Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:48:57.009Z Has data issue: false hasContentIssue false

Composition and correlation of volcanic ash beds of Silurian age from the eastern Baltic

Published online by Cambridge University Press:  21 April 2010

TARMO KIIPLI*
Affiliation:
Institute of Geology, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia
TOIVO KALLASTE
Affiliation:
Institute of Geology, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia
VIIU NESTOR
Affiliation:
Institute of Geology, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia
*
*Author for correspondence: [email protected]

Abstract

Sanidine composition and bulk geochemistry of volcanic ash beds from the East Baltic indicate the subalkaline nature of the volcanism near the margins of the Baltica plate during the Silurian. Several bentonites in the Wenlock include a previously unknown sanidine with 48 to 58 mol % of the Na+Ca component. In contrast to the earlier Telychian volcanism, sodium-rich sanidine occurs in ash beds which originate from relatively moderately evolved dacitic magma. The studied material from two drill cores integrated with previous research enables production of a more complete list of 49 volcanic eruption layers for the lower to middle Wenlock in the East Baltic. This updated list of bentonites characterized by their sanidine compositions forms a good basis for future integrated bio- and chemostratigraphic correlations in northern Europe.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. T., Davis, A. M. & Lu, F. 2000. Evolution of Bishop Tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts. Journal of Petrology 41, 449–73.CrossRefGoogle Scholar
Basu, A. & Vitaliano, C. J. 1976. Sanidine from the Mesa Falls Tuff, Ashton Idaho. American Mineralogist 61, 405–8.Google Scholar
Batchelor, R. A. 2009 (for 2008). Geochemical “Golden Spike” for Lower Palaeozoic metabentonites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 99, 177–87.CrossRefGoogle Scholar
Batchelor, R. A. & Jeppsson, L. 1999. Wenlock metabentonites from Gotland, Sweden: geochemistry, sources and potential as chemostratigraphic markers. Geological Magazine 136, 661–9.CrossRefGoogle Scholar
Bergström, S. M., Huff, W. D., Kolata, D. R. & Bauert, H. 1995. Nomenclature, stratigraphy, chemical fingerprinting and areal distribution of some Middle Ordovician K—bentonites in Baltoscandia. GFF 117, 113.CrossRefGoogle Scholar
Bergström, S. M., Huff, W. D., Kolata, D. R. & Kaljo, D. 1992. Silurian K-bentonites in the Iapetus Region: A preliminary event-stratigraphic and tectonomagmatic assessment. GFF 114, 327–34.Google Scholar
Bohor, B. F. & Triplehorn, D. M. 1993. Tonsteins: altered volcanic ash layers in coal-bearing sequences. Geological Society of America Special Paper 285, 144.CrossRefGoogle Scholar
Bowen, N. L. & Tuttle, O. F. 1950. The system NaAlSi3O8–KAlSi3O8–H2O. Journal of Geology 58, 489511.CrossRefGoogle Scholar
Byström-Asklund, A. M., Baadsgaard, H. & Folinsbee, R. E. 1961. K/Ar age of biotite, sanidine and illite from Middle Ordovician bentonites at Kinnekulle Sweden. Geologiska Föreningens i Stockholm Förhandlingar 83, 92–6.CrossRefGoogle Scholar
Carmichael, I. S. E. 1967. The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming. Contributions to Mineralogy and Petrology 15, 2466.CrossRefGoogle Scholar
Cave, R. & Loydell, D. K. 1998. Wenlock volcanism in the Welsh Basin. Geological Journal 33, 107–20.3.0.CO;2-R>CrossRefGoogle Scholar
Chesner, C. A. 1998. Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. Journal of Petrology 39, 397438.CrossRefGoogle Scholar
Christiansen, R. L. 2001. The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho, and Montana. US Geological Survey Professional Paper 729-G, 1159.Google Scholar
Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to the mid-Palaeozoic times: The gain and loss of terrain's identity. Earth-Science Reviews 72, 3966.CrossRefGoogle Scholar
Corfu, F., Torsvik, T. H., Andersen, T. B., Ashwal, L. D., Ramsay, D. M. & Roberts, R. J. 2006. Early Silurian mafic–ultramafic and granitic plutonism in contemporaneous flysch, Magerøy, northern Norway: U–Pb ages and regional significance. Journal of the Geological Society, London 163, 291301.CrossRefGoogle Scholar
Gaeta, M. 1998. Petrogenetic implications of Ba-sanidine in the Lionato Tuff, Italy. Mineralogical Magazine 62, 697701.CrossRefGoogle Scholar
Gailite, L. K., Ulst, R. J. & Jakovleva, V. I. 1987. Stratotype and type sections of the Silurian of Latvia. Riga: Zinatne, 183 pp.Google Scholar
Gill, R. 1996. Chemical Fundamentals of Geology. London: Chapman & Hall, 290 pp.Google Scholar
Ginibre, C., Wörner, G. & Kronz, A. 2004. Structure and dynamics of the Laacher See magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: a cathodoluminescence and electron microprobe study. Journal of Petrology 45, 2197–223.CrossRefGoogle Scholar
Govindaraju, K. 1995. 1995 working values with confidence limits for twenty six CRPG, ANRT and IWG-GIT geostandards. Geostandards Newsletter 19, Special Issue, 132.CrossRefGoogle Scholar
Henry, C. D., Price, J. G. & Smyth, R. C. 1988. Chemical and thermal zonation in a mildly alkaline magma system Infiernito Caldera, Trans-Pecos Texas. Contributions to Mineralogy and Petrology 98, 194211.CrossRefGoogle Scholar
Hetherington, C. J., Nakrem, H. A., & Batchelor, R. A. 2004. The Bjørntvet metabentonite: A new correlation tool for the Silurian of the southwest Oslo Region. Norwegian Journal of Geology 84, 239–50.Google Scholar
Hints, R., Kirsimäe, K., Somelar, P., Kallaste, T. & Kiipli, T. 2008. Multiphase Silurian bentonites in the Baltic Palaeobasin. Sedimentary Geology 209, 6979.CrossRefGoogle Scholar
Huff, W. D., Bergström, S. M. & Kolata, D. R. 2002. Silurian K-bentonites of the Dnestr basin, Podolia, Ukraine. Journal of the Geological Society, London 157, 493504.CrossRefGoogle Scholar
Huff, W. D., Kolata, D. R. & Bergström, S. M. 1996. Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post-emplacement characteristics. Journal of Volcanology and Geothermal Research 73, 285301.CrossRefGoogle Scholar
Inanli, F. Ö., Huff, W. D. & Bergström, S. M. 2009. The Lower Silurian (Llandovery) Osmundsberg K-bentonite in Baltoscandia and the British Isles: Chemical fingerprinting and regional correlation. GFF 131, 269–79.CrossRefGoogle Scholar
Kaljo, D. (ed.) 1970. Silurian of Estonia. Tallinn: Valgus, 343 pp.Google Scholar
Kallaste, T. & Kiipli, T. 2006. New correlations of Telychian bentonites in Estonia. Proceedings of the Estonian Academy of Sciences, Geology 55, 241–51.CrossRefGoogle Scholar
Kastner, M. 1971. Authigenic feldspars in carbonate rocks. American Mineralogist 56, 1403–42.Google Scholar
Kiipli, E., Kiipli, T. & Kallaste, T. 2006. Identification of the O-bentonite in the deep shelf sections with implication on stratigraphy and lithofacies, East Baltic Silurian. GFF 128, 255–60.CrossRefGoogle Scholar
Kiipli, T., Batchelor, R. A., Bernal, J. P., Cowing, C., Hagel-Brunnstrom, M., Ingham, M. N., Johnson, D., Kivisilla, J., Knaack, C., Kump, P., Lozano, R., Michiels, D., Orlova, K., Pirrus, E., Rousseau, R. M., Ruzicka, J., Sandstrom, H. & Willis, J. P. 2000. Seven sedimentary rock reference samples from Estonia. Oil Shale 17, 215–23.CrossRefGoogle Scholar
Kiipli, T., Jeppsson, L., Kallaste, T. & Söderlund, U. 2008 a. Correlation of Silurian bentonites from Gotland and the East Baltic using sanidine phenocryst composition, and biostratigraphical consequences. Journal of the Geological Society, London 165, 211–20.CrossRefGoogle Scholar
Kiipli, T. & Kallaste, T. 2002. Correlation of Telychian sections from shallow to deep sea facies in Estonia and Latvia based on the sanidine composition of bentonites. Proceedings of the Estonian Academy of Sciences, Geology 51, 143–56.Google Scholar
Kiipli, T. & Kallaste, T. 2006. Wenlock and uppermost Llandovery bentonites as stratigraphic markers in Estonia, Latvia and Sweden. GFF 128, 139–46.CrossRefGoogle Scholar
Kiipli, T., Kallaste, T., Nestor, V. & Loydell, D. K. 2010. Integrated Telychian (Silurian) K-bentonite chemostratigraphy and biostratigraphy in Estonia and Latvia. Lethaia 43, 3244.CrossRefGoogle Scholar
Kiipli, T., Kiipli, E., Kallaste, T., Hints, R., Somelar, P. & Kirsimäe, K. 2007. Altered volcanic ash as an indicator of marine environment, reflecting pH and sedimentation rate – example from the Ordovician Kinnekulle bed of Baltoscandia. Clays and Clay Minerals 55, 177–88.CrossRefGoogle Scholar
Kiipli, T., Männik, P., Batchelor, R. A., Kiipli, E., Kallaste, T. & Perens, H. 2001. Correlation of Telychian (Silurian) altered volcanic ash beds in Estonia, Sweden and Norway. Norwegian Journal of Geology 81, 179–93.Google Scholar
Kiipli, T., Orlova, K., Kiipli, E. & Kallaste, T. 2008 b. Use of immobile trace elements for the correlation of Telychian bentonites on Saaremaa Island, Estonia, and mapping of volcanic ash clouds. Estonian Journal of Earth Sciences 57, 3952.Google Scholar
Kiipli, T., Radzevičius, S., Kallaste, T., Motuza, V., Jeppsson, L. & Wicksröm, L. 2008 c. Wenlock bentonites in Lithuania and correlation with bentonites from sections in Estonia, Sweden and Norway. GFF 130, 203–10.CrossRefGoogle Scholar
Kiipli, T., Soesoo, A., Kallaste, T. & Kiipli, E. 2008 d. Geochemistry of Telychian (Silurian) K-bentonites in Estonia and Latvia. Journal of Volcanology and Geothermal Research 171, 4558.CrossRefGoogle Scholar
Krawczyk, Ch. M., McCann, T., Cocks, L. R. M., England, R. W., McBride, J. H. & Wybraniec, S. 2008. Caledonian tectonics. In The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic (ed. McCann, T.), pp. 303–81. London: Geological Society.CrossRefGoogle Scholar
Landi, P., Bertagnini, A. & Rosi, M. 1999. Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base plinian eruption of Somma-Vesuvius (Italy). Contributions to Mineralogy and Petrology 135, 179–97.CrossRefGoogle Scholar
Loydell, D. K., Kaljo, D. & Männik, P. 1998. Integrated biostratigraphy of the lower Silurian of the Ohesaare core, Saaremaa, Estonia. Geological Magazine 135, 769–83.CrossRefGoogle Scholar
Macdonald, R., Rogers, N. W. & Tindle, A. G. 2007. Distribution of germanium between phenocrysts and melt in peralkaline rhyolites from the Kenia Rift Valley. Mineralogical Magazine 71, 703–13.CrossRefGoogle Scholar
Martinsson, A., Bassett, M. G. & Holland, C. H. 1981. Ratification of Standard Chronostratigraphical Divisions and Stratotypes for the Silurian System. Lethaia 14, 168.CrossRefGoogle Scholar
Maughan, L. L., Christiansen, E. H., Best, M. G., Gromme, C. S., Deino, A. L. & Tingey, T. G. 2002. The Oligocene Lund Tuff, Great Basin, USA: a very large volume monotonous intermediate. Journal of Volcanology and Geothermal Research 113, 129–57.CrossRefGoogle Scholar
McHenry, L. J. 2009. Element mobility during zeolitic and argillitic alteration of volcanic ash in a closed basin lacustrine environment: Case study Olduvai Gorge, Tanzania. Chemical Geology 265, 540–52.CrossRefGoogle Scholar
Morgan, D. J., Blake, S., Rodger, N. W., De Vivo, B., Rolandi, G. & Davidson, J. P. 2006. Magma chamber recharge at Vesuvius in the century prior to the eruption of A.D. 79. Geology 34, 845–8.CrossRefGoogle Scholar
Nestor, V. 1994. Early Silurian chitinozoans in Estonia and North Latvia. Academia 4, 1163.Google Scholar
Orville, P. M. 1967. Unit cell parameters of the microcline-low albite and the sanidine-high albite solid solution series. American Mineralogist 52, 5586.Google Scholar
Pappalardo, L., Ottolini, L. & Mastrolorenzo, G. 2008. The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contributions to Mineralogy and Petrology 156, 126.CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.CrossRefGoogle Scholar
Peccerillo, A. 2005. Plio-Quaternary Volcanism in Italy. Petrology, Geochemistry, Geodynamics. Berlin, Heidelberg, New York: Springer, 365 pp.Google Scholar
Põldvere, A. (ed.) 2003. Ruhnu (500) drill core, Estonian Geological Sections. Geological Survey of Estonia Bulletin 5, 176.Google Scholar
Ray, D. C. 2007. The correlation of Lower Wenlock Series (Silurian) bentonites from the Lower Hill Farm and Eastnor Park boreholes, Midland Platform, England. Proceedings of the Geologists' Association 118, 175–85.CrossRefGoogle Scholar
Sacchi, M., Insinga, D., Milia, A., Molisso, F., Raspini, A., Torrente, M. M. & Conforti, A. 2005. Stratigraphic signature of the Vesuvius 79 AD event of the Sarno prodelta system, Naples Bay. Marine Geology 222–223, 443–69.CrossRefGoogle Scholar
Smith, J. V. 1974. Feldspar Minerals 2, Chemical and Textural Properties. Berlin, Heidelberg, New York: Springer-Verlag, 690 pp.Google Scholar
Somelar, P. 2009. Illitization of K-bentonites in the Baltic Basin. Dissertationes Geologicae Universitatis Tartuensis 25, Tartu University Press, pp. 1–118. Published thesis.Google Scholar
Timmerman, M. J. 2008. Palaeozoic magmatism. In The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic (ed. McCann, T.), pp. 665748. London: Geological Society.CrossRefGoogle Scholar
Turekian, K. K. & Wedepohl, K. H. 1961. Distribution of the elements in some major units of the Earth's crust. Geological Society of America Bulletin 72, 175–91.CrossRefGoogle Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Winter, J. D. 2001. An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, 697 pp.Google Scholar
Zellmer, G. F. & Clavero, J. E. 2006. Using trace element correlation patterns to decipher a sanidine crystal growth chronology: An example from Taapaca volcano, Central Andes. Journal of Volcanology and Geothermal Research 156, 291301.CrossRefGoogle Scholar
Supplementary material: PDF

Kiipli supplementary material

Appendix.pdf

Download Kiipli supplementary material(PDF)
PDF 200.6 KB