Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:56:20.392Z Has data issue: false hasContentIssue false

Allophanic and ferric root-associated stalactites: biomineralization induced by microbial activity (Galeria da Queimada lava tube, Terceira, Azores)

Published online by Cambridge University Press:  29 September 2014

R. DAZA*
Affiliation:
Museo Nacional de Ciencias Naturales-CSIC, Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain ([email protected])
M. A. BUSTILLO
Affiliation:
Museo Nacional de Ciencias Naturales-CSIC, Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain ([email protected])
*
*Author for correspondence: [email protected]

Abstract

Root-associated stalactites (rootsicles) in Galeria da Queimada lava tube have a mineralogical composition and developmental association with microbes that render them unique. Samples were examined by X-ray diffraction, micro-Raman spectrometry and scanning electron microscopy/X-ray energy-dispersive spectroscopy. Three types of rootsicle were defined: incipient; hard (white and red); and black spongy. The incipient rootsicles still contained rotten organic material and showed the beginning of mineralization by allophane. The white hard and black spongy types were also composed of allophane, while the red hard type was composed of hydrous ferric oxi-hydroxide minerals (HFO). The allophane and HFO in the andisol covering the cave roof precipitated out of the dripwater running along the roots to form the studied rootsicles. All three types of rootsicle showed black layers, coatings, spots or patches composed of manganese oxide minerals and, occasionally, hisingerite (iron (III) phyllosilicate). An alternation of organic precipitation caused by filamentous bacteria and inorganic precipitation (the latter facilitated by pH changes in the dripwater and the cave's temperature) built up both the porous and compact rings observed in the white and red hard rootsicles. The largely straight filaments seen in the porous rings of the white hard rootsicles may be indicative of the previous presence of Leptothrix spp., while the helical morphologies seen in the red hard rootsicles may be indicative of that of Gallionella spp. The manganese oxide minerals detected probably formed via microbial activity. This study reflects the important role of filamentous bacteria in rootsicle formation, independent of their mineralogy.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton, H. A. & Northup, D. E. 2007. Geomicrobiology in cave environments: past, current and future perspectives. Journal of Cave & Karst Studies 69, 163–78.Google Scholar
Beyssac, O., Goffé, B., Petitet, J.-P., Froigneux, E., Moreau, M. & Rouzaud, J.-N. 2003. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy 59, 2267–76.Google Scholar
Borges, P. A. V., Pereira, F. & Silber, A. 1992. Grutas e algares dos Açores. I. Seis novas topografías de tubos de lava fa ilha Terceira. In Espeleológica, O.M.S.d.E. 3º Congresso Nacional de Espeleologia e do 1º encontro Internacional de Vulcanoespeleologia das Ilhas Atlanticas: Lisboa-Portugal, pp. 2–26.Google Scholar
Borges, P. A., Silva, A. & Pereira, F. 1992. Caves and pits from the Azores with some comments on their geological origin, distribution and fauna. In Proceedings of the 6th International Symposium on Vulcanospeleology, Hilo, Hawaii. National Speleological Society, pp. 121–51.Google Scholar
Bosák, P., Bella, P., Cilek, V., Ford, D. C., Hercman, H., Kadlec, J., Osborne, A. & Pruner, P. 2002. Oсhtiná Aragonite Cave (Slovakia): morphology, mineralogy and genesis. Geologica Carpathica 53, 399410.Google Scholar
Boston, P. J., Spilde, M. N., Northup, D. E., Melim, L. A., Soroka, D. S., Kleina, L. G., Lavoie, K. H., Hose, L. D., Mallory, L. M., Dahm, C. N., Crossey, L. J. & Schelble, R. T. 2001. Cave biosignature suites: microbes, minerals, and Mars. Astrobiology 1, 2555.Google Scholar
Buurman, P., Peterse, F. & Almendros Martin, G. 2007. Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican &osol catena. European Journal of Soil Science 58, 1330–47.Google Scholar
Calvert, A. T., Moore, R. B., McGeehin, J. P. & Rodrigues da Silva, A. M. 2006. Volcanic history and 40Ar/39Ar and 14C geochronology of Terceira Island, Azores, Portugal. Journal of Volcanology and Geothermal Research 156, 103–15.Google Scholar
Castaño, R., Redondo Vega, J. & Fernández Martínez, E. 2010. La cueva de Valdelajo (Sahelices de Sabero, León): una pequeña joya geológica en una comarca minera. In Una Visión Multidisciplinar del Patrimonio Geológico y Minero (eds Rábano, P. F. e. I.), pp. 4761. Cuadernos del Museo Geominero. Madrid, Instituto Geológico y Minero de España.Google Scholar
Childs, C. W., Matsue, N. & Yoshinaga, N. 1990. Ferrihydrite in volcanic ash soils of Japan. Soil Science and Plant Nutrition 37, 299311.CrossRefGoogle Scholar
Dahlgren, R. A., Saigusa, M. & Ugolini, F. C. 2004. The nature, properties and management of volcanic soils. Advances in Agronomy 82, 113–82.Google Scholar
Daza, R. & Bustillo, M. A. 2013. Mineralogía de los bioespeleotemas de la “Galeria da Queimada” (Terceira, Azores). Macla 17, 43–4.Google Scholar
De los Ríos, A., Bustillo, M. A., Ascaso, C. & Carvalho, M. R. 2011. Bioconstructions in ochreous speleothems from lava tubes on Terceira Island (Azores). Sedimentary Geology 236, 117–28.Google Scholar
Dias, E., Elias, R. B. & Nunes, V. 2004. Vegetation mapping and nature conservation: a case study in Terceira Island (Azores). Biodiversity and Conservation 13, 1519–39.Google Scholar
Eggleton, R. A. 1987. Noncrystalline Fe-Si-Al-oxyhydroxides. Clays and Clay Minerals 35, 2937.Google Scholar
Forti, P. 2001. Biogenic speleothems: an overview. International Journal of Speleology 30, 3956.Google Scholar
Forti, P. 2005. Genetic processes of cave minerals in volcanic environments: an overview. Journal of Cave and Karst Studies 67, 313.Google Scholar
Fortin, D., Ferris, F. G. & Scott, S. D. 1998. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean. American Mineralogist 83, 1399–408.Google Scholar
França, Z., Cruz, J. V., Nunes, J. C. & Forjaz, V. H. 2003. Geologia dos Açores: uma perspectiva actual. Açoreana 10, 11140.Google Scholar
Gérard, M., Caquineau, S., Pinheiro, J. & Stoops, G. 2007. Weathering and allophane neoformation in soils developed on volcanic ash in the Azores. European Journal of Soil Science 58, 496515.CrossRefGoogle Scholar
Grathoff, G., Peterson, C. & Beckstrand, D. 2003. Coastal dune soils in Oregon, USA, forming allophane, imogolite and gibbsite. In 2001. A Clay Odyssey, pp. 197–204. Proceedings of the 12th International Clay Conference, Bahia Blanca.Google Scholar
Hill, C. A. 1999. Mineralogy of Kartchner Caverns, Arizona. Journal of Caves and Karst Studies 61, 73–8.Google Scholar
Hill, C. A. & Forti, P. 1997. Cave Minerals of the World. Alabama, USA, National Speleological Society, Huntsville, 463 pp.Google Scholar
Jambor, J. L. & Dutrizac, J. E. 1998. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chemical Reviews 98, 2549–86.CrossRefGoogle ScholarPubMed
James, R. E. & Ferris, F. G. 2004. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring. Chemical Geology 212, 301–11.Google Scholar
James, J., Jennings, J. & Dyson, H. 1982. Mineral decoration and weathering of the caves: Wombeyan Caves. Sydney Speleological Society 8, 121–36.Google Scholar
Jasinska, E. J., Knott, B. & McComb, A. J. 1996. Root mats in ground water: a fauna-rich cave habitat. Journal of the North American Benthological Society 15, 508–19.Google Scholar
Jones, B., Renaut, R. & Konhauser, K. 2005. Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand. Sedimentology 52, 1229–52.Google Scholar
Julien, C. M., Massot, M. & Poinsignon, C. 2004. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60, 689700.Google Scholar
Kasama, T. & Murakami, T. 2001. The effect of microorganisms on Fe precipitation rates at neutral pH. Chemical Geology 180, 117–28.Google Scholar
Kawano, M. & Tomita, K. 2002. Microbiotic formation of silicate minerals in the weathering enviroment of a pyroclastic deposit. Clays and Clay Minerals 50, 99110.Google Scholar
Martin, D. E. & Lowe, L. E. 1989. Characterization and classification of root mat horizons in some coastal British Columbia podzols. Canadian Journal of Soil Science 69, 1723.Google Scholar
Minyard, M. L., Bruns, M. A., Martínez, C. E., Liermann, L. J., Buss, H. L. & Brantley, S. L. 2011. Halloysite nanotubes and bacteria at the saprolite–bedrock interface, Rio Icacos Watershed, Puerto Rico. Soil Science of Society America Journal 75, 348–56.Google Scholar
Mironova-Ulmane, N., Kuzmin, A. & Grube, M. 2009. Raman and infrared spectromicroscopy of manganese oxides. Journal of Alloys and Compounds 480, 97–9.Google Scholar
Miyata, N., Tani, Y., Sakata, M. & Iwahori, K. 2007. Microbial manganese oxide formation & interaction with toxic metal ions. Journal of Bioscience and Bioengineering 104, 18.Google Scholar
Northup, D. E., Melim, L. A., Spilde, M. N., Hathaway, J. J. M., Garcia, M. G., Moya, M., Stone, F. D., Boston, P. J., Dapkevicius, M. L. N. E. & Riquelme, C. 2011. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 11, 601–18.Google Scholar
Nunes, J. C. 2000. Notas sobre a geologia da Ilha Terceira. Açoreana 9, 205–15.Google Scholar
Nunes, J. C. 2004. Geologia, vulcanismo e sismologia. In Atlas Básico dos Açores (ed. Forjaz, V. H.). Observatório Vulcanológico e Geotérmico dos Açores, Ponta Delgada.Google Scholar
Nunes, J. C., Garcia, P., Lima, E. A., Costa, M. P. & Pereira, F. 2008. New geological insights for the Azores Islands (Portugal) Lava Caves. XIII International Symposium on Vulcanospeleology, 1–10 September, Korea.Google Scholar
Parfitt, R. L. 2009. Allophane and imogolite: role in soil biogeochemical processes. Clay Minerals 44, 135–55.Google Scholar
Phoenix, V. R., Konhauser, K. O. & Ferris, F. G. 2003. Experimental study of iron and silica immobilization by bacteria in mixed Fe-Si systems: implications for microbial silicification in hot springs. Canadian Journal of Earth Sciences 40, 1669–78.Google Scholar
Pinheiro, J. 2012. Caracterização geral dos solos da ilha Terceira (Açores) que se enquadram na Ordem andisol. In V Congresso Ibérico da Ciência do Solo 2012. Guia de Campo. Excursão técnico-científica. Os Andossolos da ilha Terceira e paisagens associadas, pp. 26–41.Google Scholar
Pinheiro, J., Salguero, M. T. & Rodriguez, A. 2004. Genesis of placic horizons in andisols from Terceira Island Azores, Portugal. Catena 56, 8594.Google Scholar
Rossi, C., Lozano, R. P., Isanta, N. & Hellstrom, J. 2010. Manganese stromatolites in caves: El Soplao (Cantabria, Spain). Geology 38, 1119–22.Google Scholar
Self, S. & Gunn, B. 1976. Petrology, volume and age relations of alkaline and saturated peralkaline volcanics from Terceira, Azores. Contributions to Mineralogy and Petrology 54, 293313.Google Scholar
Taboroši, D., Hirakawa, K. & Stafford, K. 2004. Interactions of plant roots and speleothems. Journal of Subterranean Biology 2, 4351.Google Scholar
Tamas, T. & Ungureanu, R. 2010. Mineralogy of speleothems from four caves in the Purcăreţ-Boiu Mare Plateau and the Baia Mare Depression (NW Romania). Studia Universitatis Babeş-Bolyai, Geologia 55, 43–9.Google Scholar
Tanaka, K., Tani, Y., Takahashi, Y., Tanimizu, M., Suzuki, Y., Kozai, N. & Ohnuki, T. 2010. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21–2. Geochimica et Cosmochimica Acta 74, 5463–77.Google Scholar
Tazaki, K. 2005. Microbial formation of halloysite-like mineral. Clays and Clay Minerals 53, 224–33.Google Scholar
Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R. & Webb, S. M. 2004. Biogenic manganese oxides: properties and mechanisms of formation. Annual Review Earth Planetary Science 32, 287328.Google Scholar
Toner, B., Manceau, A., Webb, S. M. & Sposito, G. 2006. Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochimica et Cosmochimica Acta 70, 2743.Google Scholar
Urrutia, M. M. & Beveridge, T. J. 1995. Formation of short-range ordered aluminosilicates in the presence of a bacterial surface (Bacillus subtilis) and organic ligands. Geoderma 65, 149–65.Google Scholar
Wada, K. 1989. Allophane and imogolite. In Minerals in Soil Environments, 2nd edition (eds Dixon, J. B. and Weed, S. B.), pp. 10511087. Soil Science Society of America, Madison, WI.Google Scholar
Wells, N., Childs, C. W. & Downes, C. J. 1977. Silica Springs, Tongariro National Park, New Zealand-analyses of the spring water and characterisation of the alumino-silicate deposit. Geochimica et Cosmochimica Acta 41, 1497–506.Google Scholar