Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T17:41:07.690Z Has data issue: false hasContentIssue false

Carbonate carbon isotope evolution of seawater across the Ediacaran–Cambrian transition: evidence from the Keping area, Tarim Basin, NW China

Published online by Cambridge University Press:  10 April 2017

QINGJUN GUO*
Affiliation:
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
YINAN DENG
Affiliation:
MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China
JIAN HU
Affiliation:
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang Guizhou 550002, China
LIYUAN WANG
Affiliation:
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China College of Zijin Mining, Fuzhou University, Fuzhou 350116, China
*
Author for correspondence: [email protected]

Abstract

Sedimentary rocks from the Ediacaran–Cambrian boundary record important biological, climatic and geotectonic changes during this time. To date, only few geochemical investigations on the upper Ediacaran – upper Cambrian rocks in the Tarim Basin have been carried out. Here, we report high-resolution δ13Ccarb records from the Penglaiba, the Wushi phosphorite and the Dongergou sections from Ediacaran–Cambrian Series 3 in the Keping area of the Tarim Basin. The sections display several obvious δ13Ccarb shifts; δ13Ccarb values increased from 3‰ to 6.7‰ across the Qigebulage Formation. Moreover, a negative δ13Ccarb shift across the Ediacaran–Cambrian boundary is apparent; δ13Ccarb values decreased to a minimum of −9.8‰ in the Wushi phosphorite section (−7.7‰ in Dongergou section and −5.4‰ in Penglaiba section), followed by a positive carbonate carbon isotopic excursion across the Yuertusi Formation into the middle of the overlying Xiaoerbulak Formation. Furthermore, more or less invariable positive δ13Ccarb values characterize the middle and upper Xiaoerbulak Formation. The most negative δ13Ccarb value (−14.3‰) occurred near the base of the Shayilik Formation, which is the absolute minimum value among the studied sections of the Cambrian Series 2 to Cambrian Series 3 transition in the world. The δ13C data from Keping, Tarim Basin are in good agreement with carbon isotope profiles recorded in South China, and these events may reflect the perturbation of the carbon cycle in the Tarim Basin during the Ediacaran–Cambrian and the Cambrian Series 2 – Cambrian Series 3 transitions.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brasier, M. D., Khomentovsky, V. V. & Corfield, R. M. 1993. Stable isotopic calibration of the earliest skeletal fossil assemblages in eastern Siberia (Precambrian- Cambrian boundary). Terra Nova 5, 225–32, doi: 10.1111/j.1365-3121.1993.tb00253.x.Google Scholar
Brasier, M. D., Magaritz, M., Corfeld, R., et al. 1990. The carbon-and oxygen-isotopic record of the Precambrian–Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 319–32.Google Scholar
Brasier, M. D., Rozanov, A. Yu., Zhuravlev, A. Yu., Corfield, R. M. & Derry, L. A. 1994. A carbon isotope reference scale for the Lower Cambrian succession in Siberia: report of IGCP Project 303. Geological Magazine 131, 767–83.Google Scholar
Brasier, M. D., Shields, G., Kuleshov, V. N. & Zhegallo, E. A. 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–Early Cambrian of southwest Mongolia. Geological Magazine 133, 445–85, doi: 10.1017/S0016756800007603.CrossRefGoogle Scholar
Brasier, M. D. & Sukhov, S. S. 1998. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: northern Siberia data. Canadian Journal of Earth Sciences 35, 353–73.CrossRefGoogle Scholar
Chen, J., Sun, S., Liu, W. & Zheng, J. 2004. Geochemical characteristics and genesis of organic rich layers of Lower Cambrian from northern Tarim Basin. Science China (D) 34 (S-I), 107–13.Google Scholar
Chen, Y., Jiang, S., Zhou, X., Yang, W. & Han, L. 2010. δ30Si, δ18O and elements geochemistry on the bedded siliceous rocks and cherts in dolostones from Cambrian strata, Tarim Basin. Geochimica 39 (2), 159–70.Google Scholar
Dilliard, K. A., Pope, M. C., Coniglio, M., Hasiotis, S. T. & Lieberman, B. S. 2007. Stable isotope geochemistry of the lower Cambrian Sekwi Formation, Northwest Territories, Canada: Implications for ocean chemistry and secular curve generation. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 174–94.Google Scholar
Feng, L., Li, C., Huang, J., Chang, H. & Chu, X. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research 246, 123–33.Google Scholar
Feng, Z., Bao, Z., Wu, M., et al. 2006. Lithofacies palaeogeography of the Cambrian in Tarim area. Journal of Palaeogeography 8 (4), 427–39.Google Scholar
Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. 2006. Oxidation of the Ediacaran Ocean. Nature 444, 744–7.Google Scholar
Guo, Q., Strauss, H., Liu, C., Goldberg, T., Zhu, M., Heubeck, C., Pi, D., Vernhet, E., Yang, X. & Fu, P. 2007. Carbon isotopic evolution of the terminal Neoproterozoic and Early Cambrian: evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 140–57.Google Scholar
Guo, Q., Strauss, H., Liu, C., Zhao, Y., Yang, X., Peng, J. & Yang, H. 2010a. A negative carbon isotope excursion defines the transition from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 285, 143–51.Google Scholar
Guo, Q., Strauss, H., Liu, C., Zhao, Y., Yang, X., Peng, J. & Yang, H. 2010b. Corrigendum to “A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China”. Palaeogeography, Palaeoclimatology, Palaeoecology 285, 143–51.CrossRefGoogle Scholar
Guo, Q., Strauss, H., Zhao, Y., Yang, X., Peng, J., Yang, Y. & Deng, Y. 2014. Reconstructing marine redox conditions for the transition between Cambrian Series 2 and Cambrian Series 3, Kaili area, Yangtze Platform: Evidence from biogenic sulfur and degree of pyritization. Palaeogeography, Palaeoclimatology, Palaeoecology 398, 144–53.CrossRefGoogle Scholar
Guo, Q., Strauss, H., Zhu, M., Zhang, J., Yang, X., Lu, M. & Zhao, F. 2013. High-resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian transition. Precambrian Research 225, 209–17.CrossRefGoogle Scholar
He, X., Xu, B. & Yuan, Z. 2007. The carbon isotope composition and comparison of late Neoproterozoic strata in the Xinjiang Keping area. Chinese Science Bulletin 52 (1), 107–13.CrossRefGoogle Scholar
Jacobsen, S. B. & Kaufman, A. J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology 161, 3757.Google Scholar
Jiang, G., Kaufman, A. J., Christie-Blick, N., Zhang, S. & Wu, H. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science 261, 303–20.CrossRefGoogle Scholar
Jiang, G., Wang, X., Shi, X., et al. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze platform. Earth and Planetary Science Letters 317–8, 96110.Google Scholar
Jiang, S., Yang, J., Ling, H., Chen, Y., Feng, H., Zhao, K. & Ni, P. 2007. Extreme enrichment of polymetallic Ni–Mo–PGE–Au in lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 217–28.CrossRefGoogle Scholar
Kaufman, A. J., Jacobsen, S. B. & Knoll, A. H. 1993. The Vendian record of Sr- and C-isotopic variations in seawater: implications for tectonic and paleoclimate. Earth and Planetary Science Letters 120, 409–30.CrossRefGoogle Scholar
Kaufman, A. J., Jiang, G., Christie-Blick, N., Banerjee, D. M. & Rai, V. 2006. Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Research 147, 156–85.Google Scholar
Kaufman, A. J. & Knoll, A. H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73, 2749.Google Scholar
Khomentovsky, V. V. & Gibsher, A. S. 1996. The Neoproterozoic–Lower Cambrian in northern Govi-Altay, western Mongolia: regional setting, lithostratigraphy and biostratigraphy. Geological Magazine 133, 371–90, doi: 10.1017/S001675680000755X.CrossRefGoogle Scholar
Knoll, A. H. 1991. End of the Proterozoic Eon. Scientific American 265, 6473.Google Scholar
Knoll, A. H., Grotzinger, J. P., Kaufman, A. J. & Kolosov, P. 1995a. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambrian Research 73, 251–70, doi: 10.1016/0301-9268(94)00081-2.Google Scholar
Knoll, A. H., Kaufman, A. J., Semikhatov, M. A., Grotzinger, J. P. & Adams, W. 1995b. Sizing up the sub-Tommotian unconformity in Siberia. Geology 23, 1139–43, doi: 10.1130/0091-7613(1995)023 <1139: SUTSTU>2.3.CO;2.Google Scholar
Kouchinsky, A., Bengtson, S., Pavlov, V., Runnegar, B., Torssander, P., Young, E. & Ziegler, K. 2007. Carbon isotope stratigraphy of the Precambrian-Cambrian Sukharikha River section, northwestern Siberian platform. Geological Magazine 144, 609–18, doi: 10.1017/S0016756807003354.Google Scholar
Landing, E. & Bartowski, K. E. 1996. Oldest shelly fossils fromthe Taconic allochthon and late Early Cambrian sea-levels in eastern Laurentia. Journal of Paleontology 70, 741–61.CrossRefGoogle Scholar
Li, C., Love, G. D., Lyons, T. W., Fike, D. A., Sessions, A. L. & Chu, X. 2010. A Stratified Redox Model for the Ediacaran Ocean. Science 328 (5974), 80–3.Google Scholar
Li, D., Ling, H., Shields-Zhou, G. A., Chen, X., Cremonese, L., Och, L., Thirlwall, M., Christina, J. & Mannin, C. J. 2013. Carbon and strontium isotope evolution of seawater across the Ediacaran–Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Research 225, 128–47.CrossRefGoogle Scholar
Li, D., Shields-Zhou, G., Ling, H.-F. & Thirlwall, M. 2011. Dissolution methods for strontium isotope stratigraphy: guidelines for the use of bulk marine carbonate and phosphorite rocks. Chemical Geology 290, 133–44.CrossRefGoogle Scholar
Li, R., Chen, J., Zhang, S., Lei, J., Shen, Y. & Chu, X. 1999. Spatial and temporal variations in carbon and sulfur isotopic compositions of Sinian sedimentary rocks in the Yangtze platform, South China. Precambrian Research 97, 5975.Google Scholar
Magaritz, M., Kirschvink, J. L., Latham, A. J., Zhuravlev, A. Yu. & Rozanov, A. Yu. 1991. Precambrian/Cambrian boundary problem: carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19, 847–50, doi: 10.1130/0091-7613(1991)019<0847: PCBPCI>2.3.CO;2.Google Scholar
Maloof, A. C., Schrag, D. P., Crowley, J. L. & Bowring, S. A. 2005. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas margin, Morocco. Canadian Journal of Earth Sciences 42, 2195–216, doi: 10.1139/e05-062.Google Scholar
Maloof, A. C., Susannah, M. P., Moore, J. L., Dudás, F. Ö., Samuel, A. B., Higgins, J. A., Fike, D. A. & Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.CrossRefGoogle Scholar
Marshall, J. D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine 129, 143–60.Google Scholar
McCrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849–57.Google Scholar
McKerrow, W. S., Scotese, C. R. & Brasier, M. D. 1992. Early Cambrian continental reconstructions. Journal of the Geological Society , London 149, 599606.CrossRefGoogle Scholar
Montañez, I. P., Osleger, D. A., Banner, J. L., Mack, L. E. & Masgrove, M. L. 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today 10, 17.Google Scholar
Och, L. M., Cremonese, L., Shields-Zhou, G. A., Poulton, S. W., Struck, U., Ling, H., Li, D., Chen, X., Manning, C., Thirlwall, M., Strauss, H. & Zhu, M. 2016. Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran-Cambrian transition. Sedimentology 63 (2), 378410.Google Scholar
Peng, S. 2009. The newly developed Cambrian biostratigraphic succession and chronstratigraphic scheme for South China. Chinese Science Bulletin (English Edition ) 54, 4161–79.Google Scholar
Peng, S., Babcock, L. E. & Cooper, R. A. 2012. The Cambrian Period. In The Geological Time Scale, Volume 2 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 437–88. Amsterdam: Elsevier BV, 1144 pp.Google Scholar
Popp, B. N., Anderson, T. F. & Sandberg, P. A. 1986. Textural, elemental and isotopic variations among constituents in Middle Devonian limestones, North America. Journal of Sedimentary Petrology 56, 715–27.Google Scholar
Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., Lohmann, K. C., Robison, R. C., Chang, W. T., Peng, S., Ergaliev, E. K. & Runnegar, B. R. 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinction, organic-matter burial, and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 211–23.Google Scholar
Saltzman, M. R., Runkel, A. C., Cowan, C. A., Runnegar, B., Stewart, M. C. & Palmer, A. R. 2004. The upper Cambrian SPICE (δ13C) event and the Sauk II–Sauk III regression: new evidence from Laurentian basins in Utah, Iowa and Newfoundland. Journal of Sedimentary Research 74, 366–77.Google Scholar
Saltzman, M. R., Runnegar, B. & Lohmann, K. C. 1998. Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of a global oceanographic event. Geological Society of America Bulletin 110, 285–97.2.3.CO;2>CrossRefGoogle Scholar
Sawaki, Y., Ohno, T., Fukushi, Y., et al. 2008. Sr isotope excursion across the Precambrian-Cambrian boundary in the Three Gorges area, South China. Gondwana Research 14, 134–47.Google Scholar
Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. 2013. Authigenic carbonate and the history of the Global Carbon Cycle. Science 339, 540–43.CrossRefGoogle ScholarPubMed
Schröder, S. & Grotzinger, J. P. 2007. Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman. Journal of the Geological Society 164, 175–87.Google Scholar
Scotese, C. R. & McKerrow, W. S. 1990. Revised world maps and introduction. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. S. & Scotese, C. R.), pp. 121. Geological Society of London, Memoir no. 12.Google Scholar
Shabanov, Yu. Ya., Korovnikov, I. V., Pereladov, V. S., Pak, K. L. & Feflov, A. F. 2008. Proposed global standard stratotype-section and point for the Amganian Stage (Cambrian): Kuonamka Formation section along the Molodo River, western Yakutia, Russia. The 13th International Field Conference of the Cambrian Stage Subdivision Working Group (Siberian Platform, Western Yakutia), 6070.Google Scholar
Shen, Y. & Schidlowski, M. 2000. New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian–Cambrian boundary on the Yangtze Platform and global correlations. Geology 28, 623–6.Google Scholar
Shields-Zhou, G. A. & Och, L. 2011. The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences. GSA Today 21, 411.Google Scholar
Sun, X., Chen, J., Zheng, J. & Liu, W. 2004. Geochemical characteristics of organic matter rich sedimentary strata in Lower Cambrian, Tarim Basin and its origins. Acta Sedimentologica Sinica 22 (3), 547–52.Google Scholar
Vasconcelos, C., McKenzie, J. A., Warthmann, R. & Bernasconi, S. M. 2005. Calibration of the delta O-18 paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33, 317–20.Google Scholar
Veizer, J. 1983. Chemical diagenesis of carbonates: theory application. In: Stable Isotopes in Sedimentary Geology (eds Arthur, M. A. et al.). SEPM, Tulsa, Society of Economic Palaeontologists and Mineralogists, Short Course, 10.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. & Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161, 5988.CrossRefGoogle Scholar
Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O. G., Carden, G. A. F., Jasper, T., Korte, C., Strauss, H., Azmy, K. & Ala, D. 1997. Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 159–72.Google Scholar
Wachter, E. A. & Hayes, J. M. 1985. Exchange of oxygen isotopes and carbon isotopes in carbon dioxide-phosphoric acid systems. Chemical Geology 52, 365–74.Google ScholarPubMed
Wang, D., Struck, U., Ling, H., Guo, Q., Shields-Zhou, G. A., Zhu, M. & Yao, S. 2015. Nitrogen isotope study of black shales during Early Cambrian on Yangtze platform, South China. Precambrian Research 267, 209–26.CrossRefGoogle Scholar
Wotte, T., Álvaro, J. J., Shields, G. A., Brown, B., Brasier, M. D. & Veizer, J. 2007. C-, O- and Srisotope stratigraphy across the Lower–Middle Cambrian transition of the Cantabrian Zone (Spain) and the Montagne Noire (France), West Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 4770.Google Scholar
Yang, X., Zhu, M., Guo, Q. & Zhao, Y. 2007. Organic carbon isotopic evolution during the Ediacaran-Cambrian transition interval in Eastern Guizhou, South China: paleoenvironmental and stratigraphic implications. Acta Geologica Sinica (English Edition) 81 (2), 194203.Google Scholar
Yu, B., Chen, J., Li, X. & Lin, C. 2004. Rare earth and trace element patterns in bedded cherts from the bottom of the Lower Cambrian in the northern Tarim Basin, northwest China: implication for depositional environments. Acta Sedimentologica Sinica 22 (1), 5966 (in Chinese with English abstract).Google Scholar
Yu, B., Dong, H., Widom, E., Chen, J. & Lin, C. 2009. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Journal of Asian Earth Sciences 34, 418–36.Google Scholar
Zhang, J., Li, G., Zhou, C., Zhu, M. & Yu, Z. 1997. Carbon isotope profiles and their correlation across the Neoproterozoic Cambrian boundary interval on the Yangtze Platform, China. Bulletin of National Museum of Natural Science 10, 107–16.Google Scholar
Zhao, Y. & Zheng, Y. 2010. Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China. Chemical Geology 271, 86100.Google Scholar
Zhou, C. & Xiao, S. 2007. Ediacaran δ13C chemostratigraphy of South China. Chemical Geology 237, 107–26.CrossRefGoogle Scholar
Zhou, Z. 2001. Stratigraphy of the Tarim Basin. Beijing: Science Press (in Chinese).Google Scholar
Zhu, M., Babcock, L. E. & Peng, S. C. 2006. Advances in Cambrian Stratigraphy and paleontology: Integrating correlation techniques, palaeobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–22.Google Scholar
Zhu, M., Strauss, H. & Shields, G. A. 2007. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 16.Google Scholar
Zhu, M., Zhang, J., Li, G. & Yang, A. 2004. Evolution of C isotopes in the Cambrian of China: implications for Cambrian subdivision and trilobite mass extinctions. Geobios 37, 287301.Google Scholar
Zhu, M., Zhang, J., Steiner, M. & Yang, A. 2003. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: an integrated approach. Progress in Natural Science 13 (12), 951–60.CrossRefGoogle Scholar