Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T15:31:38.084Z Has data issue: false hasContentIssue false

Cerro del Hierro, Spain: the largest exposed early Cambrian palaeokarst

Published online by Cambridge University Press:  22 September 2020

Eduardo Mayoral*
Affiliation:
Department of Earth Sciences, University of Huelva, 21071Huelva, Spain Department of Applied Geosciences, CCTH – Science and Technology Research Centre, University of Huelva, 21071Huelva, Spain
María Eugenia Dies Álvarez
Affiliation:
Department of Specific Didactics, Instituto Universitario de Ciencias Ambientales (IUCA), University of Zaragoza, 50009Zaragoza, Spain
José Antonio Gámez Vintaned
Affiliation:
Department of Geosciences, Faculty of Sciences & Information Technology, Universiti Teknologi Petronas (UTP), Bandar Seri Iskandar, 31750Tronoh (Perak), Malaysia
Rodolfo Gozalo
Affiliation:
Department of Botany and Geology, University of València, 46100Burjassot, Spain
Eladio Liñán
Affiliation:
Department of Earth Sciences, IUCA, University of Zaragoza, 50009Zaragoza, Spain
José Miguel Molina
Affiliation:
Department of Geology and CEACTierra, University of Jaén, 23071Jaén, Spain
*
Author for correspondence: Eduardo Mayoral, Email: [email protected]

Abstract

We study the largest exposed example of an early Cambrian palaeokarst, associated with laterites and developed during rifting of the Ossa–Morena Zone. The lithostratigraphy, biostratigraphy, facies and the genesis reflect episodes of sea-level fall (Cerro del Hierro Regression) related to tectonic events and palaeoclimate. This palaeokarst can be primarily considered as the result of early Cambrian polyphase karstification in an extensional tectonic regime, later modified by Neogene–Quaternary geomorphological processes. The event may correlate with other regressive events of a similar age in Spain, Italy, United Kingdom, South America and Australia. This episode also has local names (e.g. Cerro del Hierro Regression in the Mediterranean region; Woodlands Regression in the UK). It is sometimes accompanied by additional karst development outside of Spain that is compared and interpreted in a global context.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angoloti Apolinario, JM, Muelas Peña, A and García Vélez, A (1975) Mapa Geológico de España, Escala 1:50.000. Explicación de la Hoja núm. 920, Constantina (Sevilla). Segunda Serie. Madrid: Instituto Geológico y Minero de España, 28 p.Google Scholar
Apalategui, O, Eguíluz, L and Quesada, C (1990) Ossa Morena Zone Structure. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, RD and Martínez García, E), pp. 280–91. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Astini, RA and Vaccari, NE (1996) Sucesión evaporítica del Cámbrico inferior de la Precordillera: significado geológico. Revista de la Asociación Geológica Argentina 51, 97106.Google Scholar
Baena, R and Díaz del Olmo, F (1988) Paleokarst de Sierra Morena (Sector Cazalla-Constantina, Hespérico meridional): superficies de corrosión y poljes. Cuaternario y Geomorfología 2, 1322.Google Scholar
Bárdossy, G and Aleva, GJJ (1990) Lateritic Bauxites. Amsterdam: Elsevier, 624 p.Google Scholar
Bárdossy, G, Fuchs, Y and Glazek, J (1989) Iron ore deposits in paleokarst. In Paleokarst – A Systematic and Regional Review (eds Bosák, P, Ford, DC, Glazek, J and Horacek, I), pp. 419–29. Prague/Amsterdam: Academia Praha/Elsevier.CrossRefGoogle Scholar
Betts, MJ, Paterson, JR, Jago, JB, Jacquet, SM, Skovsted, CB, Topper, TP and Brock, GA (2016) A new lower Cambrian shelly fossil biostratigraphy for South Australia. Gondwana Research 36, 176208, doi: 10.1016/j.gr.2016.05.005.CrossRefGoogle Scholar
Betts, MJ, Paterson, JR, Jago, JB, Jacquet, SM, Skovsted, CB, Topper, TP and Brock, GA (2017) Global correlation of the early Cambrian of South Australia: Shelly fauna of the Dailyatia odyssei Zone. Gondwana Research 46, 240–79, doi: 10.1016/j.gr.2017.02.007.CrossRefGoogle Scholar
Bosák, P, Ford, DC, Glazek, J and Horacek, I (eds) (1989) Paleokarst – A Systematic and Regional Review. Prague/Amsterdam: Academia Praha/Elsevier, 725 p.Google Scholar
Boucot, AJ and Gray, J (2001) A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere. Earth-Science Reviews 56, 1159, doi: 10.1016/S0012-8252(01)00066-6.CrossRefGoogle Scholar
Brasier, MD (1985) Evolutionary and geological events across the Precambrian-Cambrian boundary. Geology Today 1, 141–46, doi: 10.1111/j.1365-2451.1985.tb00316.x.CrossRefGoogle Scholar
Brasier, MD (1995) The basal Cambrian transition and Cambrian bio-events (from terminal Proterozoic extinctions to Cambrian biomeres). In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, OH), pp. 111–38. Berlin: Springer.Google Scholar
Brimhall, GH, Chadwick, OA, Lewis, CJ, Compston, W, Williams, IS, Danti, KJ, Dietrich, WE, Power, ME, Hendricks, D and Bratt, J (1991) Deformational mass transfer and invasive processes in soil evolution. Science 255, 695702, doi: 10.1126/science.255.5045.695.CrossRefGoogle Scholar
Clarke, JDA (1990) An early Cambrian carbonate platform near Wilkawillina Gorge, South Australia. Australian Journal of Earth Sciences 37, 471–83, doi: 10.1080/08120099008727946.CrossRefGoogle Scholar
Delannoy, JJ, Díaz del Olmo, F and Pulido Bosch, A (1989) Geomorfología del Cerro del Hierro. Reunión Franco-Espagnole sur le karst Méditerranéen d´Andalousie Occidentale, 210–13.Google Scholar
Delgado, JFN (1904) Faune Cambrienne du Haut Alentejo (Portugal). Comunicações da Comissão dos Serviços Geológicos de Portugal 5, 307–74.Google Scholar
Fabries, JM (1963) Les formations cristallines et métamorphiques du Nord-Est de la province de Séville (Espagne). Nancy: Science de la Terre, Mémoire 4, 270 p.Google Scholar
Ford, DC and Williams, PW (2007) Karst Hydrogeology and Geomorphology. Chichester: Wiley, 562 p, doi: 10.1002/9781118684986.CrossRefGoogle Scholar
Gámez Vintaned, JA and Mayoral, E (1995) Paleoicnología del Grupo Mesones (Cámbrico Inferior-Medio) en Murero (Cadena Ibérica Occidental, NE de España). In Memorias de las IV Jornadas Aragonesas de Paleontología: “La expansión de la vida en el Cámbrico”. Libro Homenaje al Prof. Klaus Sdzuy (eds Gámez Vintaned, JA and Liñán, E), pp. 219–52. Zaragoza: Institución Fernando el Católico.Google Scholar
Gámez Vintaned, JA, Schmitz, U and Liñán, E (2009) Upper Vendian-lowest Ordovician sequences of the western Gondwana margin, NE Spain. In Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa (eds Craig, J, Thurow, J, Thusu, B, Whitham, A and Abutarruma, Y), pp. 231–44. Geological Society of London, Special Publication no. 326, doi: 10.1144/SP326.13.Google Scholar
Hall, J (1852) Palaeontology of New York, Vol. 2. Containing descriptions of the organic remains of the Lower Division of the New York System (equivalent in part to the Lower Silurian rocks of Europe). Albany: C. van Benthuysen, 362 p.Google Scholar
Hearing, TW, Harvey, THP, Williams, M, Leng, MJ, Lamb, AL, Wilby, PR, Gabbott, SE, Pohl, A and Donnadieu, Y (2018) An early Cambrian greenhouse climate. Science Advances 4, eaar5690, doi: 10.1126/sciadv.aar5690.CrossRefGoogle ScholarPubMed
Hunt, PA, Mitchell, PB and Paton, TR (1977) ‘Laterite profiles’ and ‘lateritic ironstones’ on the Hawkesbury Sandstone, Australia. Geoderma 19, 105–21.CrossRefGoogle Scholar
James, NP and Gravestock, DI (1990) Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia. Sedimentology 37, 455–80, doi: 10.1111/j.1365-3091.1990.tb00147. x.CrossRefGoogle Scholar
Liñán, E (1984) Introducción al problema de la paleogeografía del Cámbrico de Ossa-Morena. Cuadernos do Laboratorio Xeolóxico de Laxe 8, 283314.Google Scholar
Liñán, E, Dies, ME, Gámez Vintaned, JA, Gozalo, R, Mayoral, E and Muñiz, F (2005) Lower Ovetian (Lower Cambrian) trilobites and biostratigraphy of the Pedroche Formation (Sierra de Córdoba, southern Spain). Geobios 38, 365–81, doi: 10.1016/j.geobios.2003.11.007.CrossRefGoogle Scholar
Liñán, E and Gámez Vintaned, JA (1993) Lower Cambrian palaeogeography of the Iberian Peninsula and its relations with some neighbouring European areas. Bulletin de la Société géologique de France 164, 831–42.Google Scholar
Liñán, E, Gámez Vintaned, JA and Gozalo, R (2015) The middle lower Cambrian (Ovetian) Lunagraulos n. gen. from Spain and the oldest trilobite records. Geological Magazine 152, 1123–36, doi: 10.1017/S0016756815000084.CrossRefGoogle Scholar
Liñán, E, Gámez Vintaned, JA, Palacios, T and Gozalo, R (2020) A new lower Cambrian trilobite from the Pusa Formation of Spain: biostratigraphic and evolutionary consequences for the oldest opisthoparian trilobites. GFF 142, 100114, doi: 10.1080/11035897.2019.1701548.Google Scholar
Liñán, E, Gámez Vintaned, JA, Pillola, GL and Gozalo, R (2016) Upper Ovetian trilobites from Spain and their implications for the palaeobiogeography and correlation of the Cambrian Stage 3 in Gondwana. Tectonophysics 681, 4657, doi: 10.1016/j.tecto.2016.01.003.Google Scholar
Liñán, E, Gozalo, R, Dies Álvarez, ME, Gámez Vintaned, JA and Zamora, S (2008) Nuevos trilobites del Ovetiense inferior (Cámbrico Inferior bajo) de Sierra Morena (España). Ameghiniana 45, 123–38.Google Scholar
Liñán, E, Gozalo, R, Palacios, T, Gámez Vintaned, JA, Ugidos, JM and Mayoral, E (2002) Cambrian. In The Geology of Spain (eds Gibbons, W and Moreno, T), pp. 1729. Geological Society of London.CrossRefGoogle Scholar
Liñán, E and Perejón, A (1981) El Cámbrico inferior de la “Unidad de Alconera”, Badajoz (SW de España). Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica) 79, 125–48.Google Scholar
Liñán, E, Perejón, A, Gozalo, R, Moreno-Eiris, E and de Oliveira, JT (2004) The Cambrian System in Iberia. Cuadernos del Museo Geominero 3, Instituto Geológico y Minero de España, Madrid, 1–63.Google Scholar
Liñán, E, Perejón, A and Sdzuy, K (1993) The Lower-Middle Cambrian stages and stratotypes from the Iberian Peninsula: a revision. Geological Magazine 130, 817–33, doi: 10.1017/S0016756800023189.CrossRefGoogle Scholar
Liñán, E and Quesada, C (1990) Part V Ossa-Morena Zone. 2 Stratigraphy. 2.2 Rift Phase (Cambrian). In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, RD and Martínez García, E), pp. 259–66. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Liu, X, Mao, X, Yuan, Y and Ma, M (2019) Aeolian accumulation: an alternative origin of laterite on the Deccan Plateau, India. Palaeogeography, Palaeoclimatology, Palaeoecology 518, 3444, doi: 10.1016/j.palaeo.2019.01.003.CrossRefGoogle Scholar
Lotze, F (1945) Zur Gliederung der Varisziden der Iberischen Meseta. Geotektonische Forschungen 6, 7892.Google Scholar
Mayoral, E, Liñán, E, Gámez Vintaned, JA, Gozalo, R and Dies, ME (2008) El Cámbrico inferior del Cerro del Hierro (Sevilla). Propuesta de itinerario paleontológico. In Investigación Científica y Conservación en el Parque Natural Sierra Norte de Sevilla (Coords Cuenca Bonilla, I and Menor Campillo, A), pp. 2843. Sevilla: Consejería de Medio Ambiente, Junta de Andalucía.Google Scholar
McFarlane, MJ (1976) Laterite and Landscape. New York: Academic Press, 151 p.Google Scholar
Meléndez, B, Mingarro, F and López de Azcona, MC (1967) Mapa Geológico de España, escala 1:50.000. Explicación de la Hoja núm. 920, Constantina (Sevilla). Madrid: Instituto Geológico y Minero de España, 52 p.Google Scholar
Migoń, P, Duszyński, F and Goudie, A (2017) Rock cities and ruiniform relief: forms – processes – terminology. Earth-Science Reviews 171, 78104, doi: 10.1016/j.earscirev.2017.05.012.CrossRefGoogle Scholar
Miras, A and Galán, E (1992) Las mineralizaciones de barita del Cerro del Hierro (Sevilla). Características mineralógicas y geoquímicas. Estudios Geológicos 48, 9199, doi: 10.3989/egeol.92483-4373.Google Scholar
Miras, A and Rodríguez, J (1990) Geología y depósitos de barita del Cerro del Hierro (Sevilla). Boletín de la Sociedad Española de Mineralogía 13, 66–7.Google Scholar
Molina, JM, Ruiz-Ortiz, PA and Vera, JA (1999) A review of polyphase karstification in extensional tectonic regimes: Jurassic and Cretaceous examples, Betic Cordillera, southern Spain. Sedimentary Geology 129, 7184, doi: 10.1016/S0037-0738(99)00089-5.CrossRefGoogle Scholar
Moreno-Eiris, E (1987) Los montículos arrecifales de Algas y Arqueociatos del Cámbrico Inferior de Sierra Morena. Publicaciones especiales del Boletín Geológico y Minero VIII, 1127.Google Scholar
Perejón, A (1986) Bioestratigrafía de los arqueociatos en España. Cuadernos de Geología ibérica 9, 213–65.Google Scholar
Perejón, A (1994) Palaeogeographic and biostratigraphic distribution of Archaeocyatha in Spain. Courier Forschungs-Institut Senckenberg 172, 341–54.Google Scholar
Perejón, A and Moreno-Eiris, E (2006) Biostratigraphy and paleobiogeography of the archaeocyaths on the southwestern margin of Gondwana. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 157, 611–27, doi: 10.1127/1860-1804/2006/0157-0611.CrossRefGoogle Scholar
Perejón, A, Vennin, E, Moreno-Eiris, E and Álvaro, JJ (1999) Cronología de los procesos kársticos en los montículos cámbricos del Cerro del Hierro (Zona de Ossa-Morena, Sevilla, SO de España). Boletín Geológico y Minero 110, 693–9.Google Scholar
Pillola, GL, Leone, F and Loi, A (1995) The Lower Cambrian Nebida Group of Sardinia. Rendiconti del Seminario della Facoltà di Scienze della Università di Cagliari, 65, 2760.Google Scholar
Retallack, GJ (2008) Cambrian paleosols and landscapes of South Australia. Australian Journal of Earth Sciences 55, 1083–106, doi: 10.1080/08120090802266568.CrossRefGoogle Scholar
Retallack, GJ (2010) Lateritization and bauxitization events. Economic Geology 105, 655–67, doi: 10.2113/gsecongeo.105.3.655.CrossRefGoogle Scholar
Richter, R and Richter, E (1940) Die Saukianda-Stufe von Andalusien, eine fremde Fauna im europäischen Ober-Kambrium. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 450, 188.Google Scholar
Richter, R and Richter, E (1941) Die Faune des Unter-Kambrians von Cala in Andalusien. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 455, 190.Google Scholar
Schwarz, T (1997) Lateritic bauxite in central Germany and implications for Miocene palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 129, 3750, doi: 10.1016/S0031-0182(96)00065-X.CrossRefGoogle Scholar
Sdzuy, K (1971) Acerca de la correlación del Cámbrico inferior de la Península Ibérica. I Congreso Hispano-Luso-Americano de Geología Económica, Sección 1 Geología 2, 753–68.Google Scholar
Simon, W (1939) Archaeocyathacea. II. Die fauna im Kambrium der Sierra Morena (Spanien). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 448, 7087.Google Scholar
Simon, W (1951) Untersuchungen im Paläozoikum von Sevilla (Sierra Morena, Spanien). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 485, 3152.Google Scholar
Song, L and Liang, F (2009) Two important evolution models of Lunanshilin karst. In Karst, Rock Features. Karren Sculpturing Zalozba ZRC (eds Ginés, A, Knez, M, Slabe, T and Dreybrodt, W), pp. 453–9. Carsologica, 9. Postojna-Ljubljana: Institut za Raziskovanje Krasa ZRC SAZU.Google Scholar
Sweeting, MM (1972) Karst Landforms. London: Macmillan, 362 p.Google Scholar
Vera, JA (ed.) (2004) Geología de España. Madrid: SGE-IGME, 890 p.Google Scholar
Veress, M (2016) Covered Karsts. Dordrecht: Springer Geology, 546 p, doi: 10.1007/978-94-017-7518-2.CrossRefGoogle Scholar
Zang, W-L (2002) Sequence Analysis and Petroleum Potential in the Arrowie Basin, South Australia. Minerals and Energy Resources, South Australia Report Book 2002/024. Adelaide, South Australia: PIRSA.Google Scholar
Zhang, B and Liu, J (2009) Classification and characteristics of karst reservoirs in China and related theories. Petroleum Exploration and Development 36, 1229, doi: 10.1016/S1876-3804(09)60107-5.Google Scholar
Zhang, X, Ahlberg, P, Babcock, LE, Choi, DK, Geyer, G, Gozalo, R, Hollingsworth, JS, Li, G, Naimark, EB, Pegel, T, Steiner, M, Wotte, T and Zhang, Z (2017) Challenges in defining the base of Cambrian Series 2 and Stage 3. Earth-Science Reviews 172, 124–39, doi: 10.1016/j.earscirev.2017.07.017.CrossRefGoogle Scholar