Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T14:55:42.541Z Has data issue: false hasContentIssue false

The carbonate-flysch transition (late Maastrichtian-late Palaeocene) in the Arachova sequence of the Parnassus-Ghiona Zone, central Greece

Published online by Cambridge University Press:  01 May 2009

Sophia Gregou
Affiliation:
Department of Historical Geology and Palaeontology, University of Lund, Solvegatan 13, S-223 62 Lund, Sweden
Nikolaos Solakius
Affiliation:
Department of Historical Geology and Palaeontology, University of Lund, Solvegatan 13, S-223 62 Lund, Sweden
Fotini Pomoni-Papaioannou
Affiliation:
Institute of Geology and Mineral Exploration, Messogeion 70, Gr-115 27 Athens, Greece

Abstract

The transition from the carbonate to the flysch facies in the Arachova sequence of the Parnassus-Ghiona Zone is represented by argillaceous limestone beds with flaser structures deposited during latest Maastrichtian-Palaeocene time in a pelagic carbonate environment with a periodic clastic influx. Deposition was continuous except for a short interruption during the K/T boundary interval and the earliest Palaeocene when the area was subaerially exposed. This interruption gave rise to the development of a brecciated carbonate horizon through soil-forming processes. The mineralogical composition of the clastic influx (i.e. quartz, feldspars, clay minerals, amorphous iron oxides, amorphous phosphatic compounds), in particular the clay mineral assemblages (i.e. illite, chlorite, irregularly interstratified illite-vermiculite), shows that the clastic supply represents erosional material that originated from a tectonically active continental setting of both carbonate and clastic rocks, presumably the Pelagonian Zone, as for the flysch of the Beotian and Sub-Pelagonian Zones. The arrival of the first clastic material in the Arachova area as early as latest Maastrichtian time, its Pelagonian origin and the persistence of pelagic conditions of sedimentation throughout the Palaeocene, indicate that the Arachova area was situated along the northeastern margin of the Parnassus platform and that it subsided into the Beotian basin. While the central areas of the platform remained tectonically stable during middle Palaeocene times and there was an extensive development of stromatolites, the northeastern marginal areas transitional to the Beotian basin continued to subside allowing pelagic carbonate sedimentation with periods of clastic influx. The total collapse of the platform in the late Palaeocene gave rise to the deposition of the flysch over the entire zone.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J. H., & Peacor, D. R., 1985. Transmission electron microscopic study of diagenetic chlorite in Gulf coast argillaceous sediments. Clays and Clay Minerals 34, 165–79.Google Scholar
Aubouin, J., Bonneau, M., Celet, P., Charvet, J., Clément, B., Degardin, J. M., Dercourt, J., Ferrière, J., Fleury, J. J., Guernet, C., Maillot, H., Mania, J., Mansy, J. L., Terry, J., Thiebault, P., Tsoflias, P., & Verrieux, J. J., 1970. Contribution à la géologie des Hellénides: la Gavrovo, le Pinde et la zone ophiolitique sub-pélagonienne. Annales de la Société Géologique du Nord (Lille) 90, 277306.Google Scholar
Aubouin, J., Brunn, J. H., Celet, P., Dercourt, J., Godfriaux, I., Mercier, I., Lys, M., Marie, P., Neuman, M., Sigal, J., & Sornay, J., 1960. Le Crétacé supérieur en Grèce. Bulletin de la Sociélé Géologique de France 7:11, 452–69.CrossRefGoogle Scholar
Biscaye, P. E., 1964. Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. The American Mineralogist 49, 1281–9.Google Scholar
Brewer, R., 1964. Fabric and Mineral Analysis of the Soils. New York: Wiley, 470 pp.Google Scholar
Caminiti, A. M., 1988. La plate-forme carbonatée du Parnasse-Ghiona (Grèce Continentale) au Sénonien. Bulletin of the Geological Society of Greece XX/2, 7590.Google Scholar
Chamley, H., 1979. North Atlantic clay sedimentation and paleoenvironment since the Late Jurassic. In Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironments (eds Talwani, M., Hay, W., and Ryan, W. B. F.), Washington, D.C.: American Geophysical Union, pp. 342–60.Google Scholar
Clément, B., 1977. Relations structurales entre la Zone du Parnasse et la Zone Pélagonienne en Béotie (Grèce continentale). Bulletin de la Société Géologique de France 12, 1118–23.Google Scholar
Combes, P.-J., 1983. Découverte d'une nouvelle nappe d'origine nord-orientale dans la zone du Parnasse Grèce. Comptes Rendus de l'Académie des Sciences de Paris 296 II, 397400.Google Scholar
Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., Le Pichon, X., Knipper, A. L., Grandlacquet, C., Sbortshikov, I. M., Geyssant, J., Lepvrier, C., Pechersky, D. H., Boulin, J., Sibuet, J. C., Savostin, L. A., Sorokhtin, O., Westphal, M., Bazhenov, M. L., Laver, J. P., & Biju-Duval, B., 1986. Geological evolution of the Tethys Belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123, 241315.Google Scholar
Goldhammer, R. K., & Elmore, R. D., 1984. Paleosols capping regressive carbonate cycles in the Pennsylvanian Black Prince Limestone, Arizona. Journal of Sedimentary Petrology 54, 1124–37.Google Scholar
Gregou, S., (in press). The carbonate—flysch transition and the basal units of the flysch sequence in the Osios Loukas area, the Parnassus—Ghiona Zone, Central Greece. Bulletin of the Geological Society of Greece.Google Scholar
Haq, B. U., Hardenbol, J., & Vail, P. R., 1987. Chronology of fluctuating sea-levels since the Triassic. Science 235, 1156–67.CrossRefGoogle ScholarPubMed
Kalpakis, G., 1979. Contribution à l'étude sédimentologique de la zone Paransse-Kiona. Biomictrites, stromatolithes, horizon hard grounds à la limite du Crétacé-Paléocène. Thesis, University of Athens, 129 pp. (published thesis, in Greek).Google Scholar
Keupp, H., 1976. Tektonik und präorogene Stratigraphie der Flysch-Depression von Delphi-Arachova (Parnass- Kiona-Zone, Mittelgriechenland). Zeitschrift der Deutschen geologischen Gesellschaft 127, 399415.Google Scholar
Klappa, C. F., 1980. Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimenlology 27, 613–29.Google Scholar
Lapparent, J. de., 1934. Gisement et position geéologique des bauxites de Grèce. Comptes Rendus de l'Académie des Sciences de Paris 198, 1162–4.Google Scholar
Livermore, R. A., & Smith, A. G., 1984. Some boundary conditions for the evolution of the Mediterranean region. In Geological Evolution of the Mediterranean Basin (eds Stanley, D. J. and Wezel, F.-C.), pp. 83110. Springer.Google Scholar
Mehra, O. P., & Jackson, M. L., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals. 7th National Conference, pp. 317–27. London: Pergamon Press.Google Scholar
Millot, G., 1964. Géologie des argiles. Paris: Masson, 499 pp.Google Scholar
Mountrakis, D., Sapountzis, E., Kilias, A., Eleftheriadis, G., & Christofides, G., 1983. Paleogeographic conditions in the western pelagonian margin in Greece during the initial rifting of the continental area. Canadian Journal of Earth Sciences 20, 1673–81.CrossRefGoogle Scholar
Papanikolaou, D., 1984. Tectonic evolution of the Hellenides. 27th International Geological Congress, Moscow 1984, Abstracts III, 351–2.Google Scholar
Papanikolaou, D., 1986. Geology of Greece. Athens: Eptalofos, 240 pp. (in Greek).Google Scholar
Pomoni-Papaioannou, F., & Solakius, N., 1991. Phosphatic hardgrounds and stromatolites from the limestone/ shale boundary section at Prosilion (Maastrichtian- Palaeocene) in the Parnassus—Ghiona Zone, Central Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 86, 243–54.CrossRefGoogle Scholar
Prather, B. E., 1985. An Upper Pennsylvanian desert paleosol in the D-zone of the Lansing—Kansas City Groups, Hitchcock County, Nebraska. Journal of Sedimentary Petrology 55, 213–21.Google Scholar
Retallack, G. J., 1981. Fossil soils: indicators of ancient terrestrial environments. In Paleobotany, Paleoecology and Evolution, vol. 1 (ed. Niklas, K. J.), pp. 55102. New York: Praeger.Google Scholar
Richter, D., 1976. Das Flysch-stadium der Helleniden-Ein Überblick. Zeitschrift der Deutschen geologischen Gesellschaft 127 467–83.Google Scholar
Richter, D., & Mariolakos, I., 1974 a. Neue Erkennntnisse über die Pälaogeographie des Gebietes südwestlich Levadhia vor Beginn der Flysch-Sedimentation. Praktika Academy of Athens 48, 407–26.Google Scholar
Richter, D., & Mariolakos, I., 1974 b. Der Flysch und seine Unterlage im Gebiet westlich Galaxidion. Bulletin of the Geological Society of Greece 10, 413–24.Google Scholar
Richter, D., & Mariolakos, I., 1975. Stratigraphische Untersuchungen an der Kreide/Tertiär-Wende im Gebiet von Delfi-Amfissa-Amfiklia (Parnass-Giona zone Griechenland). Annales Geologiques des Pays Helleniques 26, 417–34.Google Scholar
Richter, D., Müller, C., & Mihm, A., (1991). Die faziellen Beziehungen zwischen Parnass und Pindos-Zone sowie die Vulkanite im Gebiet nordlich von Eratini (Kontinentalgriechenland). Zeitschrift der Deutschen geologischen Gesellschaft 142, 6786.Google Scholar
Robertson, A. H. F., Clift, P. D., Degnan, P. J., & Jones, G., 1991. Paleogeographic and paleotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 289343.CrossRefGoogle Scholar
Skoog, D. A., & West, D. M., 1972. Fundamentals of Analytical Chemistry, 2nd ed. London: Holt, Reinhardt & Winston, 835 pp.Google Scholar
Solakius, N., (in press). Depositional changes in the Parnassus-Ghiona Zone, central Greece, during the Palaeocene. Bulletin of the Geological Society of Greece.Google Scholar
Solakius, N., Pomoni-Papaioannou, F., & Marangoudakis, N., 1989. Planktic foraminiferal biostratigraphy and sedimentology of the Cretaceous—Tertiary boundary in the Sernikaki section (The Parnassus—Ghiona Zone, Central Greece). Revista Española de Micropaleontoloia XXI, 373–89.Google Scholar
Solakius, N., Larsson, K., & Pomoni-Papaioannou, F., 1992. Planktic foraminiferal biostratigraphy of the carbonate/flysch transitional beds at Prossilion, in the Parnassus—Ghiona Zone, Central Greece. Acta geologica Hungarica 35, 441–5.Google Scholar
Solakius, N., & Pomoni-Papaioannou, F., (in press). Planktonic foraminiferal biostratigraphy and sequence stratigraphy of the carbonate-flysch sequence at Prossilion in the Parnassus—Ghiona Zone, Central Greece. Bulletin of the Geological Society of Greece.Google Scholar
Solakius, N., Pomoni-Papaioannou, F., & Gregou, S., (in press). The Cretaceous—Tertiary boundary at the Parnassus—Ghiona Zone, Hellenides, Central Greece. 12e Colloque Africain de Micropaleontologie, 2e Colloque de Stratigraphie et paléogéographie de l'Atlantique Sud, Angers 1994 (abstract).Google Scholar
Sugisaki, R., 1984. Relation between chemical composition and sedimentation rate of Pacific ocean-floor sediments deposited since the Middle Cretaceous: basic evidence for chemical constraints on depositional environments of ancient sediments. Journal of Geology 92, 235–59.Google Scholar
Tselepidis, V., Solakius, N., & Mavridis, A., (in press). On the first occurrence of ammonities in the Cretaceous strata of the Parnassus—Ghiona Zone, Central Greece. Bulletin of the Geological Society of Greece.Google Scholar
Wilson, M. J., Bain, D. C., Mchardy, W. J., & Berrow, M. L., 1972. Clay mineral studies on some carboniferous sediments in Scotland. Sedimentary Geology 8, 137–50.CrossRefGoogle Scholar
Wilson, M. D., & Pittman, E. D., 1977. Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis. Journal of Sedimentary Petrology 47, 331.Google Scholar
Wright, V. P., 1982. Calcrete paleosols from the Lower Carboniferous Lianey Formation, South Wales. Sedimentary Geology 33, 133.Google Scholar