Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T17:40:28.404Z Has data issue: false hasContentIssue false

Benthic foraminiferal response to relative sea-level changes in the Maastrichtian–Danian succession at the Dakhla Oasis, Western Desert, Egypt

Published online by Cambridge University Press:  13 December 2016

SHERIF FAROUK*
Affiliation:
Exploration Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Egypt
SREEPAT JAIN
Affiliation:
Department of Applied Geology, Adama Science and Technology University, School of Applied Natural Sciences, P.O. Box 1888, Adama, Ethiopia
*
Author for correspondence: [email protected]

Abstract

The Maastrichtian–Danian benthic foraminiferal diversity and assemblages through sequence stratigraphy were studied at Dakhla Oasis, Egypt. Benthic foraminifera numbers (BFN), high-flux species and characteristic benthic foraminiferal species and genera distribution are also incorporated to assess palaeobathymetry, palaeoenvironment and palaeoproductivity. All these proxies are then taken together to construct a sea-level curve and interpreted in terms of regional tectonics, climate and eustasy. Data suggest a remarkably highly equitable benthic environment deposited in a brackish littoral and/or marsh setting with moderate (?) to low oxygen conditions and reduced salinity (oligotrophic), possibly due to increased precipitation and terrestrial runoff. The interrupted dominance of calcareous forms and high-organic-flux species suggests occasional marine incursions and high palaeoproductivity, due to local upwelling. The inferred sea-level curve replicates the global eustatic curve and suggests that the curve is more influenced by the prevailing climate and global eustasy rather than by regional tectonics. The post-Cretaceous–Palaeogene boundary displays improvement in the environment in terms of diversity and number of species and specimens, with a marked reduction in the abundance of high-organic-flux species during early Paleocene (Danian) time, indicating a shift from a more mesotrophic open marine environment to much reduced oligotrophic conditions.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Kireem, M. R. & Samir, A. M. 1995. Biostratigraphic implications of Maastrichtian-Lower Eocene sequence at the north Gunna section, Farafra Oasis, Western Desert, Egypt. Marine Micropaleontology 26, 329–40.Google Scholar
Alve, E. 1990. Variations in estuarine foraminiferal biofacies with diminishing oxygen conditions in Drammensfjord, S. E. Norway. In Paleoecology, Biostratigraphy, Paleoceanography, and Taxonomy of Agglutinated Foraminifera (eds Hemleben, C., Scott, D. B., Kaminski, M. & Kuhnt, W.), pp. 661–94. Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Alve, E. & Nagy, J. 1986. Estuarine foraminiferal distribution in Sandebukta, a branch of the Oslo Fjord. Journal of Foraminiferal Research 16, 261–84.Google Scholar
Anan, H. S. & Hewaidy, A. A. 1986. Biostratigraphy and distribution of the Paleocene benthonic foraminifera in the Nile Valley Facies in Egypt. Middle East Research Center. Earth Sciences Series, Ain Shams University 6, 132.Google Scholar
Awad, G. H. & Ghobrial, M. G. 1965. Zonal Stratigraphy of the Kharga Oasis. Geological Survey of Egypt, Cairo, Paper No. 34, 77 pp.Google Scholar
Barthel, K. W. & Herrmann-Degen, W. 1981. Late Cretaceous and Early Tertiary stratigraphy in the Great Sand Sea and its SE Margins (Farafra and Dakhla Oases), SW Desert, Egypt. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 21, 141–82.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. & Aubry, M. P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M. P. & Hardenbol, J.), pp. 129212. SEPM (Society of Sedimentary Geology), Special Publication no. 54.Google Scholar
Berggren, W.A. & Pearson, P.N. 2005. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. Journal of Foraminiferal Research 35, 279–98.Google Scholar
Bernhard, J. M. 1987. Foraminiferal biotopes in Explorers Cove, McMurdo Sound, Antarctica. Journal of Foraminiferal Research 17, 286–97.Google Scholar
Cherif, O. H. & Hewaidy, A. A. 1986. The Maastrichtian planktic foraminiferal fauna of the Abu Tartur area, Western Desert, Egypt. Egyptian Journal Geology 31, 217–31.Google Scholar
El-Azabi, M. H. & El-Araby, A. 2000. Depositional cycles, an approach to the sequence stratigraphy of the Dakhla Formation, west Dakhla-Farafra stretch, Western Desert, Egypt. Journal of African Earth Sciences 30, 971–96.Google Scholar
El-Azabi, M. H. & Farouk, S. 2011. High-resolution sequence stratigraphy of the Maastrichtian-Ypresian succession along the eastern scarp face of Kharga Oasis, southern Western Desert, Egypt. Sedimentology 58, 579617.Google Scholar
El-Dawy, M. H., Obaidalla, N. A., Mahfouz, K. H. & Abdel Wahed, S. A. 2016. Paleocene-Eocene transition at Naqb Assiut, Kharga Oasis, Western Desert, Egypt: Stratigraphical and paleoenvironmental inferences. Journal of African Earth Sciences 117, 207–22.Google Scholar
El deep, W.Z., Faris, M. & Mandur, M.M. 2000. Upper Cretaceous - Lower Paleogene foraminiferal paleoecology of north and southwest Sinai areas, Egypt. Egyptian Petroleum Journal 9, 105–22.Google Scholar
Farouk, S. 2014. Maastrichtian carbon cycle changes and planktonic foraminiferal bioevents at Gebel Matulla, west-central Sinai, Egypt. Cretaceous Research 50, 238–51.Google Scholar
Farouk, S. 2015. Upper Cretaceous sequence stratigraphy of the Galala Plateaux, western side of the Gulf of Suez, Egypt. Marine and Petroleum Geology 60, 136–58.Google Scholar
Farouk, S. 2016. Paleocene stratigraphy in Egypt. Journal of African Earth Sciences 113, 126–52.Google Scholar
Farouk, S. & EL-Sorogy, E. 2015. Danian/Selandian unconformity in the central and southern Western Desert of Egypt. Journal of African Earth Sciences 103, 4253.CrossRefGoogle Scholar
Farouk, S., Marzouk, A. M. & Fayez, A. 2014. The Cretaceous/Paleogene boundary in Jordan. Journal of Asian Earth Sciences 94, 113–25.Google Scholar
Haq, B. U. 2014. Cretaceous eustasy revisited. Global and Planetary Change 113, 4458.Google Scholar
Haq, B. U. & AL-Qahtani, A. M. 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10 (2), 127–60.Google Scholar
Haq, B.U., Hardenbol, J. & Vail, P.R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–66.Google Scholar
Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P. -C. & Vail, P. R. 1998. Mesozoic-Cenozoic sequence chronostratigraphy framework of European basins. In Sequence Stratigraphy of European Basins (eds de Graciansky, P.-C., Hardenbol, J., Jacquin, T., & Vail, P.R.), pp. 314. SEPM (Society for Sedimentary Geology), Special Publication no. 60.Google Scholar
Herrle, J. O., Pross, J., Friedrich, O. & Hemleben, C. 2003 a. Short-term environmental changes in the Cretaceous Tethyan Ocean: micropaleontological evidence from the Early Albian Oceanic Anoxic Event 1b. Terra Nova 15, 14–9.Google Scholar
Herrle, J. O., Pross, J., Friedrich, O., Köbler, P. & Hemleben, C. 2003 b. Forcing mechanisms for Mid-Cretaceous black shale formation: evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology 190, 399426.Google Scholar
Hess, S., Nagy, J. & Laursen, G. V. 2014. Benthic foraminifera from the Lower Jurassic transgressive mudstones of the south-western Barents Sea - a possible high-latitude expression of the global Pliensbachian-Toarcian turnover? Polar Research 33, 20206, http://dx.doi.org/10.3402/polar.v33.20206.Google Scholar
Hewaidy, A. A. 1990. Stratigraphy and paleobathymetry of Upper Cretaceous - Lower Tertiary exposures in Beris-Doush area, Kharga Oasis, Western Desert, Egypt. Qatar University Science Bulletin 10, 297314.Google Scholar
Hewaidy, A. A. & Cherif, O. H. 1984. Contribution to the bathymetric variations of the Late Cretaceous Sea over the Abu Tartur area by using Foraminifera. Annals of the Geological Survey of Egypt 15, 231–41.Google Scholar
Hewaidy, A. A., El-Azabi, M.H. & Farouk, S. 2006. Facies associations and sequence stratigraphy of the Upper Cretaceous-Lower Eocene succession in the Farafra Oasis, Western Desert, Egypt. In Proceedings of 8th International Conference on Geology of the Arab World (GAW 8), Cairo University, Egypt 2, 569–99.Google Scholar
Hewaidy, A. G., Farouk, S., Hatem, A. & Bazeen, Y. 2014. Maastrichtian to Paleocene agglutinated foraminifera from the Dakhla Oasis, Western Desert, Egypt. Egyptian Journal of Paleontology 14, 138.Google Scholar
Hewaidy, A. A. & Strougo, A. 2001. Maastrichtian-lower Eocene benthonic foraminiferal distribution and paleoecology of three outcrop sections in Farafra. Egyptian Journal of Paleontology 1, 122.Google Scholar
Holbourn, A. E. L., Kuhnt, W. & Erbacher, J. 2001. Benthic foraminifers from Lower Albian black shales (site 1049, ODP Leg 171): Evidence for a non “uniformitarian” record. Journal of Foraminiferal Research 31, 6074.Google Scholar
Jain, S. & Collins, L. S., 2007. Trends in Caribbean paleoproductivity related to the Neogene closure of the Central American Seaway. Marine Micropaleontology 67, 5774.Google Scholar
Jain, S., Collins, L. S. & Hayek, L. A.-C. 2007. Relationship of benthic foraminiferal diversity to paleoproductivity in the Neogene of the Caribbean deep-sea. Palaeogeography, Palaeoclimatology, Palaeoecology 225, 223–45.Google Scholar
Jorissen, F. J., De stigter, H. C. & Widmark, J. G. V. 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology 26, 315.Google Scholar
Kaiho, K. & Hasegawa, T. 1994. End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 111, 2943.Google Scholar
Keller, G., Adatte, T., Burns, S. J. & Tantawy, A. A. 2002. High-stress paleoenvironment during the late Maastrichtian to early Paleocene in Central Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology 187, 3560.Google Scholar
Keller, G., Li, L. & Macleod, N. 1995. The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeography, Palaeoclimatology, Palaeoecology 119, 221–54.Google Scholar
King, C. 2013. Paleocene depositional environments and depositional sequences in the Dababiya Quarry Corehole (Egypt). Stratigraphy 9, 347–62.Google Scholar
Le Roy, L. W. 1953. Biostratigraphy of the Maqfi section, Egypt. Geological Society of America, Memoir no. 54, 73 pp.Google Scholar
Li, L., Keller, G. & Stinnesbeck, W. 1999. The Late Campanian and Maastrichtian in northwestern Tunisia: Paleoenvironmental inferences from lithology, macrofauna and benthic foraminifara. Cretaceous Research 20, 231–52.Google Scholar
Luger, P. 1985. Stratigraphie der marinen Oberkreide und des Alttertiärs im südlichen Obernil-Becken (SW-Ägypten) unter besonderer Berücksichtigung der Mikropaläontologie, Palökologie und Paläogeographie. Berliner Geowissenschaftliche Abhandlungen Reihe A 63, 1151.Google Scholar
Luger, P. 1988. Maastrichtian to Paleocene facies evolution and Cretaceous/Tertiary boundary in middle and southern Egypt. Revista Española de Micropaleontologia, Numero Extraordinario 1988, 8390.Google Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N. & Pekar, S. F. 2005. The Phanerozoic record of global sea-level change. Science 312, 1293–8.Google Scholar
Molina, E., Alegret, L., Arenillas, I., Arz, J. A., Gallala, N., Hardenbol, J., Van salis, K., Steurbaut, E., Vandenberghe, N. & Zaghbib-Turki, D. 2006. The Global Boundary Stratotype Section and Point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia - Original definition and revision. Episodes 29, 263–73.Google Scholar
Murray, J. W. 1973. Distribution and Ecology of Living Benthic Foraminiferids. London: Heinemann, 288 pp.Google Scholar
Murray, J. W. 2000. When does environmental variability become environmental change? The proxy record of benthic foraminifera. In: Environmental Micropaleontology (ed. Martin, R.E.)), pp. 737. Springer, Topics in Geobiology no. 15.Google Scholar
Murray, J. W. 2006. Ecology and Applications of Benthic Foraminifera. New York: Cambridge University Press, 426 pp.Google Scholar
Nagy, J. & Alve, E. 1987. Temporal changes in foraminiferal faunas and impact of pollution in Sandebukta, Oslo Fjord. Marine Micropaleontology 12, 109–28.CrossRefGoogle Scholar
Nagy, J., Finstad, E. K., Dypvik, H. & Bremer, M. G. A. 2001. Response of foraminiferal facies to transgressive-regressive cycles in the Callovian of northeast Scotland. Journal of Foraminiferal Research 31, 324–49.Google Scholar
Nagy, J., Hess, S. & Alve, E. 2010. Environmental significance of foraminiferal assemblages dominated by small-sized Ammodiscus and Trochammina in Triassic and Jurassic strata. Earth-Science Reviews 99, 3149.Google Scholar
Nagy, J., Hess, S., Dypvik, H. & Bjærke, T. 2011. Marine shelf to paralic biofacies of Upper Triassic to Lower Jurassic deposits in Spitsbergen. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 138–51.Google Scholar
Nagy, J., Løfaldi, m. & Bäckström, S. A. 1988. Aspects of foraminiferal distribution and depositional conditions in Middle Jurassic to Early Cretaceous shales in eastern Spitsbergen. Abhandlungen der Geologischen Bundesanstalt 30, 297300.Google Scholar
Nagy, J., Pilskog, B. & Wilhelmsen, R. 1990. Facies controlled distribution of foraminifera in the Jurassic North Sea Basin. In Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera (eds Hemleben, C., Kaminski, M. A., Kuhnt, W., & Scott, D. B.), pp. 621–57. Dordrecht, The Netherlands: Kluwer Academic Press.Google Scholar
Orabi, H. O. & Khalil, H. M. 2014. Calcareous benthonic foraminifera across the Cretaceous/Paleocene transition of Gebel Um El-Ghanayem, Kharga Oasis, Egypt. Journal of African Earth Sciences 96, 110–21.Google Scholar
Said, R. 1962. The Geology of Egypt. Amsterdam: Elsevier, 377 pp.Google Scholar
Said, R. & Kerdany, M. T. 1961. The geology and micropaleontology of Farafra Oasis. Micropaleontology 7 (3), 317–36.Google Scholar
Samir, A. M. 1995. Paleoenvironmental significance of the Upper Cretaceous-Lower Tertiary foraminifera of the North Gunna section, Farafra Oasis, Western Desert, Egypt. Proceedings. Koninklijke Nederlandsch Akademie van Wetenschappen 98, 109–26.Google Scholar
Schnack, K. 2000. Biostratigraphie und fazielle Entwicklung in der Oberkreide und im Alttertiär im Bereich der Kharga Schwelle, Westliche Wüste, SW Ägypten. Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen 151, 1142.Google Scholar
Sebei, K., Inoubli, M. H., Boussiga, H., Tlig, S., Alouani, R. & Boujamaoui, M. 2007. Seismic stratigraphy, tectonics and depositional history in the Halk el Menzel region, NE Tunisia. Journal of African Earth Sciences 47, 929.Google Scholar
Smart, C. W. 1998. Diversity patterns of Miocene benthic foraminifera in the Somali Basin, northwestern Indian Ocean. Micropaleontology 44, 256–64.Google Scholar
Speijer, R. P. 1994. Extinction and recovery patterns in benthonic foraminiferal paleocommunities across the Cretaceous/Paleogene and Paleocene/Eocene boundaries. Mededlingen Van de Faculteit Aurdwetenschappen Universiteit Utrecht 124–91.Google Scholar
Speijer, R. P., Schmitz, B., Aubry, M. -P. & Charisi, S. D. 1996. The latest Paleocene benthic extinction event: Punctuated turnover in outer neritic foraminiferal faunas from Gebel Aweina, Egypt. Israel Journal of Earth Sciences 44, 207–22.Google Scholar
Speijer, R. P. & Van der zwaan, G. J. 1996. Extinction and survivorship of southern Tethyan benthic foraminifera across the Cretaceous/Paleogene boundary. In Biotic Recovery from Mass Extinction Events (ed. Hart, M.B.), pp. 343–72. Geological Society of London, Special Publication no. 102.Google Scholar
Tantawy, A. A., Keller, G., Adatte, T., Stinnesbeck, W., Kassab, A. & Schulte, P. 2001. Maastrichtian to Paleocene depositional environment of the Dakhla Formation, Western Desert, Egypt: Sedimentology, mineralogy, and integrated micro- and macrofossil biostratigraphies. Cretaceous Research 22, 795827.Google Scholar
Van Der Zwaan, G. J., Duijnstee, I. A. P., Den dulk, M., Ernst, S. R., Jannink, N. T. & Kouwenhoven, T. J. 1999. Benthic foraminifers: proxies or problems? A review of paleocological concepts. Earth Science Reviews 46, 213–36.Google Scholar
Voigt, S., Gale, A. S., Jung, C. & Jenkyns, H. C. 2012. Global correlation of Upper Campanian-Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale. Newsletters on Stratigraphy 45, 2553.CrossRefGoogle Scholar