Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T17:35:12.028Z Has data issue: false hasContentIssue false

The basic rock series in batholithic associations

Published online by Cambridge University Press:  01 May 2009

H. S. Mullan
Affiliation:
Department of Geology, University of Calabar, P.M.B. 1115, Calabar, Nigeria
M. A. Bussell
Affiliation:
Department of Biology and Geology, The Polytechnic of North London, Holloway Road, London N7 8DB

Summary

Basic rocks from the West Mexican Batholith and the Coastal Batholith of Peru are described. These are considered representative of the whole range of basic rocks in batholiths and their crystallization and subsequent history is related to the fluid pressure of the magma. Their role in batholithic evolution is discussed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adie, R. J. 1955. The petrology of Graham Land. II. The Andean granite-gabbro intrusive suite. F.I.D.S. Sci. Rep. 12, 137.Google Scholar
Bateman, P. C., Clarke, L. D., Huber, N. K., Moore, J. G. & Rinehart, C. D. 1963. The Sierra Nevada Batholith: a synthesis of recent work across the central part. Prof. Pap. U.S. geol. Surv. 414–D.Google Scholar
Best, M. G. 1963. Petrology of the Guadalupe Igneous Complex South Western Sierra Nevada Foothills, California. J. Petrology 4, 223–59.CrossRefGoogle Scholar
Best, M. G. & Mercy, E. L. P. 1967. Composition and crystallization of mafic minerals in the Guadalupe Igneous Complex, California. Am. Mineral. 52, 436–74.Google Scholar
Bonneau, M. 1970. Una nueva area Cretacica fosilifera en el Estado de Sinaloa. Bol. Soc. geol. Mex. 32, 159–67.Google Scholar
Bonneau, M. 1973. Donnes nouvelles sur les Series Cretacées de la côte Pacifique de Mexique. Bull. Soc. geol. Fr. 14, 55–6.Google Scholar
Cann, J. R. 1970. Upward movement of granite magmas. Geol. Mag. 107, 335–40.CrossRefGoogle Scholar
Cobbing, E. J. & Pitcher, W. S. 1972. The Coastal Batholith of Central Peru. Jl geol. Soc. Lond. 128, 421–60.CrossRefGoogle Scholar
Dalziel, I. W. D. & Elliot, D. H. 1973. The Scotia Arc and Antarctic Margin. In the Ocean Basins and Margins. Vol. I. The South Atlantic (ed. Nairn, A. E. M. and Stehli, F. S.). New York: Plenum Press.Google Scholar
De Cserna, Z., Schmitter, E., Damon, P. E., Livingstone, D. E. & Kulp, D. L. 1962. Edades isotopicas de rocas metamorficas del centro y sur de Guerrero y de una monzonita cuarzifera del Norte de Sinaloa. Bol. U.N.A.M. Inst. Geol. pp. 7184.Google Scholar
Drever, H. I. & Johnston, R. 1966. A natural high-lime liquid more basic than basalt. J. Petrology 7, 414–20.CrossRefGoogle Scholar
Elsdon, R. 1971. Crystallization history of the Upper Layered Series, Kap Edvard Holm, East Greenland. J. Petrology 12, 499521.CrossRefGoogle Scholar
Emmons, R. C. 1940. The contribution of differential pressures to magmatic differentiation. Am. J. Sci. 238, 121.CrossRefGoogle Scholar
French, W. J. 1966. Appinitic intrusions clustered around the Ardara Pluton, County Donegal. Proc. R. Ir. Acad. 64B, 303–22.Google Scholar
Gastil, R. G. 1975. Plutonic zones in the Penninsular Ranges of Southern California and Northern Baja California. Geology 3, 361–3.2.0.CO;2>CrossRefGoogle Scholar
Gastil, R. G., Krummanacher, D., Dupont, J. & Bushee, J. 1974. The Batholith Belt of Southern California and Western Mexico. Pacific Geol. 8, 73–8.Google Scholar
Helz, R. T. 1973. Phase relations of basalts in their melting range at PH2O = 5 kb as a function of oxygen fugacity. I. Mafic phases. J. Petrology 14, 249302.CrossRefGoogle Scholar
Holloway, J. R. & Burnham, C. W. 1972. Melting relations of basalt with equilibrium water pressure less than total pressure. J. Petrology 13, 129.CrossRefGoogle Scholar
Hudson, F. S. 1922. Geology of the Cuyamaca region of California. Bull. Univ. Cal. Dept. Geol. Sci. 13, 175252.Google Scholar
Larsen, E. S. 1948. Batholith and associated rocks of Corona, Elsinore and San Luis Rey quadrangles, Southern California. Mem. geol. Soc. Am. 29.Google Scholar
Miller, F. S. 1937. Petrology of the San Marcos Gabbro, Southern California. Bull. geol. Soc. Am. 48, 1197–226.CrossRefGoogle Scholar
Miller, F. S. 1938. Hornblendes and primary structures of the San Marcos Gabbro. Bull. geol. Soc. Am. 49, 1213–32.CrossRefGoogle Scholar
Myers, J. S. 1974. Cretaceous stratigraphy and structure, Western Andes of Peru between latitude 10°– 10° 30 S. Bull. Am. Ass. Petrol. Geol. 58, 474–87.Google Scholar
Reed, B. L. & Lanphere, M. A. 1973. Alaska–Aleutian Range Batholith: geochronology, chemistry and relations to Circum-Pacific plutonism. Bull. geol. Soc. Am. 84, 2583–620.2.0.CO;2>CrossRefGoogle Scholar
Regan, P. 1972. Basic rocks in the Batholith association. In Cobbing, E. J. & Pitcher, W. S. 1972. The Coastal Batholith of Central Peru. Jl geol. Soc. Lond. 128, p. 453.Google Scholar
Roddick, J. T. & Hutchinson, W. W. 1974. Setting of the Coast Plutonic Complex, British Columbia. Pacific Geol. 8, 91106.Google Scholar
Silver, L. T., Stehli, E. S. & Allen, C. R. 1963. Lower Cretaceous pre-batholithic rocks of northern Baja California, Mexico. Bull. Am. Ass. Petrol. Geol. 47, 1054–9.Google Scholar
Wilson, J. J. 1963. Cretaceous stratigraphy of central Andes of Peru. Bull. Am. Ass. Petrol. Geol. 47, 134.Google Scholar
Yoder, H. S., Stewart, D. B. & Smith, J. R. 1957. Ternary feldspars. Carnegie Inst. Wash. Yearbook 56, 206–14.Google Scholar
Yoder, H. S. & Tilley, C. E. 1962. Origin of basalt magmas: an experimental study of natural and synthetic systems. J. Petrology 3, 342532.CrossRefGoogle Scholar