Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T14:35:24.909Z Has data issue: false hasContentIssue false

Controlling factors for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western USA)

Published online by Cambridge University Press:  18 April 2017

GWÉNAËL CARAVACA*
Affiliation:
Biogéosciences UMR6282, CNRS, Université Bourgogne Franche-Comté, 21000 Dijon, France
ARNAUD BRAYARD
Affiliation:
Biogéosciences UMR6282, CNRS, Université Bourgogne Franche-Comté, 21000 Dijon, France
EMMANUELLE VENNIN
Affiliation:
Biogéosciences UMR6282, CNRS, Université Bourgogne Franche-Comté, 21000 Dijon, France
MICHEL GUIRAUD
Affiliation:
Biogéosciences UMR6282, CNRS, Université Bourgogne Franche-Comté, 21000 Dijon, France
LAETITIA LE POURHIET
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut des Sciences de la Terre de Paris (iSTeP), 4 place Jussieu 75005 Paris, France
ANNE-SABINE GROSJEAN
Affiliation:
Biogéosciences UMR6282, CNRS, Université Bourgogne Franche-Comté, 21000 Dijon, France
CHRISTOPHE THOMAZO
Affiliation:
Biogéosciences UMR6282, CNRS, Université Bourgogne Franche-Comté, 21000 Dijon, France
NICOLAS OLIVIER
Affiliation:
Laboratoire Magmas et Volcans, CNRS, IRD, OPGC, Université Blaise Pascal, 63038 Clermont Ferrand, France
EMMANUEL FARA
Affiliation:
Biogéosciences UMR6282, CNRS, Université Bourgogne Franche-Comté, 21000 Dijon, France
GILLES ESCARGUEL
Affiliation:
UMR 5023 LEHNA, Université Lyon 1, 69622 Villeurbanne Cedex, France
KEVIN G. BYLUND
Affiliation:
140 South 700 East, Spanish Fork, Utah 84660, USA
JAMES F. JENKS
Affiliation:
1134 Johnson Ridge Lane, West Jordan, Utah 84084, USA
DANIEL A. STEPHEN
Affiliation:
Department of Earth Science, Utah Valley University, Orem, Utah 84058, USA
*
Author for correspondence: [email protected]

Abstract

Sediments deposited from the Permian–Triassic boundary (~252 Ma) until the end-Smithian (Early Triassic; c. 250.7 Ma) in the Sonoma Foreland Basin show marked thickness variations between its southern (up to c. 250 m thick) and northern (up to c. 550 m thick) parts. This basin formed as a flexural response to the emplacement of the Golconda Allochthon during the Sonoma orogeny. Using a high-resolution backstripping approach, a numerical model and sediment thickness to obtain a quantitative subsidence analysis, we discuss the controlling factor(s) responsible for spatial variations in thickness. We show that sedimentary overload is not sufficient to explain the significant discrepancy observed in the sedimentary record of the basin. We argue that the inherited rheological properties of the basement terranes and spatial heterogeneity of the allochthon are of paramount importance in controlling the subsidence and thickness spatial distribution across the Sonoma Foreland Basin.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. A. & Allen, J. R. 2005. Basin Analysis: Principles and Applications. Oxford: Blackwell Science Publishing.Google Scholar
Angevine, C. L., Heller, P. L. & Paola, C. 1990. Quantitative Sedimentary Basin Modeling. American Association of Petroleum Geologists.Google Scholar
Artemieva, I. M. & Mooney, W. D. 2002. On the relations between cratonic lithosphere thickness, plate motions, and basal drag. Tectonophysics 358 (1–4), 211–31.Google Scholar
Bankey, V. A., Cuevas, D., Daniels, A. A., Finn, C. A., Hernandez, I., Hill, P., Kucks, R., Miles, W., Pilkington, M., Roberts, C., Roest, W., Rystrom, V., Shearer, S., Snyder, S., Sweeney, R., Velez, J., Phillips, J. D. & Ravat, D. 2002. Digital data grids for the magnetic anomaly map of North America. Open-File Report 02-414: USGS.Google Scholar
Beaumont, C. 1981. Foreland basins. Geophysical Journal International 65 (2), 291329.Google Scholar
Blakey, R. C. 2008. Pennsylvanian-Jurassic sedimentary basins of the Colorado Plateau and Southern Rocky Mountains. Sedimentary Basins of the World, pp. 245–96. Netherlands: Elsevier.Google Scholar
Bond, G. C., Christie-Blick, N., Kominz, M. A. & Devlin, W. J. 1985. An early Cambrian rift to post-rift transition in the Cordillera of western North America. Nature 315, 742–46.Google Scholar
Brayard, A., Bylund, K. G., Jenks, J. F., Stephen, D. A., Olivier, N., Escarguel, G., Fara, E. & Vennin, E. 2013. Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss Journal of Palaeontology 132 (2), 141219.Google Scholar
Brayard, A., Meier, M., Escarguel, G., Fara, E., Nuetzel, A., Olivier, N., Bylund, K. G., Jenks, J. F., Stephen, D. A., Hautmann, M., Vennin, E. & Bucher, H. 2015. Early Triassic ‘Gulliver’ gastropods; spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth-Science Reviews 146, 3164.Google Scholar
Brühwiler, T., Bucher, H., Brayard, A. & Goudemand, N. 2010. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery; the Smithian faunas of the northern Indian margin. Palaeogeography, Palaeoclimatology, Palaeoecology 297 (2), 491501.Google Scholar
Bryant, B. & Nichols, D. 1988. Late Mesozoic and early Tertiary reactivation of an ancient crustal boundary along the Uinta trend and its interaction with the Sevier orogenic belt. Geological Society of America Memoirs 171, 411–30.Google Scholar
Bucher, H. 1988. A new Middle Anisian (Middle Triassic) ammonoid zone from northwestern Nevada (USA). Eclogae Geologicae Helvetiae 81 (3), 723–62.Google Scholar
Burchfiel, B. & Davis, G. A. 1975. Nature and controls of Cordilleran orogenesis, western United States: Extensions of an earlier synthesis. American Journal of Science 275, 363–96.Google Scholar
Burchfiel, B. & Royden, L. 1991. Antler orogeny: A Mediterranean-type orogeny. Geology 19 (1), 66–9.Google Scholar
Burgess, S. D., Bowring, S. & Shen, S.-Z. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences of the United States of America 111 (9), 3316–21.Google Scholar
Burov, E. B. & Diament, M. 1995. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? Journal of Geophysical Research: Solid Earth 100 (B3), 3905–27.Google Scholar
Cagnard, F., Barbey, P. & Gapais, D. 2011. Transition between “Archaean-type” and “modern-type” tectonics: insights from the Finnish Lapland Granulite Belt. Precambrian Research 187 (1), 127–42.Google Scholar
Cardozo, N. & Jordan, T. 2001. Causes of spatially variable tectonic subsidence in the Miocene Bermejo Foreland Basin, Argentina. Basin Research 13 (3), 335–57.Google Scholar
Chardon, D., Gapais, D. & Cagnard, F. 2009. Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477 (3), 105–18.Google Scholar
Chevalier, F., Guiraud, M., Garcia, J. P., Dommergues, J. L., Quesne, D., Allemand, P. & Dumont, T. 2003. Calculating the long-term displacement rates of a normal fault from the high-resolution stratigraphic record (early Tethyan rifting, French Alps). Terra Nova 15 (6), 410–16.Google Scholar
Clark, D. L. 1957. Marine Triassic stratigraphy in eastern Great Basin. AAPG Bulletin 41 (10), 2192–222.Google Scholar
Coney, P. J. 1987. The regional tectonic setting and possible causes of Cenozoic extension in the North American Cordillera. Geological Society Special Publications 28, 177–86.Google Scholar
DeCelles, P. G. & Coogan, J. C. 2006. Regional structure and kinematic history of the Sevier fold-and-thrust belt, central Utah. Geological Society of America Bulletin 118 (7–8), 841–64.Google Scholar
DeCelles, P. G. & Giles, K. A. 1996. Foreland basin systems. Basin Research 8 (2), 105–23.Google Scholar
Dickerson, P. W. 2003. Intraplate mountain building in response to continent-continent collision; the ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia). Tectonophysics 365 (1–4), 129–42.Google Scholar
Dickinson, W. R. 2002. The Basin and Range Province as a composite extensional domain. International Geology Review 44 (1), 138.Google Scholar
Dickinson, W. R. 2004. Evolution of the North American cordillera. Annual Review of Earth and Planetary Sciences 32, 1345.Google Scholar
Dickinson, W. R. 2006. Geotectonic evolution of the Great Basin. Geosphere 2 (7), 353–68.Google Scholar
Dickinson, W. R. 2013. Phanerozoic palinspastic reconstructions of Great Basin geotectonics (Nevada-Utah, USA). Geosphere 9 (5), 1384–96.Google Scholar
Eardley, A. J. 1939. Structure of the Wasatch-Great Basin region. Geological Society of America Bulletin 50 (8), 1277–310.Google Scholar
Embry, A. F. 1997. Global sequence boundaries of the Triassic and their identification in the Western Canada sedimentary basin. Bulletin of Canadian Petroleum Geology 45 (4), 415–33.Google Scholar
Fan, M., DeCelles, P. G., Gehrels, G. E., Dettman, D. L., Quade, J. & Peyton, S. L. 2011. Sedimentology, detrital zircon geochronology, and stable isotope geochemistry of the lower Eocene strata in the Wind River Basin, central Wyoming. Geological Society of America Bulletin 123 (5–6), 979–96.Google Scholar
Fletcher, R. C. & Hallet, B. 1983. Unstable extension of the lithosphere: A mechanical model for basin-and-range structure. Journal of Geophysical Research: Solid Earth 88 (B9), 7457–66.Google Scholar
Fosdick, J. C., Graham, S. A. & Hilley, G. E. 2014. Influence of attenuated lithosphere and sediment loading on flexure of the deep-water Magallanes retroarc foreland basin, Southern Andes. Tectonics 33 (12), 2505–25.Google Scholar
Foster, D. A., Mueller, P. A., Mogk, D. W., Wooden, J. L. & Vogl, J. J. 2006. Proterozoic evolution of the western margin of the Wyoming craton: implications for the tectonic and magmatic evolution of the northern Rocky Mountains. Canadian Journal of Earth Sciences 43 (10), 1601–19.Google Scholar
Gabrielse, H., Snyder, W. S. & Stewart, J. H. 1983. Sonoma orogeny and Permian to Triassic tectonism in western North America. Geology 11 (8), 484–86.Google Scholar
Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., Goudemand, N., Weissert, H., Hochuli, P. A., Cordey, F. & Guodun, K. 2007. Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters 258 (3–4), 593604.Google Scholar
Gans, P. & Bohrson, W. 1998. Suppression of volcanism during rapid extension in the Basin and Range Province, United States. Science 279 (5347), 6668.Google Scholar
Geslin, J. K. 1998. Distal ancestral Rocky Mountains tectonism: Evolution of the Pennsylvanian-Permian Oquirrh–Wood River basin, southern Idaho. Geological Society of America Bulletin 110 (5), 644–63.Google Scholar
Gilbert, H., Velasco, A. A. & Zandt, G. 2007. Preservation of Proterozoic terrane boundaries within the Colorado Plateau and implications for its tectonic evolution. Earth and Planetary Science Letters 258 (1–2), 237–48.Google Scholar
Goodspeed, T. H. & Lucas, S. G. 2007. Stratigraphy, sedimentology, and sequence stratigraphy of the Lower Triassic Sinbad Formation, San Rafael Swell, Utah. Bulletin - New Mexico Museum of Natural History and Science 40, 91101.Google Scholar
Groshong, R. H. Jr 2006. 3-D Structural Geology. Berlin, Heidelberg: Springer.Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Sea-Level Changes: An Integrated Approach (eds Wilgus, C. K., Hastings, B. S., Posamentier, H., Wagoner, J. Van, Ross, C. A. & Kendall, C. G. St. C.), pp. 72108. Society of Economic Paleontologists and Mineralogists, Special Publication no. 42.Google Scholar
Heckert, A. B., Chure, D. J., Voris, J. T., Harrison, A. A. & Thomson, T. J. 2015. Stratigraphy, correlation and age of the Moenkopi Formation in the vicinity of Dinosaur National Monument, Eastern Uinta Basin, Utah and Colorado, USA. In Geology of Utah's Uinta Basin and Uinta Mountains (eds Berg, M. D. Vanden, Ressetar, R. and Birgenheier, L. P.), pp. 112. Utah Geological Association Publication.Google Scholar
Hofmann, R., Hautmann, M., Brayard, A., Nuetzel, A., Bylund, K. G., Jenks, J. F., Vennin, E., Olivier, N. & Bucher, H. 2014. Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa. Palaeontology 57 (3), 547–89.Google Scholar
Ingersoll, R. V. 2008. Subduction-related sedimentary basins of the USA Cordillera. In: Sedimentary Basins of the World, pp. 395428. Amsterdam, Netherlands: Elsevier.Google Scholar
Jattiot, R., Bucher, H., Brayard, A., Brosse, M., Jenks, J. & Bylund, K. G. In press. Smithian ammonoid faunas from northeastern Nevada: implications for Early Triassic biostratigraphy and correlation within the western USA basin. Palaeontographica Abteilung A.Google Scholar
Jattiot, R., Bucher, H., Brayard, A., Monnet, C., Jenks, J. F. & Hautmann, M. 2015. Revision of the genus Anasibirites Mojsisovics (Ammonoidea): an iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction. Papers in Palaeontology 2 (1), 155188.Google Scholar
Kluth, C. F. & Coney, P. J. 1981. Plate tectonics of the ancestral Rocky Mountains. Geology 9 (1), 1015.Google Scholar
Kreemer, C. & Hammond, W. C. 2007. Geodetic constraints on areal changes in the Pacific–North America plate boundary zone: What controls Basin and Range extension? Geology 35 (10), 943–46.Google Scholar
Kucks, R. P. 1999. Bouguer gravity anomaly data grid for the conterminous US. US Geological Survey Digital Data Series DDS-9: USGS.Google Scholar
Kummel, B. 1954. Triassic Stratigraphy of Southeastern Idaho and Adjacent Areas. Washington: US Government Printing Office.Google Scholar
Kummel, B. 1957. Paleoecology of Lower Triassic formations of southeastern Idaho and adjacent areas. In: Treatise on Marine Ecology and Paleocology (ed. Ladd, H. S.), pp. 437–68. Geological Society of America, Memoir no. 67.Google Scholar
Lachenbruch, A. H. & Morgan, P. 1990. Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophysics 174 (1), 3962.Google Scholar
Lachkar, N., Guiraud, M., El Harfi, A., Dommergues, J.-L., Dera, G. & Durlet, C. 2009. Early Jurassic normal faulting in a carbonate extensional basin; characterization of tectonically driven platform drowning (High Atlas rift, Morocco). Journal of the Geological Society of London 166 (3), 413–30.Google Scholar
Lawton, T. F., Boyer, S. E. & Schmitt, J. G. 1994. Influence of inherited taper on structural variability and conglomerate distribution, Cordilleran fold and thrust belt, western United States. Geology 22 (4), 339–42.Google Scholar
Le Pourhiet, L. & Saleeby, J. 2013. Lithospheric convective instability could induce creep along part of the San Andreas fault. Geology 41 (9), 9991002.Google Scholar
Leever, K., Matenco, L., Bertotti, G., Cloetingh, S. & Drijkoningen, G. 2006. Late orogenic vertical movements in the Carpathian Bend Zone–seismic constraints on the transition zone from orogen to foredeep. Basin Research 18 (4), 521–45.Google Scholar
Lowrie, W. 2007. Fundamentals of Geophysics. Cambridge: Cambridge University Press.Google Scholar
Lucas, S. G., Krainer, K. & Milner, A. R. 2007. The type section and age of the Timpoweap Member and stratigraphic nomenclature of the Triassic Moenkopi Group in Southwestern Utah. Triassic of the American West. New Mexico Museum of Natural History and Science Bulletin 40, 109–18.Google Scholar
Lucas, S. G. & Orchard, M. J. 2007. Triassic lithostratigraphy and biostratigraphy north of Currie, Elko County, Nevada. Bulletin - New Mexico Museum of Natural History and Science 40, 119–26.Google Scholar
Lund, K., Box, S. E., Holm-Denoma, C. S., San Juan, C. A., Blakely, R. J., Saltus, R. W., Anderson, E. D. & Dewitt, E. H. 2015. Basement domain map of the conterminous United States and Alaska. Reston, VA, United States: US Geological Survey.Google Scholar
Malavieille, J. 1993. Late orogenic extension in mountain belts: insights from the Basin and Range and the late Paleozoic Variscan belt. Tectonics 12 (5), 1115–30.Google Scholar
Manger, G. E. 1963. Porosity and bulk density of sedimentary rocks. Report published by US Government Printing Office, Washginton.Google Scholar
Marzolf, J. E. 1993. Palinspastic reconstruction of early Mesozoic sedimentary basins near the latitude of Las Vegas; implications for the early Mesozoic Cordilleran cratonal margin. In: Mesozoic Paleogeography of the Western United States, vol. II (eds Dunn, G. C. & McDougall, K. A.), pp. 433–62. Pacific Section, Society of Economic Paleontologists and Mineralogists, Field Trip Guidebook 71.Google Scholar
McCulloh, T. H. 1967. Mass properties of sedimentary rocks and gravimetric effects of petroleum and natural-gas reservoirs. Report published by US Government Printing Office, Washington.Google Scholar
Miall, A. 2010. The Geology of Stratigraphic Sequences. Berlin, Heidelberg: Springer Science & Business Media.Google Scholar
Moreau, J., Le Pourhiet, L., Huuse, M., Gibbard, P. L. & Grappe, B. 2015. The impact of the lithospheric flexure during the Elsterian glacial maximum on post-/proglacial systems in the southern North Sea area. In Quaternary Research Association, Annual Discussion Meeting, Edinburgh, 5–8 January 2015.Google Scholar
Mueller, P. A., Wooden, J. L., Mogk, D. W. & Foster, D. A. 2011. Paleoproterozoic evolution of the Farmington Zone; implications for terrane accretion in southwestern Laurentia. Lithosphere 3 (6), 401–08.Google Scholar
Mukul, M. & Mitra, G. 1998. Finite strain and strain variation analysis in the Sheeprock Thrust Sheet: an internal thrust sheet in the Provo salient of the Sevier Fold-and-Thrust belt, Central Utah. Journal of Structural Geology 20 (4), 385405.Google Scholar
Nelson, S. T., Hart, G. L. & Frost, C. D. 2011. A reassessment of Mojavia and a new Cheyenne Belt alignment in the eastern Great Basin. Geosphere 7 (2), 513–27.Google Scholar
Nichols, K. M. & Silberling, N. J. 1977. Stratigraphy and Depositional History of the Star Peak Group (Triassic), Northwestern Nevada. Geological Society of America Special Paper no. 178, 74 pp.Google Scholar
Oldow, J. S., Bally, A. W., Avé Lallemant, H. & Leeman, W. P. 1989. Phanerozoic evolution of the North American Cordillera; United States and Canada. In: The Geology of North America (eds Bally, A. W. & Palmer, A. R.), 139232. Boulder: Geological Society of America.Google Scholar
Olivier, N., Brayard, A., Fara, E., Bylund, K. G., Jenks, J. F., Vennin, E., Stephen, D. A. & Escarguel, G. 2014. Smithian shoreline migrations and depositional settings in Timpoweap Canyon (Early Triassic, Utah, USA). Geological Magazine 151 (5), 938–55.Google Scholar
Olivier, N., Brayard, A., Vennin, E., Escarguel, G., Fara, E., Bylund, K. G., Jenks, J. F., Caravaca, G. & Stephen, D. A. 2016. Evolution of depositional settings in the Torrey area during the Smithian (Early Triassic, Utah, USA) and their significance for the biotic recovery. Geological Journal 51 (4), 600–26.Google Scholar
Parsons, T., Thompson, G. A. & Sleep, N. H. 1994. Mantle plume influence on the Neogene uplift and extension of the US western Cordillera? Geology 22 (1), 83–6.Google Scholar
Paull, R. A. & Paull, R. K. 1991. Allochthonous rocks from the western part of the early Triassic miogeocline; Hawley Creek area, east-central Idaho. Contributions to Geology 28 (2), 145–54.Google Scholar
Paull, R. A. & Paull, R. K. 1993. Interpretation of Early Triassic nonmarine–marine relations, Utah, USA. New Mexico Museum of Natural History and Science Bulletin 3, 403–09.Google Scholar
Paulsen, T. & Marshak, S. 1999. Origin of the Uinta recess, Sevier fold–thrust belt, Utah: influence of basin architecture on fold–thrust belt geometry. Tectonophysics 312 (2), 203–16.Google Scholar
Peterson, J. A. 1977. Paleozoic shelf-margins and marginal basins, western Rocky Mountains–Great Basin, United States. In: Rocky Mountain Thrust Belt, Geology and Resources (eds Helsey, E. L. et al.), 135–53. Wyoming Geological Association, Casper, Guidebook 29.Google Scholar
Poudjom Djomani, Y. H., O'Reilly, S. Y., Griffin, W. L. & Morgan, P. 2001. The density structure of subcontinental lithosphere through time. Earth and Planetary Science Letters 184 (3–4), 605–21.Google Scholar
Purucker, M. & Whaler, K. 2007. Crustal magnetism. Treatise on Geophysics 5, 195237.Google Scholar
Roddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., Brusset, S. & Espurt, N. 2010. Cenozoic sedimentary evolution of the Amazonian foreland basin system. In: Amazonia, Landscape and Species Evolution: A Look into the Past (eds Hoorn, C. & Wesselingh, F. P.), pp. 6188. Hoboken: Blackwell-Wiley.Google Scholar
Rowley, P. D., Vice, G. S., Mcdonald, R. E., Anderson, J. J., Machette, M. N., Maxwell, D. J., Ekrem, E. B., Cunningham, C. G., Steven, T. A. & Wardlaw, B. R. 2005. Interim geologic map of the Beaver 30’x60’ Quadrangle, Beaver, Piute, Iron, and Garfield Counties, Utah. Utah Geological Survey, Open-File Report 454, scale 1:100,000.Google Scholar
Sadler, R. K. 1981. Structure and stratigraphy of the Little Sheep Creek area, Beaverhead County, Montana. M.Sc. thesis, United States. Published thesis.Google Scholar
Schelling, D. D., Strickland, D. K., Johnson, K. R. & Vrona, J. P. 2007. Structural geology of the central Utah thrust belt. In: Central Utah: Diverse Geology of a Dynamic Landscape (eds Willis, G. C., Hylland, M. D., Clark, D. L. & Chidsey, T. C.), pp. 129. Salt Lake City, UT: Utah Geological Association, Publication 36.Google Scholar
Schweickert, R. A. & Lahren, M. M. 1987. Continuation of Antler and Sonoma orogenic belts to the eastern Sierra Nevada, California, and Late Triassic thrusting in a compressional arc. Geology 15 (3), 270–73.Google Scholar
Sclater, J. G. & Christie, P. A. F. 1980. Continental stretching: an explanation of the post-Mid-Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research 85 (B7), 3711–39.Google Scholar
Shanmugam, G. & Walker, K. R. 1980. Sedimentation, subsidence, and evolution of a foredeep basin in the Middle Ordovician, southern Appalachians. American Journal of Science 280 (6), 479–96.Google Scholar
Snyder, W. S. & Brueckner, H. K. 1983. Tectonic evolution of the Golconda allochthon, Nevada: problems and perspectives. In: Pre-Jurassic Rocks in Western North American Suspect Terranes (ed. Stevens, C. H.), pp. 103–23. Pacific Section, SEPM, Upland, CA.Google Scholar
Speed, R. & Silberling, N. J. 1989. IGC Field Trip T122: Early Mesozoic tectonics of the Western Great Basin, Nevada. In Early Mesozoic Tectonics of the Western Great Basin, Nevada: Battle Mountain to Yerington District, Nevada, July 1–7, 1989, 1.Google Scholar
Speed, R. & Sleep, N. 1982. Antler orogeny and foreland basin: a model. Geological Society of America Bulletin 93 (9), 815–28.Google Scholar
Steckler, M. & Watts, A. 1978. Subsidence of the Atlantic-type continental margin off New York. Earth and Planetary Science Letters 41 (1), 113.Google Scholar
Strickland, A., Miller, E. L. & Wooden, J. L. 2011. The timing of Tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho. Journal of Geology 119 (2), 185206.Google Scholar
Tenzer, R., Sirguey, P., Rattenbury, M. & Nicolson, J. 2011. A digital rock density map of New Zealand. Computers & Geosciences 37 (8), 1181–91.Google Scholar
Thomazo, C., Vennin, E., Brayard, A., Bour, I., Mathieu, O., Elmeknassi, S., Olivier, N., Escarguel, G., Bylund, K. & Jenks, J. 2016. A diagenetic control on the Early Triassic Smithian–Spathian carbon isotopic excursions recorded in the marine settings of the Thaynes Group (Utah, USA). Geobiology 14 (3), 220–36.Google Scholar
Trexler, J. H. & Nitchman, S. P. 1990. Sequence stratigraphy and evolution of the Antler foreland basin, east-central Nevada. Geology 18 (5), 422–25.Google Scholar
Turner, G., Rasson, J. & Reeves, C. 2007. Observation and measurement techniques. Treatise in Geophysics, Geomagnetism 5, 93146.Google Scholar
Van Hinte, J. 1978. Geohistory analysis: application of micropaleontology in exploration geology. AAPG Bulletin 62 (2), 201–22.Google Scholar
Vennin, E., Olivier, N., Brayard, A., Bour, I., Thomazo, C., Escarguel, G., Fara, E., Bylund, K. G., Jenks, J. F., Stephen, D. A. & Hofmann, R. 2015. Microbial deposits in the aftermath of the end-Permian mass extinction; a diverging case from the Mineral Mountains (Utah, USA). Sedimentology 62 (3), 753–92.Google Scholar
Vetz, N. Q. 2011. Geochronologic and isotopic investigation of the Koipato Formation, northwestern Great Basin, Nevada: implications for Late Permian–Early Triassic tectonics along the Western US Cordillera. M.Sc. thesis. Boise State University. Published thesis.Google Scholar
Walker, J. D. 1985. Permo-Triassic paleogeography and tectonics of the Southwestern United States. Ph.D. thesis. Cambridge: Massachusetts Institute of Technology. Published thesis.Google Scholar
Ware, D., Bucher, H., Brayard, A., Schneebeli-Hermann, E. & Brühwiler, T. 2015. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Dienerian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 363–73.Google Scholar
Watts, A. 1992. The effective elastic thickness of the lithosphere and the evolution of foreland basins. Basin Research 4 (3–4), 169–78.Google Scholar
Watts, A. B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press.Google Scholar
Whitmeyer, S. J. & Karlstrom, K. E. 2007. Tectonic model for the Proterozoic growth of North America. Geosphere 3 (4), 220–59.Google Scholar
Wilkerson, M. S., Apotria, T. & Farid, T. 2002. Interpreting the geologic map expression of contractional fault-related fold terminations: lateral/oblique ramps versus displacement gradients. Journal of Structural Geology 24 (4), 593607.Google Scholar
Xie, X. & Heller, P. L. 2009. Plate tectonics and basin subsidence history. Geological Society of America Bulletin 121 (1–2), 5564.Google Scholar
Ye, H., Royden, L., Burchfiel, C. & Schuepbach, M. 1996. Late Paleozoic deformation of interior North America: the greater Ancestral Rocky Mountains. AAPG bulletin 80 (9), 1397–432.Google Scholar
Yonkee, W. A., Dehler, C. D., Link, P. K., Balgord, E. A., Keeley, J. A., Hayes, D. S., Wells, M. L., Fanning, C. M. & Johnston, S. M. 2014. Tectono-stratigraphic framework of Neoproterozoic to Cambrian strata, west-central US: protracted rifting, glaciation, and evolution of the North American Cordilleran margin. Earth-Science Reviews 136, 5995.Google Scholar
Yonkee, W. A. & Weil, A. B. 2010. Reconstructing the kinematic evolution of curved mountain belts: Internal strain patterns in the Wyoming salient, Sevier thrust belt, USA. Geological Society of America Bulletin 122 (1–2), 2449.Google Scholar
Yonkee, W. A. & Weil, A. B. 2015. Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. Earth-Science Reviews 150, 531–93.Google Scholar
Zandt, G., Myers, S. C. & Wallace, T. C. 1995. Crust and mantle structure across the Basin and Range-Colorado Plateau boundary at 37 N latitude and implications for Cenozoic extensional mechanism. Journal of Geophysical Research: Solid Earth 100 (B6), 10529–48.Google Scholar
Zienkiewicz, O. C. & Taylor, R. L. 2005. The Finite Element Method for Solid and Structural Mechanics. Oxford: Butterworth-Heinemann.Google Scholar
Supplementary material: File

Caravaca supplementary material

Caravaca supplementary material 1

Download Caravaca supplementary material(File)
File 1.3 MB