Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T01:32:03.488Z Has data issue: false hasContentIssue false

Age and significance of radiolarian sediments within basic extrusives of the marginal basin Guevgueli Ophiolite (northern Greece)

Published online by Cambridge University Press:  01 May 2009

Taniel Danelian
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK
Alastair H. F. Robertson
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK
Sarantis Dimitriadis
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

Abstract

Well-preserved Radiolaria have been discovered in calcareous silt turbidites and mudstones intercalated with basic extrusives of the Guevgueli Ophiolite, northern Greece. The mudstones contain terrigenous silt, probably derived from adjacent continental basement of the Serbo-Macedonian and/or Paikon units. Volcanic quartz and rare volcanic glass were probably derived from an active continental margin arc (Paikon volcanic arc) to the west. The radiolarian sediments were deposited within fault-controlled hollows in the ophiolitic extrusives, and then covered by massive and pillowed extrusives. The radiolarian assemblage is indicative of an early Late Jurassic (Oxfordian) age, which therefore dates the genesis of the Guevgueli Ophiolite. Our data are consistent with the age of the intrusive Late Jurassic Fanos Granite, believed to be contemporaneous with the Guevgueli Ophiolite. In general, the Guevgueli and related ophiolites of northern Greece are thought to have formed within a transtensional intra-continental marginal basin, generated in response to oblique eastward subduction of older Tethyan oceanic crust (Almopias ocean).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aita, Y., 1987. Middle Jurassic to Lower Cretaceous Radiolarian Biostratigraphy of Shikoku with reference to selected sections in Lombardy Basin and Sicily. Tohoku University, Scientific Reports, Series 2, Sendai 58(1), 91 pp., 14 pls.Google Scholar
Baroz, F., Bébien, J., & Ikenne, M., 1987. An example of high-pressure low-temperature metamorphic rocks from an island-arc: the Paikon Series (Innermost Hellenides, Greece). Journal of Metamorphic Geology 5, 509–27.CrossRefGoogle Scholar
Baumgartner, P. O., 1980. Late Jurassic Hagiastridae and Patulibracchiidae (Radiolaria) from the Argolis Peninsula (Peloponnesus, Greece). Micropaleontology 26 (3), 274322.CrossRefGoogle Scholar
Baumgartner, P. O., 1984. Middle Jurassic—Early Cretaceous low-latitude radiolarian zonation based on Unitary Associations and age of Tethyan radiolarites. Eclogae geologicae Helvetiae 77(3), 729837.Google Scholar
Baumgartner, P. O., 1987. Age and genesis of Tethyan Jurassic Radiolarites. Eclogae geologicae Helvetiae 80(3), 831–79.Google Scholar
Bébien, J., 1982. L'association ignée de Guévguéli (Macédoine grecque). Expression d'un magmatisme ophiolitique dans une déchirure continentale. (D.S. Thesis), Nancy I University, France, 470 pp.Google Scholar
Bébien, J., Baroz, F., Capedri, S., & Venturelli, G., 1987. Magmatismes basiques associés à l'ouverture d'un bassin marginal dans les Hellenides internes au Jurassique. Ofioliti 12,5370.Google Scholar
Bébien, J., & Mercier, J.-L., 1977. Le cadre structural de l'association ophiolites—migmatites—granites de Guévguéli (Macédoine, Grèce): une croûte de bassin inter-arc? Bulletin de la Société géologique de France 19, 927–34.CrossRefGoogle Scholar
Bébien, J., Dubois, R., & Gauthier, A., 1986. Example of ensialic ophiolites emplaced in a wrench zone: Innermost Hellenic ophiolite belt (Greek Macedonia). Geology 14, 1016–19.2.0.CO;2>CrossRefGoogle Scholar
Bébien, J., Platevoet, B., & Mercier, J.-L., In press. Geodynamic significance of the Paikon Massif in the Hellenides. Contribution of the volcanic rock studies. Bulletin of the Geological Society of Greece 29.Google Scholar
Borsi, S., Ferrara, G., Mercier, J., & Tongiorgi, E., 1966. Age stratigraphique et radiométrique jurassique supérieur d'un granite des zones internes des Hellénides (granite de Fanos, Macédoine, Grèce). Revue Géographie physique Géologie dynamique 8, 279–87.Google Scholar
Boyle, J. F., & Robertson, A. H. F., 1984. Evolving metallogenesis at the Troodos spreading axis. In Ophiolites and Oceanic Lithosphere (eds Gass, I. G., Lippard, S. J. and Shelton, A. W.), pp. 169–81. Geological Society of London, Special Publication no. 13.Google Scholar
Brown, S. A. M., & Robertson, A. H. F., 1995. Role of the Paikon unit in the tectonic evolution of Neotethys, NE Greece. European Union of Geosciences, EUG 8, April 1995, Strasbourg, Abstract volume, 180.Google Scholar
Brown, S. A. M., & Robertson, A. H. F., In press. New structural evidence from the Mesozoic—Early Tertiary Paikon unit, north-eastern Greece. Bulletin of the Geological Society of Greece 29.Google Scholar
Chiari, M., Marcucci, M., & Prela, M., 1994. Mirdita ophiolites project: 2 radiolarian assemblages in the cherts at Fushe Arrez and Shebaj (Mirdita area, Albania). Ofioliti 19,313–18.Google Scholar
De Wever, P., 1989. Radiolarians, Radiolarites, and Mesozoic Paleogeography of the Circum-Mediterranean Alpine Belts. In Siliceous Deposits of the Tethys and Pacific Regions (eds Hein, J. R. and Obradovic, J.), pp. 3149. Springer-Verlag.CrossRefGoogle Scholar
Dimitriadis, S., & Asvesta, A., 1993. Sedimentation and magmatism related to the Triassic rifting and later events in the Vardar-Axios zone. Bulletin of the Geological Society of Greece 28, 149–68.Google Scholar
Dumitrica, P., 1970. Cryptocephalic and cryptothoracic Nassellaria in some Mesozoic deposits of Romania. Revue roumaine de Géologie, Géophysique et Géographie, Série de Géologie 14, 45124.Google Scholar
Dumitrica, P., & Mello, J., 1982. On the age of the Meliata Group and the Silica Nappe radiolarites (localities Drzkovce and Bohunovo, Slovak Karst, CSSR). Geologicke prace, 77, 1728, pls 1–4.Google Scholar
Ferrière, J., & Stais, A., 1995. Nouvelle interprétation de la suture téthysienne vardarienne d' après l' analyse des séries de Péonias (Vardar oriental, Hellénides internes). Bulletin de la Société géologique de France 166, 327–39.CrossRefGoogle Scholar
Fischli, H., 1916. Beitrag zur Kenntnis der fossilen Radiolarien in der Riginagelfluh. Mitteilungen der Naturwissenschafilichen Gesellschaft in Winterthur 11, 44–7.Google Scholar
Godfriaux, I., & Ricou, L.-E., 1991. Le Païkon, une fenêtre tectonique dans les Hellénides Internes (Macédoine, Grèce). Comptes Rendues de l' Académie des Sciences (Paris) 313, 1479–84.Google Scholar
Gorican, S., 1994. Jurassic and Cretaceous radiolarian biostratigraphy and sedimentary evolution of the Budva Zone (Dinarides, Montenegro). Mémoires de Géologie 18, 177 pp.Google Scholar
Haenel-Remy, S., & Bébien, J., 1985. The Oreokastro Ophiolite (Greek Macedonia): an important component of the innermost Hellenic Ophiolite belt. Ofioliti 10, 279–96.Google Scholar
Haenel-Remy, S., & Bébien, J., 1987. Basaltes et Dolerites riches en Magnesium dans l'association ignée de Guevgueli (Macédoine Grecque): les témoins d'une évolution depuis des tholeiites abyssales jusqu' à des basaltes continentaux? Ofioliti 12, 91106.Google Scholar
Hallam, A., Hancock, J. M., Labrecque, J. L., Lowrie, W., & Channell, J. E. T., 1985. Jurassic to Paleogene: Part I — Jurassic and Cretaceous geochronology and Jurassic to Paleogene magnetostratigraphy. In The Chronology of the Geological Record (ed. Snelling, N. J.), pp. 118–40. The Geological Society, Memoir no. 10.Google Scholar
Haq, B. U., Hardenbol, J., & Vail, P. R., 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235, 1156–67.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. A., Smith, A. G., & Smith, D. G., 1990. A geologic time scale 1989. Cambridge University Press, 263 pp.Google Scholar
I.G.C.P. Project 195 ‘Ophiolites and lithosphere of marginal seas’ Working Group. 1983. Preliminary report on the field excursion to Vourinos—Guevgueli ophiolites, Greece June 1983. Ofioliti 8, 303–6.Google Scholar
Ivanov, T., Misar, Z., Bowes, D. R., Dudek, A., Dumurdzanov, N., Jaros, J., Jelinek, E., & Pacesova, M., 1987. The Demir Kapija—Gevgelija ophiolite massif, Macedonia, Yugoslavia. Ofioliti 12, 457–78.Google Scholar
Jones, G., De Wever, P., & Robertson, A. H. F., 1992. Significance of radiolarian age data to the Mesozoic tectonic and sedimentary evolution of the northern Pindos Mountains, Greece. Geological Magazine 129, 385400.CrossRefGoogle Scholar
Karrer, F., 1867. Über einige Foraminiferen aus dem weissen Jura von St. Veit bei Wien. Sitzungberichte der Kaiserliche Akademie der Wissenschaften in Wien, mathematisch—naturwissenschaftlichen Classe 55(1), 364–68.Google Scholar
Kellici, I., De Wever, P., & Kodra, A., 1994. Radiolaires mésozoiques du massif ophiolitique de Mirdita, Albanie. Paléontologie et stratigraphie. Revue de Micropaléontologie 37, 209–22.Google Scholar
Marakis, G., 1970. Geochronology studies of some granites from Macedonia. Annales Géologiques des Pays Helléniques 21, 121–52.Google Scholar
Marcoux, J., 1970. Age Camien de termes effusifs du cortège ophiolitique des nappes d' Antalya (Taurus lycien occidental. Turquie). Comptes Rendues de l' Académie des Sciences (Paris) 271, 285–7.Google Scholar
Matsuoka, A., 1992. Jurassic and Early Cretaceous Radiolarians from Leg 129, Site 800 and 801, Western Pacific Ocean. Proceedings of the Ocean Drilling Project, Scientific Results 129, 203–20.Google Scholar
Matsuoka, A., & Yao, A., 1986. A newly proposed radiolarian zonation for the Jurassic of Japan. Marine Micropaleontology 11, 91105.CrossRefGoogle Scholar
Mercier, J., 1968. Etude géologique des zones internes des Hellénides en Macédoine centrale (Grèce). Annales Géologiques des Pays Helléniques 20, 1596.Google Scholar
Mercier, J.-L., Vergely, P., & Bébien, J., 1975. Les ophiolites helléniques “obductées” au Jurassique supérieur sont-elles les vestiges d' un Océan téthysien ou d'une mer marginale péri-européenne? Comptes Rendues sommaires de la Société géologique de France 17 (suppl.), 108–11.Google Scholar
Mizutani, S., 1981. A Jurassic formation in the Hida-Kanayama Area, Central Japan. Bulletin of the Mizunami Fossil Museum 8, 147–90.Google Scholar
Mizutani, S., & Kido, S., 1983. Radiolarians in Middle Jurassic siliceous shale from Kamiaso, Gifu Prefecture, Central Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 132, 253–62.Google Scholar
Mussallam, K., 1991. Geology, Geochemistry, and the Evolution of an Oceanic Crustal Rift at Sithonia, NE Greece, In Ophiolite Genesis and Evolution of the Oceanic Lithosphere (eds Peters, T., Nicolas, A., and Coleman, R. G.), pp. 685704. London: Kluwer Academic Publishers.CrossRefGoogle Scholar
Nisbet, E. G., & Price, I., 1974. Siliceous turbidites: bedded cherts as redeposited ocean ridge-derived sediments. In Pelagic Sediments on Land and under the Sea (eds Hsü, K. J. and Jenkyns, H. C.), pp. 351–66. International Association of Sedimentologists Special Publication no. 1. Oxford: Blackwell Scientific Publications Ltd.Google Scholar
Odin, G. S., 1988. The Jurassic Numerical Time Scale in 1988. In Echèlle numérique du Phanérozoïque (ed. Odin, G. S.), pp. 3849. Bulletin de Liaison Information I.G.C.P. Project 196, offset Paris 7.Google Scholar
O'Dogherty, L., Sandoval, J., Martin-Algarra, A., & Baumgartner, P. O., 1989. Las facias con radiolarios del Jurasico subbetico (Cordillera Betica, sur de Espana). Revista Societa Mexicana Paleontologia 2, 70–7.Google Scholar
Pessagno, E. A. Jr, 1977. Upper Jurassic Radiolaria and radiolarian biostratigraphy of the California Coast Ranges. Micropaleontology 23, 56113.CrossRefGoogle Scholar
Pessagno, E. A. Jr, Blome, C. D., Meyerhoff, Hull D., & Six, W. M., 1993. Jurassic Radiolaria from the Josephine ophiolite and overlying strata, Smith River subterrane (Klamath Mountains), northwestern California and southwestern Oregon. Micropaleontology 39, 93166.Google Scholar
Riedel, W. R., & Sanfilippo, A., 1974. Radiolaria from the southern Indian Ocean, DSDP Leg 26. Initial Reports of the Deep Sea Drilling Project 26, 771814.Google Scholar
Robertson, A. H. F., 1986. Geochemistry and tectonic implications of metalliferous and volcaniclastic sedimentary rocks associated with Late Cretaceous ophiolitic extrusives in the Hatay area, Southern Turkey. Ofioliti 11, 121–40.Google Scholar
Robertson, A. H. E., Clift, P. D., Degnan, P. J., & Jones, G., 1991. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 289343.CrossRefGoogle Scholar
Robertson, A. H. E., Dixon, J. E., Brown, S., Collins, A., Morris, A., Pickett, E., Sharp, I., & Ustaomer, T., 1996. Alternative tectonic models for the Late Palaeozoic—Early Tertiary development of Tethys in the Eastern Mediterranean region. In Palaeomagnetism of the Mediterranean region (eds Morris, A. and Tarling, D.), pp. 239–63. Special Publication of the Geological Society of London no. 105.Google Scholar
Robertson, A. H. F., & Woodcock, N. H., 1979. The Mamonia Complex, southwest Cyprus: the evolution and emplacement of a Mesozoic continental margin. Geological Society of America Bulletin 90, 651–65.2.0.CO;2>CrossRefGoogle Scholar
Rüst, D., 1885. Beiträge zur Kenntniss der Fossilen Radiolarien aus Gesteinen des Jura und der Kreide. Palaeontographica 45, 167.Google Scholar
Smith, A. G., 1993. Tectonic significance of the Hellenic— Dinaric ophiolites. In Magmatic Processes and Plate Tectonics (eds Prichard, H. M., Alabaster, T., Harris, N.B. W. and Neary, C. R.), pp. 213–44. Special Publication of the Geological Society of London no. 76.Google Scholar
Spray, J. G., Bébien, J., Rex, D. C., & Roddick, J. C., 1984. Age constraints on the igneous and metamorphic evolution of the Hellenic—Dinaric ophiolites. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 619–27. Geological Society of London, Special Publication no. 17.Google Scholar
Stais, A., 1993. Evolution géodynamique des bassins mésozoïques vardariens: domaines de Péonias et d' Almopias (Hellénides internes, Macédoine centrale, Grèce). Doctorat de l' Université de Lille (published Ph.D. thesis), 247 pp.Google Scholar
Steiger, R. H., & Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Van Hinte, J. E., 1976. A Jurassic Time Scale. American Association of Petroleum Geologists Bulletin 60, 489–97.Google Scholar
Wakita, K., 1988. Early Cretaceous mélange in the Hid-Kanayama area, central Japan. Bulletin of the Geological Survey of Japan 39, 367421.Google Scholar
Westermann, G., 1984. Gauging the Duration of Stages: A New Approach for the Jurassic. Episodes 7, 26–8.CrossRefGoogle Scholar
Widz, D., 1991. Les radiolaires du Jurassique supérieur des radiolarites de la Zone des Klippes de Pieniny (Carpathes occidentales, Pologne). Revue de Micropaléontologie 34, 231–60.Google Scholar
Yao, A., 1984. Subdivision of the Mesozoic complex in Kii-Yura area, southwest Japan and its bearing on the Mesozoic basin development in the southern Chichibu terrane. Osaka City University, Journal ofGeosciences 27, 41103.Google Scholar
Yao, A., Matsuoka, A., & Nakatani, T., 1982. Triassic and Jurassic radiolarian assemblages in southwest Japan. News of Osaka Micropaleontologists, Special volume 5, 2743.Google Scholar
Zachariadou, S., & Dimitriadis, S., 1995. Aspects of the tectono-magmatic evolution of the Late Jurassic Guevgueli Complex, Macedonia, Greece. Special Publications of the Geological Society of Greece 4, 143–7.Google Scholar
Zachariadou, S., & Dimitriadis, S., In press. Crustal extension and partial melting possibly related to the opening of a marginal basin. The pelitic migmatites of Piyi and Karathodoro, Guevgueli Complex, Macedonia, Greece. Bulletin of the Geological Society of Greece 29.Google Scholar