich
Affiliation:
CONICET – Universidad de Buenos Aires, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Buenos Aires C1428EGA, Argentina Servicio Geológico Minero Argentino (SEGEMAR), Instituto de Geología y Recursos Minerales, Buenos Aires B1650KNA, Argentina
Patricia Alvarado
Affiliation:
Grupo de Sismotectónica, Centro de Investigaciones de la Geósfera y la Biósfera (CIGEOBIO) - CONICET, San Juan J5402DCS, Argentina Departamento de Geofísica y Astronomía, Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de San Juan, San Juan J5402DCS, Argentina
Suzanne M. Kay
Affiliation:
Department of Earth and Atmospheric Sciences and INSTOC, Cornell University, Ithaca, NY14853, United States
*
*Author for correspondence: Sofía B. Pérez Luján, Grupo de Sismotectónica, Email: [email protected]

Abstract

The Precordillera mafic–ultramafic belt (PMUB), located in central-western Argentina, comprises mafic and ultramafic bodies interlayered and/or in tectonic contact with marine siliciclastic units. Whole-rock, mineral geochemistry and Nd–Sr isotope analyses performed in magmatic rocks suggest a relatively different spatial and temporal evolution along the belt. The southern PMUB (south of 32° S) evolved as an intra-continental rifted margin with an enriched mid-ocean-ridge basalt (E-MORB) tholeiitic to alkaline magmatism, to a proto-ocean basin (the Cuyano proto-ocean) with tholeiitic normal-MORB geochemical signature. Based on neodymium model ages (TDM), the magmatic activity started during the late Neoproterozoic Era and continued into the early Palaeozoic Era. Instead, the northern PMUB (28–32° S) evolved as an intra-continental rifted margin with dominant tholeiitic E-MORB to continental flood basalt (CFB) magmatism during the early Palaeozoic Era. ϵNd values (+3.4 to +8.4), rare earth element trends and high-field-strength element systematics, together with an estimated potential mantle temperature of c. 50–100°C above ambient mantle, suggest the PMUB magmatism derived from an enriched mantle source related to the effect of a rising plume linked to the Iapetus Ocean opening. In particular, TDM estimations of 600–550 Ma agree with reported magmatism in central to southern Appalachians. The magmatism in the PMUB, and those registered in the Neoproterozoic Catoctin Formation and in the Southern Oklahoma Aulacogen in the conjugated Laurentian margin, seem to be contemporaneous, sharing a similar plume-enriched mantle source. In this context, the E-MORB signature identified along the PMUB can be described as a plume-distal ridge tectonic setting over an extended margin.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleinikoff, JN, Zartman, RE, Walter, M, Rankin, DW, Lyttle, PT and Burton, WC (1995) U-Pb ages of metarhyolites of the Catoctin and Mount Rogers Formations, central and southern Appalachians: evidence for two pulses of Iapetan rifting. American Journal of Science 295, 428–54.CrossRefGoogle Scholar
Ammirati, JB, Pérez Luján, S, Alvarado, P, Beck, S, Rocher, S and Zandt, G (2016) High-resolution images above the Pampean flat slab of Argentina (31–32°S) from local receiver functions: implications on regional tectonics. Earth and Planetary Science Letters 450, 2939.CrossRefGoogle Scholar
Amos, AJ and Rolleri, EO (1965) El Carbónico marino en el Valle Calingasta-Uspallata (San Juan y Mendoza). Boletín de Informaciones Petroleras 368, 123.Google Scholar
Ariza, JP, Boedo, FL, Sánchez, MA, Christiansen, R, Pérez Lujan, S, Vujovich, G and Martínez, P (2018) Structural setting of the Chanic orogen (Upper Devonian) at central-western Argentina from remote sensing and aeromagnetic data. Implications in the evolution of the proto-Pacific margin of Gondwana. Journal of South American Earth Sciences 88, 352–66.CrossRefGoogle Scholar
Astini, RA, Benedetto, JL and Vaccari, NE (1995) The Early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted and collided terrane: a geodynamic model. Geological Society of America Bulletin 107, 253–73.2.3.CO;2>CrossRefGoogle Scholar
Badger, RL, Ashley, KT, Cousens, BL, Tollo, RP, Bartholomew, MJ, Hibbard, JP and Karabinos, PM (2010) Stratigraphy and geochemistry of the Catoctin volcanics: implications for mantle evolution during the breakup of Rodinia. In From Rodinia to Pangea: the Lithotectonic Record of the Appalachian Region (Tollo, RP, Bartholomew, MJ, Hibbard, JP and Karabinos, PM), pp. 397415. Boulder: Geological Society of America, Memoir no. 206.Google Scholar
Badger, RL and Sinha, AK (1988) Age and Sr isotopic signature of the Catoctin volcanic province: implications for subcrustal mantle evolution. Geology 16, 692–95.2.3.CO;2>CrossRefGoogle Scholar
Badger, RL and Sinha, AK (2004) Geochemical stratigraphy and petrogenesis of the Catoctin volcanic province, central Appalachians. In Proterozoic Tectonic Evolution of the Grenville Orogen in North America (eds RP Tollo, J McLelland, L Corriveau and MJ Bartholomew), pp. 435–58. Boulder: Geological Society of America, Memoir no. 197.CrossRefGoogle Scholar
Baldis, BA, Beresi, M, Bordonaro, O and Vaca, A (1982) Síntesis evolutiva de la Precordillera Argentina. V Congreso Latinoamericano de Geología, Actas 4, 399445. Buenos Aires, Argentina.Google Scholar
Basilici, G, Cutolo, A, Gomes Borges, JP, Henrique, A and Moretti, PA (2005) Ordovician storm-dominated basin and the evolution of the western Gondwana margin (Portezuelo del Tontal, Sierra de la Invernada and Yerba Loca formations, Argentine Precordillera). In Gondwana 12. “Geological and Biological Heritage of Gondwana” (eds Pankhurst, RJ and Veiga, GD). Mendoza: Academia Nacional de Ciencias, Abstracts, 64.Google Scholar
Beccaluva, L, Macciotta, G, Piccardo, GB and Zeda, O (1989) Clinopyroxene composition of ophiolitic basalts as petrogenetic indicator. In Ophiolites and Lithosphere of Marginal Seas (ed. L Beccaluva). Chemical Geology 77, 165–82.Google Scholar
Boedo, FL, Luján, SP, Naipauer, M, Vujovich, GI, Pimentel, MM, Ariza, JP and Barredo, SP (2020) The late Neoproterozoic-early Paleozoic basin of the western Argentine Precordillera: insights from zircon U-Pb geochronology. Journal of South American Earth Sciences 102, 102669.CrossRefGoogle Scholar
Boedo, FL, Vujovich, GI, Kay, SM, Ariza, JP and Pérez Luján, SB (2013) The E-MORB like geochemical features of the Early Paleozoic mafic-ultramafic belt of the Cuyania terrane, western Argentina. Journal of South American Earth Sciences 48, 7384.CrossRefGoogle Scholar
Boedo, FL, Willner, AP, Vujovich, GI and Massonne, HJ (2016) High-pressure/low-temperature metamorphism in the collision zone between the Chilenia and Cuyania microcontinents (western Precordillera, Argentina). Journal of South American Earth Sciences 72, 227–40.CrossRefGoogle Scholar
Borrello, AV (1969) Los geosinclinales de la Argentina. In Anales XIV, Dirección Nacional de Geología y Minería. Argentina: Buenos Aires, 188 p.Google Scholar
Bosworth, W, Stockli, DF and Helgeson, DE (2015) Integrated outcrop, 3D seismic, and geochronologic interpretation of Red Sea dike-related deformation in the Western Desert, Egypt–the role of the 23 Ma Cairo “mini-plume”. Journal of African Earth Sciences 109, 107–19.CrossRefGoogle Scholar
Brodtkorb, MK, Herrmann, C, Pezzutti, N, Leal, P, González, MP and Meissl, E (2015) Mineralización de sulfuros en las ofiolitas Famatinianas y rocas asociadas, Calingasta, Precordillera de San Juan. Revista de la Asociación Geológica Argentina 72, 182–94.Google Scholar
Brueseke, ME, Hobbs, JM, Bulen, CL, Mertzman, SA, Puckett, RE, Walker, JD and Feldman, J (2016) Cambrian intermediate-mafic magmatism along the Laurentian margin: evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (USA). Lithos 260, 164–77.CrossRefGoogle Scholar
Cabanis, B and Thiéblemont, D (1988) La discrimination des tholeiites continentales et des basaltes arriere-arc; proposition d’un nouveau diagramme, le triangle Th-3xTb-2xTa. Bulletin de la Société Géologique de France 4, 927–35.CrossRefGoogle Scholar
Casquet, C, Pankhurst, RJ, Rapela, CW, Galindo, C, Fanning, CM, Chiaradia, M, Baldo, E, González-Casado, JM and Dahlquist, JA (2008) The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa–Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Research, 13, 163–75.CrossRefGoogle Scholar
Condie, KC (2001) Mantle Plumes and their Record in Earth History. Cambridge: Cambridge University Press, 306 p.CrossRefGoogle Scholar
Cortelezzi, C, Furque, G and Paulicevic, R (1982) Estudio petrológico de las lavas en almohadilla del Katiano inferior a medio de la zona de Rodeo, Departamento Iglesia, Provincia de San Juan, República Argentina. In V Congreso Latinoamericano de Geología, 17–22 October 1982, Buenos Aires, Actas 2, 161–72. Servicio Geológico Nacional.Google Scholar
Cortés, JM (1992) Lavas almohadilladas en el Grupo Ciénaga del Medio del extremo noroccidental de la Precordillera mendocina. Revista Asociación Geológica Argentina 47, 115–17.Google Scholar
Cortés, JM, González Bonorino, G, Koukharsky, ML, Brodtkorb, A, Pereyra, F (1999) Hoja Geológica 3369-03 Yalguaraz, Mendoza (versión preliminar), Escala 1:100, Carta Geológica de la República Argentina. Buenos Aires: Servicio Geológico Minero Argentino.Google Scholar
Cortés, JM and Kay, S (1994) Una dorsal oceánica como origen de las lavas almohadilladas del Grupo Ciénaga del Medio (Silúrico- Devónico) de la Precordillera de Mendoza, Argentina. In 7° Congreso Geológico Chileno, 17–21 October 1994, Concepción, Chile. Actas 2, 1005–9. Universidad de Concepción.Google Scholar
Cucchi, RJ (1971) Edades radimétricas y correlación de metamorfitas de la Precordillera de San Juan - Mendoza. República Argentina. Revista de la Asociación Geológica Argentina 26, 503515.Google Scholar
Dalla Salda, L, Cingolani, CA and Varela, R (1992) Early Paleozoic orogenic belt of the Andes in southwestern South America. Results of Laurentian- Gondwana collision? Geology 20, 617–21.2.3.CO;2>CrossRefGoogle Scholar
Dalziel, IWD, Dalla Salda, LH and Gahagan, LM (1994) Paleozoic Laurentia-Gondwana interaction and the origin of the Appalachian Andean mountain system. Geological Society of America Bulletin 106, 243–52.2.3.CO;2>CrossRefGoogle Scholar
Davis, J, Roeske, S, McClelland, W and Kay, S (2000) Mafic and ultramafic crustal fragments of the southwestern Precordillera terrane and their bearing on tectonic models of the early Paleozoic in western Argentina. Geology 28, 171–74.2.0.CO;2>CrossRefGoogle Scholar
Davis, J, Roeske, S, McClelland, W and Snee, L (1999) Closing an ocean between the Precordillera terrane and Chilenia: early Devonian ophiolite emplacement and deformation in the southwest Precordillera. In Laurentia-Gondwana Connections before Pangea (eds Ramos, VA and Keppie, JD), pp. 115–38. Boulder: Geological Society of America, Special publication no. 336.Google Scholar
De Min, A, Piccirillo, EM, Marzoli, A, Bellieni, G, Renne, PR, Ernesto, M and Marques, LS (2003) The Central Atlantic Magmatic Province (CAMP) in Brazil: petrology, geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications. In The Central Atlantic Magmatic Province: Insights from Fragments of Pangea (eds Hames, W, Mchone, JG, Renne, P and Ruppel, C), pp. 91128. Washington, DC: American Geophysical Union, Geophysical Monograph no. 136.CrossRefGoogle Scholar
DePaolo, DJ (1981) Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature 291, 193–96.CrossRefGoogle Scholar
DePaolo, DJ (1988) Neodymium Isotope Geochemistry: An Introduction. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer-Verlag, Minerals and Rocks Series no. 20, xi + 187 p.CrossRefGoogle Scholar
DePaolo, DJ and Wasserburg, GJ (1976) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophysical Research Letters 3, 743–46.CrossRefGoogle Scholar
Dilek, Y and Furnes, H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin 123, 387411.CrossRefGoogle Scholar
Domeier, M and Jakob, J (2020) Iapetan Oceans: an analog of Tethys? Geology 48, 929–33.Google Scholar
Donnelly, KE, Goldstein, SL, Langmuir, CH and Spiegelman, M (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters 226, 347–66.CrossRefGoogle Scholar
Ernst, RE, Buchan, KL and Campbell, IH (2005) Frontiers in large igneous province research. Lithos 79, 271–97.CrossRefGoogle Scholar
Fauqué, L and Villar, L (2003) Reinterpretación estratigráfica y petrología de la Formación Chuscho, Precordillera de La Rioja. Revista de la Asociación Geológica Argentina 58, 218–32.Google Scholar
Finney, S (2007) The parautochthonous Gondwanan origin of the Cuyania (greater Precordillera) terrane of Argentina: a re-evaluation of evidence used to support an allochthonous Laurentian origin. Geologica Acta: An International Earth Science Journal 5, 127–58.Google Scholar
Fisher, CM, Loewy, SL, Miller, CF, Berquist, P, Van Schmus, WR, Hatcher, RD Jr, Wooden, JL and Fullagar, PD (2010) Whole-rock Pb and Sm-Nd isotopic constraints on the growth of southeastern Laurentia during Grenvillian orogenesis. Geological Society of America Bulletin 122, 1646–59.CrossRefGoogle Scholar
Fitton, JG, Saunders, AD, Norry, MJ, Hardarson, BS and Taylor, RN (1997) Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters 153, 197208.CrossRefGoogle Scholar
Fullagar, PD, Goldberg, SA and Butler, JR (1997) Nd and Sr isotopic characterization of crystalline rocks from the southern Appalachian Piedmont and Blue Ridge, North and South Carolina. In The Nature of Magmatism in the Appalachian Orogen (eds Sinha, AK, Whalen, JB and Hogan, JP), pp. 165–79. Boulder: Geological Society of America, Memoir no. 191.Google Scholar
Furque, G (1983) Descripción Geológica de la Hoja 19c - Ciénaga de Gualilán. Carta Geológico-Económica de la República Argentina. Escala 1:200.000. Provincia de San Juan. Boletín 193, 126 p. Buenos Aires, Servicio Geológico Nacional.Google Scholar
Gargiulo, MF, Bjerg, EA, Mogessie, A (2011) Caracterización y evolución metamórfica de las rocas ultramáficas de la Faja del río de las Tunas, Cordillera Frontal de Mendoza. Revista Asociación Geológica Argentina 68, 571–93.Google Scholar
Giambiagi, L, Mescua, J, Heredia, N, Farías, P, García Sansegundo, J, Fernandez, C, Stier, S, Pérez, D, Bechis, F, Moreiras, SM and Lossada, A (2014) Reactivation of Paleozoic structures during Cenozoic deformation in the Cordón del Plata and Southern Precordillera ranges (Mendoza, Argentina). Journal of Iberian Geology 40, 309–20.CrossRefGoogle Scholar
Gioia, SMCL and Pimentel, MM (2000) The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. Anais da Academia Brasileira de Ciências 72, 219–45.CrossRefGoogle ScholarPubMed
Gomes, JPB, Basilici, G, Cutolo, AA, Henrique, A and Moretti, PA Jr (2005) The importance of storm-gravitational combined flows on the construction of sandstone reservoirs in siliciclastic shelves: analogous in Portezuelo del Tontal and Sierra de la Invernada Formations (middle-upper Ordovician, Precordillera Argentina). In Gondwana 12 “Geological and Biological Heritage of Gondwana”, Mendoza, Academia Nacional de Ciencias, Abstracts, p. 174.Google Scholar
González-Menéndez, L, Gallastegui, G, Cuesta, A, Heredia, N and Rubio-Ordóñez, A (2013) Petrogenesis of Early Paleozoic basalts and gabbros in the western Cuyania terrane: constraints on the tectonic setting of the southwestern Gondwana margin (Sierra del Tigre, Andean Argentine Precordillera). Gondwana Research 24, 359–76.CrossRefGoogle Scholar
Green, DH and Ringwood, AE (1967) The stability field of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth and Planetary Science Letters 3, 151–60.CrossRefGoogle Scholar
Gregori, DA, Martínez, JC and Benedini, L (2013) The Gondwana-South America Iapetus margin evolution as recorded by Lower Paleozoic units of western Precordillera, Argentina: the Bonilla Complex, Uspallata. Instituto Superior de Correlación Geológica. Serie Correlación Geológica no. 29, 2180. San Miguel de Tucumán.Google Scholar
Goldberg, SA and Dallmeyer, RD (1997) Chronology of Paleozoic metamorphism and deformation in the Blue Ridge thrust complex, North Carolina and Tennessee. American Journal of Science 297, 488526.CrossRefGoogle Scholar
Haller, MJ, Ramos, VA (1984) Las ofiolitas famitinianas (Eopaleozoico) de las provincias de San Juan y Mendoza. In 9° Congreso Geológico Argentino, 5–9 November 1984, San Carlos de Bariloche, Argentina. Actas 3, 6683. Asociación Geológica Argentina.Google Scholar
Heredia, N, Farías, P, García Sansegundo, J and Giambiagi, L (2012) The basement of the Andean Frontal Cordillera in the Cordón del Plata (Mendoza, Argentina): geodynamic evolution. Andean Geology 39, 242–57, https://doi.org/10.5027/andgeoV39n2-a03.CrossRefGoogle Scholar
Herzberg, C and Asimow, PD (2015) PRIMELT 3 MEGA. XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochemistry, Geophysics, Geosystems 16, 563–78.CrossRefGoogle Scholar
Herzberg, C, Asimow, PD, Arndt, N, Niu, Y, Lesher, CM, Fitton, JG and Saunders, AD (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems 8(2), https://doi.org/10.1029/2006GC001390.CrossRefGoogle Scholar
Jacques, G, Hauff, F, Hoernle, K, Jung, S, Kay, SM, Garbe-Schönberg, D and Bindeman, I (2020) Sr-Nd-Pb-Hf-O isotopic constraints on the Neoproterozoic to Miocene upper and mid crust in central Chile and western Argentina and trench sediments (33°-35° S). Journal of South American Earth Sciences 104, 102879.CrossRefGoogle Scholar
Jones, TD, Davies, DR, Campbell, IH, Wilson, CR and Kramer, SC (2016) Do mantle plumes preserve the heterogeneous structure of their deep-mantle source? Earth and Planetary Science Letters 434, 1017.CrossRefGoogle Scholar
Kay, S, Ramos, V and Kay, R (1984) Elementos mayoritarios y trazas de las vulcanitas ordovícicas de la Precordillera occidental; basaltos de rift oceánico temprano (?) próximo al margen continental. In 9° Congreso Geológico Argentino, 5–9 November 1984, San Carlos de Bariloche, Argentina. Actas 2, 4865. Asociación Geológica Argentina.Google Scholar
Kay, SM, Godoy, E and Kurtz, A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geological Society of America Bulletin 117, 6788.CrossRefGoogle Scholar
Kay, SM, Orrell, S and Abruzzi, JM (1996) Zircon and whole-rock Nd–Pb isotopic evidence for a Grenville age and Laurentian origin for the basement of the Precordillera in Argentina. Journal of Geology 104, 637–48.CrossRefGoogle Scholar
Lambert, DD, Unruh, DM and Gilbert, MC (1988) Rb-Sr and Sm-Nd isotopic study of the Glen Mountains layered complex: initiation of rifting within the southern Oklahoma aulacogen. Geology 16, 1317.2.3.CO;2>CrossRefGoogle Scholar
Le Bas, MJ (1962) The role of aluminium in igneous clinopyroxenes with relation to their parentage. American Journal of Science 260, 267–88.CrossRefGoogle Scholar
Leterrier, J, Maury, RC, Thonon, P, Girard, D and Marchal, M (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters 59, 139154.Google Scholar
Leveratto, MA (1968) Geología de la zona al oeste de Ullum y Zonda, borde oriental de la Precordillera de San Juan, eruptividad subvolcánica y estructura. Revista de la Asociación Geológica Argentina 23, 129–57.Google Scholar
Lin, J, Liu, Y, Yang, Y and Hu, Z (2016) Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sciences 1, 527.CrossRefGoogle Scholar
López, VL and Gregori, DA (2004) Provenance and evolution of the Guarguaraz Complex, Cordillera Frontal, Argentina. Gondwana Research 7, 1197–208.CrossRefGoogle Scholar
López de Azarevich, VLL, Escayola, M, Azarevich, MB, Pimentel, MM and Tassinari, C (2009) The Guarguaraz Complex and the Neoproterozoic–Cambrian evolution of southwestern Gondwana: geochemical signatures and geochronological constraints. Journal of South American Earth Sciences 28, 333–44.CrossRefGoogle Scholar
Lugmair, GW and Marti, K (1978) Lunar initial 143Nd/144Nd: differential evolution line of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
MacDougall, JD (ed.) (1988) Continental Flood Basalts (Vol. 3). New York: Springer Science & Business Media.CrossRefGoogle Scholar
Mantle, GW and Collins, WJ (2008) Quantifying crustal thickness variations in evolving orogens: correlation between arc basalt composition and Moho depth. Geology 36, 8790.CrossRefGoogle Scholar
Martina, F, Astini, RA and Pimentel, MM (2014) Sr–Nd isotope data of basement rocks from the northernmost argentine Precordillera and its implications for the early Paleozoic evolution of SW Gondwana margin. Journal of South American Earth Sciences 56, 2029.CrossRefGoogle Scholar
Massonne, H-J and Calderón, M (2008) P-T evolution of metapelites from the Guarguaraz Complex, Argentina: evidence for Devonian crustal thickening close to the western Gondwana margin. Revista Geológica de Chile 35, 215–31.CrossRefGoogle Scholar
McCulloch, MT, Gregory, RT, Wasserburg, GJ and Taylor, HP Jr (1980) A neodymium, strontium, and oxygen isotopic study of the cretaceous Samail ophiolite and implications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust. Earth and Planetary Science Letters 46, 201–11.CrossRefGoogle Scholar
McKenzie, DAN and O’Nions, RK (1991) Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021–91.CrossRefGoogle Scholar
Moretti, PA (2009) Análise de Fácies e Modelo Paleodeposicional da Plataforma Siliciclástica Ordoviciana da Pré-Cordilheira Argentina. Subcomissão de Pós-graduação em Ciências e Engenharia de petróleo, Faculdade de Engenharia Mecânica e Instituto de Geociências, Universidade Estadual de Campinas, 126 p. São Paulo, Brasil.Google Scholar
Morimoto, N (1988) Nomenclature of pyroxenes. Mineralogy and Petrology 39, 5576.CrossRefGoogle Scholar
Ortega, G, Albanesi, GL, Banchig, AL and Peralta, GL (2008) High resolution conodont-graptolite biostratigraphy in the Middle-Upper Ordovician of the Sierra de la Invernada Formation (Central Precordillera, Argentina). Geológica Acta 2, 161–80.Google Scholar
Pearce, JA (1982) Trace element characteristics of lavas from destructive plate boundaries. Andesites 8, 525–48.Google Scholar
Pearce, JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 1448, https://doi.org/10.1016/j.lithos.2007.06.016.Google Scholar
Puffer, JH (2002) A late Neoproterozoic eastern Laurentian superplume: location, size, chemical composition, and environmental impact. American Journal of Science 302, 127.CrossRefGoogle Scholar
Putirka, KD (2008) Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry 69, 61120.CrossRefGoogle Scholar
Putirka, K, Ryerson, FJ and Mikaelian, H (2003) New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene + liquid equilibria. American Mineralogist 88, 1542–54.CrossRefGoogle Scholar
Ramos, VA, Dallmeyer, D and Vujovich, G (1998) Time constraints on the Early Paleozoic docking of the Precordillera, Central Argentina. In The Proto-Andean Margin of Gondwana (eds Pankhurst, R and Rapela, CW), pp. 143–58. Geological Society of London, Special Publication no. 142.Google Scholar
Ramos, VA, Jordan, TE, Allmendinger, RW, Mpodozis, C, Kay, SM, Cortés, M and Palma, M (1986) Paleozoic terranes of the central Argentine-Chilean Andes. Tectonics 5, 855–80.CrossRefGoogle Scholar
Rapela, CW, Pankhurst, RJ, Casquet, C, Baldo, E, Galindo, C, Fanning, CM and Dahlquist, JM (2010) The Western Sierras Pampeanas: protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction–accretion at continental-edge and AMCG intraplate magmatism. Journal of South American Earth Sciences 29, 105–27.CrossRefGoogle Scholar
Reichow, MK, Saunders, AD, White, RV, Al´Mukhamedov, AI and Medveded, AYa (2005) Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo-Triassic Siberian Traps, Russia. Lithos 79, 425–52.CrossRefGoogle Scholar
Robinson, D, Bevins, R and Rubinstein, N (2005) Subgreenschists facies metamorphism of metabasites from Precordillera of western Argentina; constrains on the later stages of accretion onto Gondwana. European Journal of Mineralogy 17, 441–52.CrossRefGoogle Scholar
Ross, PS and Bédard, JH (2009) Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Sciences 46, 823–39.CrossRefGoogle Scholar
Rubinstein, CV and Steemans, P (2007) New palynological data from the Devonian Villavicencio Formation, Precordillera of Mendoza, Argentina. Ameghiniana 44, 39.Google Scholar
Rubinstein, N, Bevins, R, Robinson, D and Morrello, O (1997) Very low grade metamorphism in the Alcaparrosa Formation, Western Precordillera, Argentina. In 10° Congreso Latinoamericano de Geología y 6° Congreso Nacional de Geología Económica, Buenos Aires, Actas 2, pp. 226–29.Google Scholar
Shervais, JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101–18.CrossRefGoogle Scholar
Smith, TE, Holm, PE, Denisson, NM and Harris, MJ (1997) Crustal assimilation in the Burnt Lake metavolcanics, Grenville Province, southeastern Ontario, and its tectonic significance. Canadian Journal of Earth Science 34, 1272–85.CrossRefGoogle Scholar
Sun, S and McDonough, W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds AD Saunders and MJ Norry), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Thomas, WA and Astini, RA (2003) Ordovician accretion of the Argentine Precordillera terrane to Gondwana: a review. Journal of South American Earth Sciences 16, 6779.CrossRefGoogle Scholar
Thomas, WA, Tucker, RD, Astini, RA and Denison, RE (2012) Ages of pre-rift basement and synrift rocks along the conjugate rift and transform mar-gins of the Argentine Precordillera and Laurentia. Geosphere 8, 1366–83, https://doi.org/10.1130/GES00800.1.CrossRefGoogle Scholar
Thompson, RN, Morrison, MA, Dickin, AP and Hendry, GL (1983) Continental flood basalts Arachnids rule OK? In Continental Basalts and Mantle Xenoliths (Hawkesworth, CJ and Norry, MJ), pp. 158–85. Cambridge, MA: Shiva Publications.Google Scholar
Varela, R, Basei, MAS, González, PD, Sato, AM, Naipauer, M, Campos Neto, M, Cingolani, CA and Meira, VT (2011) Accretion of Grenvillian terranes to the southwestern border of the Río de la Plata craton, western Argentina. International Journal of Earth Sciences 100, 243–72.CrossRefGoogle Scholar
Watson, S and McKenzie, DAN (1991) Melt generation by plumes: a study of Hawaiian volcanism. Journal of Petrology 32, 501–37.CrossRefGoogle Scholar
Whitney, D and Evans, B (2010) Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–87.CrossRefGoogle Scholar
Willner, AP, Gerdes, A, Massonne, HJ, Schmidt, A, Sudo, M, Thomson, SN and Vujovich, G (2011) The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure-temperature-time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina). Contributions to Mineralogy and Petrology 162, 303–27.Google Scholar
Winchester, JA and Floyd, PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Woodhead, J, Eggins, S and Gamble, J (1993) High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters 114, 491504.CrossRefGoogle Scholar
Workman, RK and Hart, SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 5372.CrossRefGoogle Scholar
Xia, L and Li, X (2019) Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Research 65, 4367.CrossRefGoogle Scholar
Xia, LQ (2014) The geochemical criteria to distinguish continental basalts from arc related ones. Earth-Science Reviews 139, 195212.CrossRefGoogle Scholar
Zindler, A and Hart, S (1986) Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar
Supplementary material: File

Pérez Luján et al. supplementary material

Table S1

Download Pérez Luján et al. supplementary material(File)
File 114.9 KB
Supplementary material: File

Pérez Luján et al. supplementary material

Table S3

Download Pérez Luján et al. supplementary material(File)
File 13.5 KB
Supplementary material: File

Pérez Luján et al. supplementary material

Table S2

Download Pérez Luján et al. supplementary material(File)
File 29.6 KB