Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-06T07:37:14.720Z Has data issue: true hasContentIssue false

Age and tectonic setting of the East Taiwan Ophiolite: implications for the growth and development of the South China Sea

Published online by Cambridge University Press:  10 May 2016

ROBERT B.-J. HSIEH
Affiliation:
National Taiwan Normal University, Department of Earth Sciences, 88 Tingzhou Road Section 4, Taipei 11677, Taiwan
J. GREGORY SHELLNUTT*
Affiliation:
National Taiwan Normal University, Department of Earth Sciences, 88 Tingzhou Road Section 4, Taipei 11677, Taiwan
MENG-WAN YEH
Affiliation:
National Taiwan Normal University, Department of Earth Sciences, 88 Tingzhou Road Section 4, Taipei 11677, Taiwan
*
*Author for correspondence: [email protected]

Abstract

The South China Sea is one of the youngest marginal seas and understanding its development is important for reconstructing the tectonic evolution of Southeast Asia. The South China Sea is thought to have been actively spreading between 32 Ma and 15.5 Ma. The East Taiwan Ophiolite (ETO) is one of the few preserved remnants of the South China Sea on land and provides an opportunity to investigate the age and the tectonic setting of the accreted easternmost portion. The age of the ETO was obtained by LA-ICP-MS in situ zircon U–Pb methods and yielded a mean 206Pb–238U age of 14.1±0.4 Ma, suggesting that magmatic activity in the South China Sea continued ~1.5 million years beyond current estimates. Cr-spinel data (Cr no. = 42–54) and depleted εNd(t) values (i.e. +9.1 to +11.4) from the serpentinized peridotites and gabbros and the light rare earth element depleted patterns (La/Yb ≤ 1) of the ETO mafic rocks are consistent with a ridge setting (i.e. N-MORB composition). Therefore, the ETO likely represents the terminal portion of the South China Sea spreading ridge that was sheared off during the northward translation of the Luzon arc.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.Google Scholar
Andersen, T. 2008. ComPbCorr-Software for common lead correction of U-Th-Pb analyses that do not report 204Pb. In Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P.), pp. 312–4. Mineralogical Association of Canada Short Course Series 40.Google Scholar
Anonymous. 1972. Penrose Field Conference on Ophiolites. Geotimes 17, 24–5.Google Scholar
Arai, S. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine 56, 173–84.CrossRefGoogle Scholar
Arai, S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology 113, 191204.Google Scholar
Arfai, J., Franke, D., Gaedicke, C., Lutz, R., Schnabel, M., Ladage, S., Berglar, K., Aurelio, M., Montano, J. & Pellejera, N. 2011. Geological evolution of the West Luzon basin (South China Sea, Philippines). Marine Geophysical Research 32, 349–62.Google Scholar
Barckhausen, U., Engels, M., Franke, D., Ladage, S. & Pubellier, M. 2014. Evolution of the South China Sea: revised ages for breakup and seafloor spreading. Marine and Petroleum Geology 58, 599611.CrossRefGoogle Scholar
Barckhausen, U., Engels, M., Franke, D., Ladage, S. & Pubellier, M. 2015. Reply to Chang et al. 2014. Evolution of the South China Sea: revised ages for breakup and seafloor spreading. Marine and Petroleum Geology 59, 679–81.Google Scholar
Barckhausen, U. & Roeser, H. A. 2004. Seafloor spreading anomalies in the South China Sea revisited. In Continent-Ocean Interactions Within East Asian Marginal Seas (eds Clift, P., Kuhnt, W., Wang, P., & Hayes, D. E.), pp. 121–5. American Geophysical Union, Geophysical Monograph vol. 149. Washington, DC, USA.Google Scholar
Ben-Avraham, Z. & Uyeda, S. 1973. The evolution of the China Basin and the Mesozoic paleogeography of Borneo. Earth and Planetary Science Letters 18, 365–76.Google Scholar
Bodinier, J. L. & Godard, M. 2003. Orogenic, ophiolitic, and abyssal peridotites. In Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.), pp. 103–70. Amsterdam: Elsevier.Google Scholar
Bonatti, E. & Michael, P. J. 1989. Mantle peridotite from continental rifts to ocean basins to subduction zones. Earth and Planetary Science Letters 91, 297311.Google Scholar
Bowin, C., Lu, R. S., Lee, C. S. & Schouten, H. 1978. Plate convergence and accretion in the Taiwan-Luzon region. American Association of Petroleum Geologists Bulletin 62, 1645–72.Google Scholar
Briais, A., Patriat, P. & Tapponnier, P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research 98, 6299–328.CrossRefGoogle Scholar
Chai, B. H. T. 1972. Structure and tectonic evolution of Taiwan. American Journal of Science 272, 389422.Google Scholar
Chang, J. H., Lee, T. Y., Hsu, H. H. & Liu, C. S. 2015. Comment on Barckhausen et al. 2014 – Evolution of the South China Sea: revised ages for breakup and seafloor spreading. Marine and Petroleum Geology 59, 676–8.Google Scholar
Chen, W. S., Huang, M. T. & Liu, T. K. 1991. Neotectonic significance of the Chimei Fault in the Coastal Range, eastern Taiwan. Proceedings of the Geological Society of China 34, 4356.Google Scholar
Chiu, H.-Y., Chung, S.-L., Wu, F.-Y., Liu, D., Liang, Y.-H., Lin, I. J., Iizuka, Y., Xie, L.-W., Wang, Y. & Chu, M.-F. 2009. Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics 477, 319.Google Scholar
Chung, S. L., Cheng, H., Jahn, B. M., O'Reilly, S. Y. & Zhu, B. 1997. Major and trace element, and Sr–Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening. Lithos 40, 203–20.CrossRefGoogle Scholar
Chung, S. L. & Sun, S. S. 1992. A new genetic model for the East Taiwan Ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth and Planetary Science Letters 109, 133–45.CrossRefGoogle Scholar
Dick, H. J. B. & Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 5476.CrossRefGoogle Scholar
Dilek, Y. 2003. Ophiolite concept and its evolution. In Ophiolite Concept and the Evolution of Geological Thought (eds Dilek, Y. & Newcomb, S.), pp. 116. Geological Society of America, Special Paper no. 373.CrossRefGoogle Scholar
Dilek, Y. & Furnes, H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin 123, 387411.Google Scholar
Dilek, Y. & Furnes, H. 2014. Ophiolites and their origins. Elements 10, 93100.Google Scholar
Flower, M., Tamaki, K. & Hoang, N. 1998. Mantle extrusion: a model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the western Pacific. In Mantle Dynamics and Plate Interactions in East Asia (eds Flower, M. F. J., Chung, S. L, Lo, C. H. & Lee, T. Y.), pp. 6788. American Geophysical Union, Geodynamic Series 27.Google Scholar
Franke, D., Savva, D., Pubellier, M., Steuer, S., Mouly, B., Auxietre, J.-L., Meresse, F. & Charmot-Rooke, N. 2014. The final rifting evolution in the South China Sea. Marine and Petroleum Geology 58, 704–20.Google Scholar
Greenough, J. D., Fryer, B. J. & Robinson, P. T. 1990. Geochemical effects of alteration on mafic rocks from Indian Ocean site 706. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 115 (eds Duncan, R. A., Backman, J. & Peterson, L. C., Baker, P. A., Baxter, A. N., Boersma, A., Cullen, J. L., Droxler, A. W., Fisk, M. R., Greenough, J. D., Hargraves, R. B., Hempel, P., Hobart, M. A., Hurley, M. T., Johnson, D. A., Macdonald, A. H., Mikkelsen, N., Okada, H., Rio, D., Robinson, S. G., Schneider, D., Swart, P. K., Tatsumi, Y., Vandamme, D., Vilks, G. & Vincent, E.), pp. 8592. College Station, Texas.Google Scholar
Gruau, G., Bernard-Griffiths, J. & Lecuyer, C. 1998. The origin of U-Shaped rare earth patterns in ophiolite peridotites: assessing the role of secondary alteration and melt/rock reaction. Geochimica et Cosmochimica Acta 62, 3545–60.Google Scholar
Hall, R., Ali, J. R., Anderson, C. D. & Baker, S. J. 1995. Origin and motion history of the Philippine Sea Plate. Tectonophysics 251, 229–50.Google Scholar
Hebert, R., Hout, F., Wang, C. S. & Liu, Z. F. 2003. Yarlung Zanboo ophiolites (southern Tibet) revisited: geodynamic implications from the mineral record. In Ophiolites in Earth History (eds Dilek, Y. & Robinson, P. T.), pp. 165–90. Geological Society of London, Special Publication no. 218.Google Scholar
Hsu, S. K., Yeh, Y. C., Doo, W. B. & Tsai, C. H. 2004. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researchers 25, 2944.Google Scholar
Huang, T. C., Chen, M. P. & Chi, W. R. 1979. Calcareous nanofossils from the red shale of the ophiolite-mélange complex, eastern Taiwan. Memoir of the Geological Society of China 3, 131–8.Google Scholar
Huang, C. Y., Yuan, P. B. & Tsao, S. J. 2006, Temporal and spatial records of active arc-continent collision in Taiwan: a synthesis. Geological Society of America Bulletin 118, 274–88.CrossRefGoogle Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Jahn, B. M. 1986. Mid-ocean ridge or marginal basin origin of the East Taiwan Ophiolite: chemical and isotopic evidence. Contributions to Mineralogy and Petrology 92, 194206.Google Scholar
Kamenetsky, V. S., Crawford, A. J. & Meffre, S. 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42, 655–71.Google Scholar
Kamenetsky, V. S., Everard, J. L., Crawford, A. J., Varne, R., Eggins, S. M. & Lanyon, R. 2000. Enriched end-member of primitive MORB melts: petrology and geochemistry of glass from Macquarie Island (SW Pacific). Journal of Petrology 41, 411–30.Google Scholar
Kao, H., Shen, S. J. & Ma, K. F. 1998. Transition from oblique subduction to collision: earthquakes in the southernmost Ryukyu Arc – Taiwan region. Journal of Geophysical Research 103, 7211–29.Google Scholar
Lee, T. Y. & Lawver, L. A. 1995. Cenozoic plate reconstruction of Southeast Asia, Tectonophysics 251, 85138.Google Scholar
Lee, C. T. & Wang, Y. 1987. Paleostress change due to the Pliocene–Quaternary arc-continent collision. Memoir of the Geological Society of China 9, 6386.Google Scholar
Li, C. F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., Zhao, X., Liu, Q., Kulhanek, D. K., Wang, J., Song, T., Zhao, J., Qiu, N., Guan, Y., Zhou, Z., Williams, T., Bao, R., Briais, A., Brown, E. A., Chen, Y., Clift, P. D., Colwell, F. S., Dadd, K. A., Ding, W., Almeida, I. H., Huang, X.-L., Hyun, S., Jiang, T., Koppers, A. A. P., Li, Q., Liu, C., Liu, Z., Nagai, R. H., Peleo-Alampay, A., Su, X., Tejada, M. L. G., Trinh, H. S., Yeh, Y.-C., Zhang, C., Zhang, F. & Zhang, G.-L. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems 15, 4958–83.CrossRefGoogle Scholar
Liou, J. G. 1979. Zeolite facies metamorphism of basaltic rocks from the East Taiwan Ophiolite. American Mineralogist 64, 114.Google Scholar
Liou, J. G. & Ernst, W. G. 1979. Oceanic ridge metamorphism of the East Taiwan Ophiolite. Contributions to Mineralogy and Petrology 68, 335–48.CrossRefGoogle Scholar
Liou, J. G., Lan, C. Y., Suppe, J. & Ernst, W. G. 1977. The East Taiwan Ophiolite – its occurrence, petrology, metamorphism and tectonic setting, Taipei, Taiwan. Taipei: Mining Research and Service Organization Industrial Technology Research Institute.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot/Ex, Version 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication vol. 4.Google Scholar
McDonough, W. F. & Frey, F. A. 1989. Rare earth elements in upper mantle rocks. In Geochemistry and Mineralogy of Rare Earth Elements (eds Lipin, B. R. & McKay, G. A.), pp. 99145. The Mineralogical Society of America, Reviews in Mineralogy 21.CrossRefGoogle Scholar
Milsom, J. 2003. Forearc ophiolites: a view from the western Pacific. In Ophiolites in Earth History (eds Dilek, Y. & Robinson, P. T.), pp. 507–15. Geological Society of London, Special Publication no. 218.Google Scholar
Mullen, E. D. 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Sciences Letters 62, 5362.Google Scholar
Pagé, B. M. & Suppe, J. 1981. The Pliocene Lichi mélange of Taiwan: its plate-tectonic and olistostromal origin. American Journal of Science 281, 193227.Google Scholar
Pearce, J. A. 2003. Supra-subduction zone ophiolites: the search for modern analogues. In Ophiolite Concept and the Evolution of Geological Thought (eds Dilek Y, Y. & Newcomb, S.), pp. 269–93. Geological Society of America Special Paper no. 373.Google Scholar
Pearce, J. A. 2014. Immobile element fingerprinting of ophiolites. Elements 10, 101–8.Google Scholar
Pearce, J. A., Lippard, S. J. & Roberts, S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In Geology of Marginal Basins (eds Kokelaar, P. & Howells, M.), pp. 7794. Geological Society of London, Special Publication no. 16.Google Scholar
Peters, T. & Mercolli, I. 1998. Extremely thin oceanic crust in the proto-Indian Ocean: evidence from the Masirah ophiolite, Sultanate of Oman. Journal of Geophysical Research 103, 677–89.Google Scholar
Prinzhofer, A. & Allegre, C. J. 1985. Residual peridotites and the mechanisms of partial melting. Earth and Planetary Science Letters 74, 251–65.Google Scholar
Pubellier, M., Garcia, F., Loevenbruck, A. & Chorowicz, J. 2000. Recent deformation at the junction between the north Luzon block and the central Philippines from ERS-1 images. Island Arc 9, 598610.Google Scholar
Stern, R. J. & Bloomer, S. H. 1992. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geological Society of America Bulletin 104, 1621–36.2.3.CO;2>CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Suppe, J. 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir of the Geological Society of China 6, 2133.Google Scholar
Suppe, J. & Liou, J. G. 1979. Tectonics of the Lichi Mélange and East Taiwan Ophiolite. Memoir of the Geological Society of China 3, 147–53.Google Scholar
Suppe, J., Liou, J. G. & Ernst, W. G. 1981. Paleogeographic origins of the Miocene East Taiwan Ophiolite. American Journal of Science 281, 228–46.Google Scholar
Tapponnier, P., Lacassin, R., Leloup, P. H., Schärer, U., Zhong, D. L., Wu, H. W., Liu, X. H., Ji, S. C., Zhang, L. S. & Zhong, J. Y. 1990. The Ailao Shan-Red River metamorphic belt: tertiary left-lateral shear between Indochina and South China. Nature 343, 431–7.Google Scholar
Taylor, B. & Hayes, D. E. 1980. The tectonic evolution of the South China Basin. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands (ed. Hayes, D. E.), pp. 89104. American Geophysical Union, Geophysical Monograph vol. 23. Washington, DC, USA.Google Scholar
Taylor, B. & Hayes, D. E. 1983. Origin and history of the South China Sea basin. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2 (ed. Hayes, D. E.), pp. 2356. American Geophysical Union, Geophysical Monograph vol. 27. Washington, DC, USA.Google Scholar
Teng, L. S. 1987. Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Acta Geologica Taiwanica Science Reports of National Taiwan University 25, 205–24.Google Scholar
Teng, L. S. 1990. Geotectonic evolution of the late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 5776.Google Scholar
Teng, L. S. 1996. Extensional collapse of the northern Taiwan mountain belt. Geology 24, 949–52.Google Scholar
Teng, L. S. 2007. Quaternary Tectonics of Taiwan. Central Geological Survey Special Publication 18, 24 pp.Google Scholar
Teng, L. S. & Lin, A. T. 2004. Cenozoic tectonics of the China continental margin: insights from Taiwan. In Aspects of the Tectonic Evolution of China (eds Malpas, J., Fletcher, C. J. N., Ali, J. & Aitchison, J. C.), pp. 313–32. Geological Society of London, Special Publication no. 226.Google Scholar
Tsai, Y. B. 1986. Seismotectonics of Taiwan. Tectonophysics 125, 1737.Google Scholar
Wakabayashi, J. & Dilek, Y. 2003. What constitutes ‘emplacement’ of an ophiolite?: mechanisms and relationship to subduction initiation and formation of metamorphic soles. In Ophiolites in Earth History (eds Dilek, Y. & Robinson, P. T.), pp. 427–47. Geological Society of London, Special Publication no. 218.Google Scholar
Whattam, S. A. & Stern, R. J. 2011. The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology 162, 1031–45.Google Scholar
Xia, B., Cui, X. J., Zhang, Y. H., Liu, B. M., Wang, R. & Yan, Y. 2005. Dynamic factors for the opening of South China Sea and a numerical modeling discussion. Geotectonica et Metallogenia 29, 328–33.Google Scholar
Yumul, G. P. Jr., Dimalanta, C. B., Tamayo, R. A. Jr. & Maury, R. C. 2003. Collision, subduction and accretion events in the Philippines: a synthesis. Island Arc 12, 7791.Google Scholar
Zhang, J., Xiong, L. P. & Wang, J. Y. 2001. Characteristics and mechanism of geodynamic evolution of the South China Sea. Chinese Journal of Geophysics 44, 602–10.Google Scholar
Zhu, B. Q., Wang, H. F., Chen, Y. W., Chang, X. Y., Hu, Y. G. & Xie, J. 2004. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia. Journal of Asian Earth Sciences 24, 163–75.Google Scholar
Supplementary material: File

Hsieh supplementary material

Table S1

Download Hsieh supplementary material(File)
File 66.4 KB