Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T00:45:37.320Z Has data issue: false hasContentIssue false

Zircon geochronology and Hf isotopic study from the Leo Pargil Dome, India: implications for the palaeogeographic reconstruction and tectonic evolution of a Himalayan gneiss dome

Published online by Cambridge University Press:  11 July 2022

Shashi Ranjan Rai
Affiliation:
Wadia Institute of Himalayan Geology, Dehra Dun, India Department of Earth Sciences, Indian Institute of Technology, Roorkee, India
Himanshu K. Sachan*
Affiliation:
Wadia Institute of Himalayan Geology, Dehra Dun, India
Christopher J. Spencer
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario, Canada
Aditya Kharya
Affiliation:
Wadia Institute of Himalayan Geology, Dehra Dun, India
Saurabh Singhal
Affiliation:
Wadia Institute of Himalayan Geology, Dehra Dun, India
Arun Kumar Ojha
Affiliation:
National Geophysical Research Institute, Hyderabad, India
Pallavi Chattopadhaya
Affiliation:
Department of Earth Sciences, Indian Institute of Technology, Roorkee, India
Pitambar Pati
Affiliation:
Department of Earth Sciences, Indian Institute of Technology, Roorkee, India
*
Author for correspondence: H. K. Sachan, Email: [email protected]

Abstract

U–Pb geochronology, Hf isotopes and trace-element chemistry of zircon grains from migmatite of the upper Sutlej valley (Leo Pargil), Northwest Himalaya, reveal a protracted geological evolution and constrain anatexis and tectonothermal processes in response to Himalayan orogenesis. U–Pb geochronology and ϵHf record separate clusters of ages on the concordia plots in the migmatite (1050–950 Ma, 850–790 Ma and 650–500 Ma). The 1050–950 Ma zircon population supports a provenance from magmatic units related to the assembly of Rodinia. A minor amount of Palaeoproterozoic grains were likely derived from the Indian craton. The potential source rock of the 930–800 Ma detrital zircons may be granitoid present in Greater Himalayan rocks themselves and the Aravalli Range, which has 870–800 Ma granitic rocks. The arc-type basement within the Himalayan–Tibet orogen recorded (900–600 Ma) igneous activity, which may depict a northeasterly extension of juvenile terranes in the Arabian–Nubian Shield. The granitoid of 800 Ma may be a potential source for 790 Ma detrital zircons owing to scatter in 206/238 dates. The 650–500 Ma zircon population suggests their derivation from the East African Orogen and Ross–Delamerian Orogen of Gondwana. The Cambrian–Ordovician magmatism during the Bhimphedian Orogeny and observed late Neoproterozoic to Ordovician detrital zircons have been derived to some extent from Greater Himalayan magmatic sources. We found no detrital zircon grains that cannot be explained as coming from local sources. One sample yielded a discordia lower intercept age of 15.6 ± 2.2 Ma, the age of melt crystallization.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, T, Harris, N, Bickle, M, Chapman, H, Bunbury, J and Prince, C (2000) Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Geological Society of America Bulletin 112, 46777.2.0.CO;2>CrossRefGoogle Scholar
Ali, KA, Jeon, H, Andresen, A, Li, SQ, Harbi, HM and Hegner, E (2014) U–Pb zircon geochronology and Nd–Hf–O isotopic systematics of the Neoproterozoic Hadb adh Dayheen ring complex, Central Arabian Shield, Saudi Arabia. Lithos 206–207, 348–60. doi: 10.1016/j.lithos.2014.07.030.CrossRefGoogle Scholar
Ali, KA, Zoheir, BA, Stern, RJ, Andresen, A, Whitehouse, MJ and Bishara, WW (2016) Lu–Hf and O isotopic compositions on single zircons from the North Eastern Desert of Egypt, Arabian-Nubian shield: implications for crustal evolution. Gondwana Research 32, 181–92. doi: 10.1016/j.gr.2015.02.008.CrossRefGoogle Scholar
Allégre, CJ, Courtillot, V, Tapponnier, P, Hirn, A, Mattauer, M, Coulon, C, Jaeger, JJ, Achache, J, Schärer, U, Marcoux, J, Burg, JP, Girardeau, J, Armijo, R, Gariépy, C, Göpel, C, Tindong, L, Xuchang, X, Chenfa, C, Guangqin, L, Baoyu, L, Jiwen, T, Naiwen, W, Guoming, C, Tonglin, H, Xibin, W, Wanming, D, Huaibin, S, Yougong, C, Ji, Z, Hongrong, Q, Peisheng, B, Songchan, W, Bixiang, W, Yaoxiu, Z and Xu, R (1984) Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 307, 1722. doi: 10.1038/307017a0.CrossRefGoogle Scholar
Beaumont, C, Jamieson, RA, Nguyen, MH and Lee, B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–42. doi: 10.1038/414738a.CrossRefGoogle ScholarPubMed
Beaumont, C, Jamieson, RA, Nguyen, MH and Medvedev, S (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of Geophysical Research: Solid Earth 109, 129. doi: 10.1029/2003JB002809.CrossRefGoogle Scholar
Be’eri-Shlevin, Y, Katzir, Y, Blichert-Toft, J, Kleinhanns, IC and Whitehouse, MJ (2010) Nd–Sr–Hf–O isotope provinciality in the northernmost Arabian-Nubian shield: implications for crustal evolution. Contributions to Mineralogy and Petrology 160, 181201. doi: 10.1007/s00410-009-0472-8.CrossRefGoogle Scholar
Belousova, EA, Griffin, WL, O’Reilly, SY and Fisher, NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602–22. doi: 10.1007/s00410-002-0364-7.CrossRefGoogle Scholar
Bhowmik, SK, Bernhardt, HJ and Dasgupta, S (2010) Grenvillian age high-pressure upper amphibolite-granulite metamorphism in the Aravalli-Delhi Mobile Belt, Northwestern India: new evidence from monazite chemical age and its implication. Precambrian Research 178, 168–84.CrossRefGoogle Scholar
Bhowmik, SK, Wilde, SA, Bhandari, A, Pal, T and Pant, NC (2012) Growth of the Greater Indian Landmass and its assembly in Rodinia: geochronological evidence from the Central Indian Tectonic Zone. Gondwana Research 22, 5472.CrossRefGoogle Scholar
Bouvier, A, Vervoort, JD and Patchett, PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857. doi: 10.1016/j.epsl.2008.06.010.CrossRefGoogle Scholar
Brookfield, ME (1993) The Himalayan passive margin from Precambrian to Cretaceous times. Sedimentary Geology 84, 135. doi: 10.1016/0037-0738(93)90042-4.CrossRefGoogle Scholar
Brown, M, Korhonen, FJ and Siddoway, CS (2011) Organizing melt flow through the crust. Elements 7, 261–6. doi: 10.2113/gselements.7.4.261.CrossRefGoogle Scholar
Cai, F, Ding, L and Yue, Y (2011) Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India-Asia collision. Earth and Planetary Science Letters 305, 195206. doi: 10.1016/j.epsl.2011.02.055.CrossRefGoogle Scholar
Calderón, M, Hervé, F, Massonne, HJ, Tassinari, CG, Pankhurst, RJ, Godoy, E and Theye, T (2007) Petrogenesis of the Puerto Edén Igneous and Metamorphic complex, Magallanes, Chile: late Jurassic syn-deformational anatexis of metapelites and granitoid magma genesis. Lithos 93, 1738. doi: 10.1016/j.lithos.2006.03.044.CrossRefGoogle Scholar
Carosi, R, Montomoli, C, Rubatto, D and Visonà, D (2013) Leucogranite intruding the South Tibetan Detachment in western Nepal: implications for exhumation models in the Himalayas. Terra Nova 25, 478–89. doi: 10.1111/ter.12062.CrossRefGoogle Scholar
Cawood, PA (2005) Terra Australis orogen; Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews 69, 249–79.CrossRefGoogle Scholar
Cawood, P and Buchan, C (2007) Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews 82, 217–56.CrossRefGoogle Scholar
Cawood, PA, Johnson, MRW and Nemchin, AA (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth and Planetary Science Letters 255, 7084. doi: 10.1016/j.epsl.2006.12.006.CrossRefGoogle Scholar
Cawood, PA, Wang, Y, Xu, Y and Zhao, G (2013) Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere? Geology 41, 903–6.CrossRefGoogle Scholar
Chambers, J, Caddick, M, Argles, T, Horstwood, M, Sherlock, S, Harris, N, Parrish, R and Ahmad, T (2009) Empirical constraints on extrusion mechanisms from the upper margin of an exhumed high-grade orogenic core, Sutlej valley, NW India. Tectonophysics 477, 7792. doi: 10.1016/j.tecto.2008.10.013.CrossRefGoogle Scholar
Chu, NC, Taylor, RN, Chavagnac, V, Nesbitt, RW, Boella, RM, Milton, JA, German, CR, Bayon, G and Burton, K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–74. doi: 10.1039/b206707b.CrossRefGoogle Scholar
Chyi, LL (1986) Characteristics and genesis of zirconium and hafnium deposits. In Mineral Parageneses (ed. Craig, JR), pp. 387408. Athens: Theophrastus Publications SA.Google Scholar
Coleman, ME and Hodges, KV (1998) Contrasting Oligocene and Miocene thermal histories from the hanging wall and footwall of the South Tibetan detachment in the central Himalaya from Ar-40/Ar-39 thermochronology, Marsyandi Valley, central Nepal. Tectonics 17, 726–40.CrossRefGoogle Scholar
Corfu, F, Hanchar, JM, Hoskin, PWO and Kinny, P (2003) Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469500.CrossRefGoogle Scholar
Cottle, JM, Jessup, MJ, Newell, DL, Horstwood, MSA, Noble, SR, Parrish, RR, Waters, DJ, and Searle, MP (2009) Geochronology of granulitized eclogite from the Ama Drime Massif: implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics 28, TC1002. doi: 10.1029/2008TC002256.CrossRefGoogle Scholar
Cottle, JM, Larson, KP and Kellett, DA (2015) How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. Journal of Structural Geology 78, 119–33. doi: 10.1016/j.jsg.2015.06.008.CrossRefGoogle Scholar
Dahlen, FA (1984) Noncohesive critical Coulomb wedges: an exact solution. Journal of Geophysical Research: Solid Earth 89, 10125–33.CrossRefGoogle Scholar
Dasgupta, S, Bose, S and Das, K (2013) Tectonic evolution of the Eastern Ghats belt, India. Precambrian Research 227, 247–58.CrossRefGoogle Scholar
Deb, M, Thorpe, RI, Krstic, D, Corfu, F and Davis, DW (2001) Zircon U–Pb and galena Pb isotope evidence for approximate 1.0 Ga terrane constituting the western margin of the Aravalli–Delhi orogenic belt, northwestern India. Precambrian Research 108, 195213. doi: 10.1016/S0301-9268(01)00134-6.CrossRefGoogle Scholar
Debon, F, LeFort, P, Sheppard, SMF and Sonet, J (1986) The four plutonic belts of the Transhimalaya–Himalaya: a chemical, mineralogical, isotopic, and chronological synthesis along a Tibet–Nepal section. Journal of Petrology 27, 219–50.CrossRefGoogle Scholar
DeCelles, PG, Gehrels, GE, Najman, Y, Martin, AJ, Carter, A and Garzanti, E (2004) Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters 227, 313–30. doi: 10.1016/j.epsl.2004.08.019.CrossRefGoogle Scholar
DeCelles, PG, Gehrels, GE, Quade, J, LaReau, B and Spurlin, M (2000) Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288, 497–9. doi: 10.1126/science.288.5465.497.CrossRefGoogle ScholarPubMed
Dhiman, R and Singh, S (2018) Remelting of Neoproterozoic Dalhousie and Dhauladhar granite during Cambro-Ordovician: constraints from in situ U–Pb zircon geochronology, Himachal Pradesh, NW Himalaya. In Abstract Volume of the 33rd Himalaya-Karakorum-Tibet Workshop, 10–12 September 2018, Lausanne, Switzerland (eds G Hetényi, Z Guillermin, M Jordan, G Raymond, S Subedi, N Buchs, M Robyr and JL Epard), p. 37. doi: 10.5281/zenodo.1403887.CrossRefGoogle Scholar
Dhiman, R and Singh, S (2021) Neoproterozoic and Cambro-Ordovician magmatism: episodic growth and reworking of continental crust, Himachal Himalaya, India. International Geology Review 63, 422–36. doi: 10.1080/00206814.2020.1716399.CrossRefGoogle Scholar
Dhuime, B, Hawkesworth, CJ, Storey, CD and Cawood, PA (2011) From sediments to their source rocks: Hf and Nd isotopes in recent river sediments. Geology 39, 407–10. doi: 10.1130/G31785.1.CrossRefGoogle Scholar
DiPietro, JA and Isachsen, CE (2001) U–Pb zircon ages from the Indian plate in northwest Pakistan and their significance to Himalayan and pre-Himalayan geologic history. Tectonics 20, 510–25.CrossRefGoogle Scholar
Dobmeier, CJ and Raith, MM (2003) Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds M Yoshida, BF Windley and S Dasgupta), pp. 145–68. Geological Society of London, Special Publication no. 206.CrossRefGoogle Scholar
Dong, X, Zhang, ZM and Santosh, M (2010) Zircon U–Pb chronology of the Nyingtri group, southern Lhasa terrane, Tibetan Plateau: implications for Grenvillian and Pan-African provenance and Mesozoic–Cenozoic metamorphism. Journal of Geology 118, 677–90.CrossRefGoogle Scholar
Duan, L, Meng, QR, Zhang, CL and Liu, XM (2011) Tracing the position of the South China block in Gondwana: U–Pb ages and Hf isotopes of Devonian detrital zircons. Gondwana Research 19, 141–9. doi: 10.1016/j.gr.2010.05.005.CrossRefGoogle Scholar
Finch, M, Hasalová, P, Weinberg, RF and Fanning, CM (2014) Switch from thrusting to normal shearing in the Zanskar shear zone, NW Himalaya: implications for channel flow. Geological Society of America Bulletin 126, 892924. doi: 10.1130/B30817.1.CrossRefGoogle Scholar
Finch, MA, Weinberg, RF, Barrote, VR and Cawood, PA (2021) Hf isotopic ratios in zircon reveal processes of anatexis and pluton construction. Earth and Planetary Science Letters 576, 117215. doi: 10.1016/j.epsl.2021.117215.CrossRefGoogle Scholar
Flowerdew, MJ, Millar, IL, Vaughan, APM, Horstwood, MSA and Fanning, CM (2006) The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contributions to Mineralogy and Petrology 151, 751–68. doi: 10.1007/s00410-006-0091-6.CrossRefGoogle Scholar
Frank, W, Gansser, A and Trommsdorff, W (1977) Geological observations in the Ladakh area (Himalayas): a preliminary report. Schweizerische Mineralogische und Petrographische Mitteilungen 57, 89113.Google Scholar
Gansser, A (1964) Geology of the Himalayas. London: Wiley Interscience.Google Scholar
Gehrels, G, Kapp, P, DeCelles, P, Pullen, A, Blakey, R, Weislogel, A, Ding, L, Guynn, J, Martin, A, McQuarrie, N and Yin, A (2011) Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30, TC5016. doi: 10.1029/2011TC002868.CrossRefGoogle Scholar
Girard, M and Bussy, F (1999) Late Pan-African magmatism in the Himalaya: new geochronological and geochemical data from the Ordovician Tso Morari metagranites (Ladakh, NW India). Schweizerische Mineralogische und Petrographische Mitteilungen 79, 399418.Google Scholar
Gleeson, TP and Godin, L (2006) The Chako antiform: a folded segment of the Greater Himalayan sequence, Nar Valley, Central Nepal Himalaya. Journal of Asian Earth Sciences 27, 717–34.CrossRefGoogle Scholar
Godin, L, Grujic, D, Law, RD and Searle, MP (2006) Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones (eds RD Law, MP Searle and L Godin), pp. 1–23. Geological Society of London, Special Publication no. 268.CrossRefGoogle Scholar
Godin, L, Parrish, RR, Brown, RL and Hodges, KV (2001) Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: insight from U–Pb geochronology and Ar-40/Ar-39 thermochronology. Tectonics 20, 729–47.CrossRefGoogle Scholar
Goodge, JW, Myrow, PM, Phillips, D, Fanning, CM and Williams, IS (2004) Siliciclastic record of rapid denudation in response to convergent-margin orogenesis, Ross orogen, Antarctica. In Detrital Thermochronology—Provenance Analysis, Exhumation, and Landscape Evolution in Mountain Belts (eds M Bernet and C Spiegel), pp. 101–22. Geological Society of America Special Paper no. 378.CrossRefGoogle Scholar
Gordon, SM, Whitney, DL, Teyssier, C and Fossen, H (2013) U–Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: significance for history of partial melting in continental subduction. Lithos 170–171, 3553. doi: 10.1016/j.lithos.2013.02.003.CrossRefGoogle Scholar
Griffin, WL, Belousova, EA, Shee, SR, Pearson, NJ and O’Reilly, SY (2004) Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–82. doi: 10.1016/j.precamres.2003.12.011.CrossRefGoogle Scholar
Griffin, WL, Wang, X, Jackson, SE, Pearson, NJ, O’Reilly, SY, Xu, X and Zhou, X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–69. doi: 10.1016/S0024-4937(02)00082-8.CrossRefGoogle Scholar
Guo, L, Zhang, J and Zhang, B (2008) Structures, kinematics, thermochronology and tectonic evolution of the Ramba gneiss dome in the northern Himalaya. Proceedings of the National Academy of Sciences 18, 851–60. doi: 10.1016/j.pnsc.2008.01.016.Google Scholar
Halpin, JA, Gerakiteys, CL, Clarke, GL, Belousova, EA and Griffin, WL (2005) In-situ U–Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antarctica. Contributions to Mineralogy and Petrology 148, 689706. doi: 10.1007/s00410-004-0627-6.CrossRefGoogle Scholar
He, D, Webb, AAG, Larson, KP, Martin, AJ and Schmitt, AK (2015) Extrusion v. duplexing models of Himalayan mountain building 3: duplexing dominates from the Oligocene to Present. International Geology Review 57, 127. doi: 10.1080/00206814.2014.986669.CrossRefGoogle Scholar
Heaman, LM, Bowins, R and Crocket, J (1990) The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochimica et Cosmochimica Acta 54, 1597–607. doi: 10.1016/0016-7037(90)90394-Z.CrossRefGoogle Scholar
Hodges, KV (2000) Tectonics of the Himalaya and Southern Tibet from two perspectives. Geological Society of America Bulletin 112, 324–50. doi: 10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Hoffman, PF (1991) Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252, 1409–12.CrossRefGoogle ScholarPubMed
Hopkinson, T, Harris, N, Roberts, NMW, Warren, CJ, Hammond, S, Spencer, CJ and Parrish, RR (2019) Evolution of the melt source during protracted crustal anatexis: an example from the Bhutan Himalaya. Geology 48, 8791.CrossRefGoogle Scholar
Hoskin, PWO and Black, LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology 18, 423–39. doi: 10.1046/j.1525-1314.2000.00266.x.CrossRefGoogle Scholar
Hoskin, PWO and Schaltegger, U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53, 2762.CrossRefGoogle Scholar
Imayama, T and Arita, K (2008) Nd isotopic data reveal the material and tectonic nature of the Main Central Thrust zone in Nepal Himalaya. Tectonophysics 451, 265–81.CrossRefGoogle Scholar
Jackson, SE, Pearson, NJ, Griffin, WL and Belousova, EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769. doi: 10.1016/j.chemgeo.2004.06.017.CrossRefGoogle Scholar
Jamieson, RA, Beaumont, C, Nguyen, MH and Grujic, D (2006) Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones (eds RD Law, MP Searle and L Godin), pp. 165–82. Geological Society of London, Special Publication no. 268.CrossRefGoogle Scholar
Jaupart, C and Provost, A (1985) Heat focusing, granite genesis, and inverted metamorphic gradients in continental collision zones. Earth and Planetary Science Letters 73, 385–97.CrossRefGoogle Scholar
Jessup, MJ and Cottle, JM (2010) Progression from south-directed extrusion to orogen-parallel extension in the southern margin of the Tibetan Plateau, Mount Everest region, Tibet. Journal of Geology 118, 467–86. doi: 10.1086/655011.CrossRefGoogle Scholar
Jessup, MJ, Langille, JM, Diedesch, TF and Cottle, JM (2019) Gneiss dome formation in the Himalaya and southern Tibet. Himalayan Tectonics: A Modern Synthesis (eds PJ Treloar and MP Searle), pp. 401–22. Geological Society of London, Special Publication no. 483.CrossRefGoogle Scholar
Jessup, MJ, Newell, DL, Cottle, JM, Berger, AL and Spotila, JA (2008) Orogen-parallel extension and exhumation enhanced by denudation in the trans-Himalayan Arun River gorge, Ama Drime Massif, Tibet–Nepal. Geology 36, 587–90. doi: 10.1130/G24722A.1.CrossRefGoogle Scholar
Johnson, PR and Woldehaimanot, B (2003) Development of the Arabian-Nubian Shield: perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds M Yoshida, BF Windley and S Dasgupta), pp. 289–325. Geological Society of London, Special Publication no. 206.CrossRefGoogle Scholar
Just, J, Schulz, B, deWall, H, Jourdan, F and Pandit, MK (2011) Monazite CHIME/EPMA dating of Erinpura granitoid deformation: implications for Neoproterozoic tectono-thermal evolution of NW India. Gondwana Research 19, 402–12. doi: 10.1016/j.gr.2010.08.002.CrossRefGoogle Scholar
Kohn, MJ (2008) P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geological Society of America Bulletin 120, 259–73.CrossRefGoogle Scholar
Kohn, MJ (2017) Titanite petrochronology. Reviews in Mineralogy and Geochemistry 83, 41942.CrossRefGoogle Scholar
Kohn, MJ, Paul, SK and Corrie, SL (2010) The lower Lesser Himalayan sequence: a Paleoproterozoic arc on the northern margin of the Indian plate. Geological Society of America Bulletin 122, 323–35.CrossRefGoogle Scholar
Langille, JM, Jessup, MJ, Cottle, J and Ahmad, T (2014) Kinematic and thermal studies of the Leo Pargil Dome: implications for synconvergent extension in the NW Indian Himalaya. Tectonics 33, 1766–86. doi: 10.1002/2014TC003593.CrossRefGoogle Scholar
Langille, JM, Jessup, MJ, Cottle, JM, Lederer, G and Ahmad, T (2012) Timing of metamorphism, melting and exhumation of the Leo Pargil dome, northwest India. Journal of Metamorphic Geology 30, 769–91. doi: 10.1111/j.1525-1314.2012.00998.x.CrossRefGoogle Scholar
Larson, KP, Ambrose, TK, Webb, AAG, Cottle, JM and Shrestha, S (2015) Reconciling Himalayan midcrustal discontinuities: the Main Central thrust system. Earth and Planetary Science Letters 429, 139–46. doi: 10.1016/j.epsl.2015.07.070.CrossRefGoogle Scholar
Lederer, GW, Cottle, JM, Jessup, MJ, Langille, JM and Ahmad, T (2013) Timescales of partial melting in the Himalayan middle crust: insight from the Leo Pargil dome, northwest India. Contributions to Mineralogy and Petrology 166, 1415–41. doi: 10.1007/s00410-013-0935-9.CrossRefGoogle Scholar
Lee, J, Hacker, BR, Dinklage, WS, Wang, Y, Gans, P, Calvert, A, Wan, J, Chen, W, Blythe, AE and McClelland, W (2000) Evolution of the Kangmar Dome, Southern Tibet: structural, petrologic, and thermochronologic constraints. Tectonics 19, 872–95. doi: 10.1029/1999TC001147.CrossRefGoogle Scholar
Lee, J, Hacker, B and Wang, Y (2004) Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet. Journal of Structural Geology 26, 2297–316. doi: 10.1016/j.jsg.2004.02.013.CrossRefGoogle Scholar
Leech, ML (2008) Does the Karakoram fault interrupt mid-crustal channel flow in the western Himalaya? Earth and Planetary Science Letters 276, 314–22. doi: 10.1016/j.epsl.2008.10.006.CrossRefGoogle Scholar
LeFort, P, Debon, F, Pêcher, A, Sonet, J and Vidal, P (1986) The 500 Ma magmatic event in Alpine southern Asia; a thermal episode at Gondwana scale. Sciences de la Terre 47, 191209.Google Scholar
Leier, AL, Kapp, P, Gehrels, GE and DeCelles, PG (2007) Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, southern Tibet. Basin Research 19, 361–78. doi: 10.1111/j.1365-2117.2007.00330.x.CrossRefGoogle Scholar
Li, WX, Li, XH and Li, ZX (2005) Neoproterozoic bimodal magmatism in the Cathaysia block of South China and its tectonic significance. Precambrian Research 136, 5166.CrossRefGoogle Scholar
Li, WX, Li, XH and Li, ZX (2010) Ca. 850 Ma bimodal volcanic rocks in northeastern Jiangxi Province, South China: initial extension during the breakup of Rodinia? American Journal of Science 310, 951–80.CrossRefGoogle Scholar
Li, XH, Li, WX, Li, ZX and Liu, Y (2008) 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: a major episode of continental rift magmatism during the breakup of Rodinia. Lithos 102, 341–57.CrossRefGoogle Scholar
Li, L, Lin, S, Li, J, He, J and Ge, Y (2018) Zircon U–Pb ages and Hf isotope compositions of the Chencai migmatite, central Zhejiang Province, South China: constraints on the early Palaeozoic orogeny. Geological Magazine 155, 1377–93. doi: 10.1017/S0016756817000292.CrossRefGoogle Scholar
Liati, A, Gebauer, D and Wysoczanski, R (2002) U–Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece); evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chemical Geology 184, 281–99. doi: 10.1016/S0009-2541(01)00367-9.CrossRefGoogle Scholar
Liu, Q, Wu, YB, Wang, H, Gao, S, Qin, ZW, Liu, XC, Yang, SH and Gong, HJ (2014) Zircon U–Pb ages and Hf isotope compositions of migmatites from the North Qinling terrane and their geological implications. Journal of Metamorphic Geology 32, 177–93. doi: 10.1111/jmg.12065.CrossRefGoogle Scholar
Maki, K, Yui, TF, Miyazaki, K, Fukuyama, M, Wang, KL, Martens, U, Grove, M and Liou, JG (2014) Petrogenesis of metatexite and diatexite migmatites determined using zircon U–Pb age, trace element and Hf isotope data, Higo metamorphic terrane, central Kyushu, Japan. Journal of Metamorphic Geology 32, 301–23. doi: 10.1111/jmg.12073.CrossRefGoogle Scholar
Meert, JG, Pandit, M and Kamenov, GD (2013) Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India. Tectonophysics 608, 1254–67.CrossRefGoogle Scholar
Meert, JG and Torsvik, TH (2003) The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375, 261–88.CrossRefGoogle Scholar
Mehta, PK (1977) Rb–Sr geochronology of the Kulu-Mandi Belt: its implications for the Himalayan tectogenesis. Geologische Rundshau 66, 156–75.CrossRefGoogle Scholar
Merdith, AS, Collins, AS, Williams, SE, Pisarevsky, S, Foden, JD, Archibald, DB, Blades, ML, Alessio, BL, Armistead, S, Plavsa, D, Clark, C and Müller, RD (2017) A full-plate global reconstruction of the Neoproterozoic. Gondwana Research 50, 84134. doi: 10.1016/j.gr.2017.04.001.CrossRefGoogle Scholar
Mikhalsky, EV, Sheraton, JW, Kudriavtsev, IV, Sergeev, SA, Kovach, VP, Kamenev, IA and Laiba, AA (2013) The Mesoproterozoic Rayner Province in the Lambert Glacier area: its age, origin, isotopic structure and implications for Australia–Antarctica correlations. In Antarctica and Supercontinent Evolution (eds SL Harley, ICW Fitzsimons and Y Zhao), pp. 35–57. Geological Society of London, Special Publication no. 383.CrossRefGoogle Scholar
Miller, C, Thöni, M, Frank, W, Grasemann, B, Klötzli, U, Guntli, P and Draganits, E (2001) The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geological Magazine 138, 237–51. doi: 10.1017/S0016756801005283.CrossRefGoogle Scholar
Moghadam, HS, Li, XH, Stern, RJ, Ghorbani, G and Bakhshizad, F (2016) Zircon U–Pb ages and Hf–O isotopic composition of migmatites from the Zanjan-Takab complex, NW Iran: constraints on partial melting of metasediments. Lithos 240–243, 3448. doi: 10.1016/j.lithos.2015.11.004.CrossRefGoogle Scholar
Molnar, P, Chen, W-P and Padovani, E (1983) Calculated temperatures in overthrust terrains and possible combination of heat sources responsible for the Tertiary granites in the Greater Himalaya. Journal of Geophysical Research: Solid Earth 88, 6415–29.CrossRefGoogle Scholar
Molnar, P and Tapponnier, P (1975) Cenozoic tectonics of Asia—effects of a continental collision. Science 189, 419–26.CrossRefGoogle ScholarPubMed
Montomoli, C, Carosi, R and Iaccarino, S (2015) Tectonometamorphic discontinuities in the Greater Himalayan Sequence: a local or a regional feature? In Tectonics of the Himalaya (eds S Mukherjee, R Carosi, PA van der Beek, BK Mukherjee and DM Robinson), pp. 25–41. Geological Society of London, Special Publication no. 412. doi: 10.1144/SP412.3.CrossRefGoogle Scholar
Morag, N, Avigad, D, Gerdes, A, Belousova, E and Harlavan, Y (2011) Crustal evolution and recycling in the northern Arabian-Nubian Shield: new perspectives from zircon Lu–Hf and U–Pb systematics. Precambrian Research 186, 101–16. doi: 10.1016/j.precamres.2011.01.004.CrossRefGoogle Scholar
Morag, N, Avigad, D, Gerdes, A and Harlavan, Y (2012) 1000–580 Ma crustal evolution in the northern Arabian-Nubian Shield revealed by U–Pb–Hf of detrital zircons from late Neoproterozoic sediments (Elat area, Israel). Precambrian Research 208–211, 197212. doi: 10.1016/j.precamres.2012.04.009.CrossRefGoogle Scholar
Morel, MLA, Nebel, O, Nebel-Jacobsen, YJ, Miller, JS and Vroon, PZ (2008) Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology 255, 231–5. doi: 10.1016/j.chemgeo.2008.06.040.CrossRefGoogle Scholar
Mottram, CM, Argles, TW, Harris, NBW, Parrish, RR, Horstwood, MSA, Warren, CJ and Gupta, S (2014) Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. Journal of the Geological Society, London 171, 255–68. doi: 10.1144/jgs2013-064.CrossRefGoogle Scholar
Mukherjee, PK, Jain, AK, Singhal, S, Singha, NB, Singh, S, Kumud, K and Patel, RC (2019) U–Pb zircon ages and Sm–Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications. Gondwana Research 75, 282–97.CrossRefGoogle Scholar
Murphy, MA (2007) Isotopic characteristics of the Gurla Mandhata metamorphic core complex: implications for the architecture of the Himalayan orogen. Geology 35, 983–6. doi: 10.1130/G23774A.1.CrossRefGoogle Scholar
Murphy, MA, Yin, A, Kapp, P, Harrison, TM, Manning, CE, Ryerson, FJ, Lin, D and Jinghui, G (2002) Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: implications for the eastward extent of the Karakoram fault system. Geological Society of America Bulletin 114, 428–47. doi: 10.1130/0016-7606(2002)114.2.0.CO;2>CrossRefGoogle Scholar
Myrow, PM, Hughes, NC, Goodge, JW, Fanning, CM, Williams, IS, Peng, S, Bhargava, ON, Parcha, SK and Pogue, KR (2010) Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian–Ordovician. Geological Society of America Bulletin 122, 1660–70. doi: 10.1130/B30123.1.CrossRefGoogle Scholar
Myrow, PM, Hughes, NC, Paulsen, TS, Williams, IS, Parcha, SK, Thompson, KR, Bowring, SA, Peng, S-C and Ahluwalia, AD (2003) Integrated tectonostratigraphic reconstruction of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters 212, 433–41.CrossRefGoogle Scholar
Nelson, DA and Cottle, JM (2017) Long-term geochemical and geodynamic segmentation of the Paleo-Pacific margin of Gondwana: insight from the Antarctic and adjacent sectors. Tectonics 36, 3229–47. doi: 10.1002/2017TC004611.CrossRefGoogle Scholar
Nelson, DA and Cottle, JM (2018) The secular development of accretionary orogens: linking the Gondwana magmatic arc record of West Antarctica, Australia and South America. Gondwana Research 63, 1533. doi: 10.1016/j.gr.2018.06.002.CrossRefGoogle Scholar
Ni, J and Barazangi, M (1985) Active tectonics of the western Tethyan Himalaya above the underthrusting Indian Plate: the upper Sutlej River basin as a pull-apart structure. Tectonophysics 112, 277–95.CrossRefGoogle Scholar
Patchett, PJ and Tatsumoto, M (1980) A routine high-precision method for Lu–Hf isotope geochemistry and chronology. Contributions to Mineralogy and Petrology 75, 263–7. doi: 10.1007/BF01166766.CrossRefGoogle Scholar
Paton, C, Woodhead, JD, Hellstrom, JC, Hergt, JM, Greig, A and Maas, R (2010) Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems 11, Q0AA06. doi: 10.1029/2009GC002618.CrossRefGoogle Scholar
Phukon, P, Sen, K, Singh, PC, Sen, A, Srivastava, HB and Singhal, S (2019) Characterizing anatexis in the Greater Himalayan Sequence (Kumaun, NW India) in terms of pressure, temperature, time and deformation. Lithos 344–345, 2250. doi: 10.1016/j.lithos.2019.04.018.CrossRefGoogle Scholar
Quigley, MC, Liangjun, Y, Gregory, C, Corvino, A, Sandiford, M, Wilson, CJL and Xiaohan, L (2008) U–Pb SHRIMP zircon geochronology and Ttd history of the Kampa Dome, southern Tibet. Tectonophysics 446, 97113. doi: 10.1016/j.tecto.2007.11.004.CrossRefGoogle Scholar
Ravikant, V, Dharwadkar, A, Golani, PR and Ravindra, R (2011) Petrology and geochemistry of the Grubergebirge anorthosite and marginal rocks, central Dronning Maud Land: further characterization of the late Neoproterozoic magmatic event in East Antarctica. Journal of the Geological Society of India 78, 718. doi: 10.1007/s12594-011-0062-z.CrossRefGoogle Scholar
Richards, A, Argles, T, Harris, N, Parrish, RR, Ahmad, T, Darbyshire, F and Draganits, E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth and Planetary Science Letters 236, 773–96. doi: 10.1016/j.epsl.2005.05.034.CrossRefGoogle Scholar
Richards, A, Parrish, R, Harris, N, Argles, T and Zhang, L (2006) Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 34, 341–4. doi: 10.1130/G22169.1.CrossRefGoogle Scholar
Rickers, K, Mezger, K and Raith, MM (2001) Evolution of the continental crust in the Proterozoic Eastern Ghats Belt, India and new constraints for Rodinia reconstruction: implications from Sm–Nd, Rb–Sr and Pb–Pb isotopes. Precambrian Research 112, 183210.CrossRefGoogle Scholar
Robinson, DM, DeCelles, PG and Copeland, P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: implications for channel flow models. Geological Society of America Bulletin 118, 865–85.CrossRefGoogle Scholar
Robinson, DM, DeCelles, PG, Patchett, PJ and Garzione, CN (2001) The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth and Planetary Science Letters 192, 507–21.CrossRefGoogle Scholar
Robinson, FA, Foden, JD, Collins, AS and Payne, JL (2014) Arabian Shield magmatic cycles and their relationship with Gondwana assembly: insights from zircon U–Pb and Hf isotopes. Earth and Planetary Science Letters. 408, 207–25. doi: 10.1016/j.epsl.2014.10.010.CrossRefGoogle Scholar
Rubatto, D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology 184, 123–38. doi: 10.1016/S0009-2541(01)00355-2.CrossRefGoogle Scholar
Rubatto, D (2017) Zircon: the metamorphic mineral. Reviews in Mineralogy and Geochemistry 83, 261–95. doi: 10.2138/rmg.2017.83.09.CrossRefGoogle Scholar
Rubatto, D, Chakraborty, S and Dasgupta, S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology 165, 349–72. doi: 10.1007/s00410-012-0812-y.CrossRefGoogle Scholar
Rubatto, D and Hermann, J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology 241, 3861. doi: 10.1016/j.chemgeo.2007.01.027.CrossRefGoogle Scholar
Rubatto, D, Hermann, J, Berger, A and Engi, M (2009) Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contributions to Mineralogy and Petrology 158, 703–22. doi: 10.1007/s00410-009-0406-5.CrossRefGoogle Scholar
Sachan, HK, Kohn, MJ, Saxena, A and Corrie, SL (2010) The Malari leucogranite, Garhwal Himalaya, northern India: chemistry, age and tectonic implications. Geological Society of America Bulletin 122, 1865–76.CrossRefGoogle Scholar
Sawyer, EW, Cesare, B and Brown, M (2011) When the continental crust melts. Elements 7, 229–34. doi: 10.2113/gselements.7.4.229.CrossRefGoogle Scholar
Scaillet, B, Pichavant, M and Roux, J (1995) Experimental crystallization of leucogranite magmas. Journal of Petrology 36, 663705.CrossRefGoogle Scholar
Scherer, E, Münker, C and Mezger, K (2001) Calibration of the Lutetium-Hafnium Clock. Science 293, 683–8.CrossRefGoogle ScholarPubMed
Searle, MP, Law, RD and Jessup, MJ (2006) Crustal structure, restoration, and evolution of the Greater Himalaya in Nepal-South Tibet: implications for channel flow and ductile extrusion of the middle crust. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones (eds RD Law, MP Searle and L Godin), pp. 355–78. Geological Society of London, Special Publication no. 268. doi: 10.1144/GSL.SP.2006.268.01.17.CrossRefGoogle Scholar
Sharma, KK (2004) The Neoproterozoic Malani magmatism of the northwestern Indian shield: implications for crust-building processes. Journal of Earth System Science 113, 795807.CrossRefGoogle Scholar
Singh, S, Barley, ME, Brown, SJ, Jain, AK and Manickavasagam, RM (2002) SHRIMP U–Pb in zircon geochronology of the Chor granitoid: evidence for Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambrian Research 118, 285–92.CrossRefGoogle Scholar
Singh, S and Jain, AK (2003) Himalayan granitoids. Journal of the Virtual Explorer 11, 120. doi: 10.3809/jvirtex.2003.00069.CrossRefGoogle Scholar
Singh, P, Singhal, S and Das, AN (2020) U–Pb (zircon) geochronologic constraint on tectono-magmatic evolution of Chaur granitoid complex (CGC) of Himachal Himalaya, NW India: implications for the Neoproterozoic magmatism related to Grenvillian orogeny and assembly of the Rodinia supercontinent. International Journal of Earth Sciences 109, 373–90. doi: 10.1007/s00531-019-01808-5.CrossRefGoogle Scholar
Sláma, J, Košler, J, Condon, DJ, Crowley, JL, Gerdes, A, Hanchar, JM, Horstwood, MSA, Morris, GA, Nasdala, L, Norberg, N, Schaltegger, U, Schoene, B, Tubrett, MN and Whitehouse, MJ (2008) Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135. doi: 10.1016/j.chemgeo.2007.11.005.CrossRefGoogle Scholar
Söderlund, U, Patchett, PJ, Vervoort, JD and Isachsen, CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.CrossRefGoogle Scholar
Spencer, CJ, Cawood, PA, Hawkesworth, CJ, Prave, AR, Roberts, NMW, Horstwood, MSA, and Whitehouse, MJ (2015) Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontier 6, 357–72. doi: 10.1016/j.gsf.2014.12.001.CrossRefGoogle Scholar
Spencer, CJ, Dyck, B, Mottram, CM, Roberts, NMW, Yao, WH and Martin, EL (2019) Deconvolving the pre-Himalayan Indian margin – tales of crustal growth and destruction. Geoscience Frontier 10, 863–72. doi: 10.1016/j.gsf.2018.02.007.CrossRefGoogle Scholar
Spencer, CJ, Harris, RA and Dorais, MJ (2012) Depositional provenance of the Himalayan metamorphic core of Garhwal region, India: constrained by U–Pb and Hf isotopes in zircons. Gondwana Research 22, 2635. doi: 10.1016/j.gr.2011.10.004.CrossRefGoogle Scholar
Spencer, CJ, Harris, RA, Sachan, HK and Saxena, A (2011) Depositional provenance of the Greater Himalayan Sequence, Garhwal Himalaya, India: implications for tectonic setting. Journal of Asian Earth Sciences 41, 34454.CrossRefGoogle Scholar
Spencer, CJ, Kirkland, CL and Taylor, RJM (2016) Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geoscience Frontier 7, 581–9. doi: 10.1016/j.gsf.2015.11.006.CrossRefGoogle Scholar
Spencer, CJ, Yakymchuk, C and Ghaznavi, M (2017) Visualising data distributions with kernel density estimation and reduced chi-squared statistic. Geoscience Frontiers 8, 1247–52. doi: 10.1016/j.gsf.2017.05.002.CrossRefGoogle Scholar
Squire, RJ, Campbell, IH, Allen, CM and Wilson, CL (2006) Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth and Planetary Science Letters 250, 116–33.CrossRefGoogle Scholar
Steck, A, Spring, L, Vannay, J, Masson, H, Stutz, E, Bucher, H, Marchant, R, Tieche, J, Steck, BA, Spring, L, Vannay, J-C, Masson, H, Stutz, E, Bucher, H and Marchant, R (1993) Geological transect across the Northwestern Himalaya Eclogae Geologicae Helvetiae 86, 219–63.Google Scholar
Stern, RA, Bodorkos, S, Kamo, SL, Hickman, AH and Corfu, F (2009) Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostandards and Geoanalytical Research 33, 145–68. doi: 10.1111/j.1751-908X.2009.00023.x.CrossRefGoogle Scholar
Stern, RA, Percival, JA and Mortensen, K (1994) Geochemical evolution of the Minto block: a 2.7 Ga continental magmatic arc built on the Superior proto-craton. Precambrian Research 65, 115–53.Google Scholar
Stübner, K, Grujic, D, Parrish, RR, Roberts, NM, Kronz, A, Wooden, J and Ahmad, T (2014) Monazite geochronology unravels the timing of crustal thickening in NW Himalaya. Lithos 210, 111–28.CrossRefGoogle Scholar
Tapponnier, P and Molnar, P (1977) Active faulting and tectonics in China. Journal of Geophysical Research 82, 2905–30.CrossRefGoogle Scholar
Taylor, SR and McLennan, SM (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
Tera, F and Wasserburg, GJ (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters 14, 281304. doi: 10.1016/0012-821X(72)90128-8.CrossRefGoogle Scholar
Thiede, RC, Arrowsmith, JR, Bookhagen, B, McWilliams, M, Sobel, ER and Strecker, MR (2006) Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India. Geological Society of America Bulletin 118, 635–50. doi: 10.1130/B25872.1.CrossRefGoogle Scholar
Thöni, M (1977) Geology, structural evolution and metamorphic zoning in the Kulu Valley (Himachal Himalayas, India) with special reference to the reversed metamorphism. Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Wien 24, 125–87.Google Scholar
Torsvik, TH and Cocks, LRM (2009) The Lower Palaeozoic palaeogeographical evolution of the northeastern and eastern peri-Gondwanan margin from Turkey to New Zealand. In Early Palaeozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography (ed. MG Bassett), pp. 3–21. Geological Society of London, Special Publication no. 325. doi: 10.1144/SP325.2.CrossRefGoogle Scholar
Tu, JY, Ji, JQ, Gong, JF, Yan, QR and Han, BF (2016) Zircon U–Pb dating constraints on the crustal melting event around 8 Ma in the eastern Himalayan syntaxis. International Geological Reviews 58, 5870. doi: 10.1080/00206814.2015.1056255.CrossRefGoogle Scholar
Upreti, BN and Yoshida, M (2005) Basement history and provenance of the Tethys sediments of the Himalaya: an appraisal based on recent geochronologic and tectonic data. In The First International Conference on the ‘Geology of the Tethys, 2005’, 12–14 November 2005, Cairo, Egypt.Google Scholar
Van Lente, B, Ashwal, LD, Pandit, MK, Bowring, SA and Torsvik, TH (2009) Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: implications for late Precambrian tectonic evolution of the Aravalli Craton. Precambrian Research 170, 202–22. doi: 10.1016/j.precamres.2009.01.007.CrossRefGoogle Scholar
Vannay, J-C and Hodges, KV (1996) Tectonomorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal. Journal of Metamorphic Geology 14, 635–56.CrossRefGoogle Scholar
Veevers, JJ and Saeed, A (2009) Permian–Jurassic Mahanadi and Pranhita-Godavari Rifts of Gondwana India: provenance from regional paleoslope and U–Pb/Hf analysis of detrital zircons. Gondwana Research 16, 633–54. doi: 10.1016/j.gr.2009.05.013.CrossRefGoogle Scholar
Vermeesch, P (2018) IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9. doi: 10.1016/j.gsf.2018.04.001.CrossRefGoogle Scholar
Wang, LJ, Griffin, WL, Yu, J-H and O’Reilly, SY (2010 a) Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research 177, 131–44.CrossRefGoogle Scholar
Wang, Q, Wyman, DA, Li, Z-X, Bao, Z-W, Zhao, Z-H, Wang, Y-X, Jian, P, Yang, Y-H and Chen, L-L (2010 b) Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Research 178, 185208.CrossRefGoogle Scholar
Wang, W and Zhou, MF (2012) Sedimentary records of the Yangtze Block (South China) and their correlation with equivalent Neoproterozoic sequences on adjacent continents. Sedimentary Geology 265–266, 126–42. doi: 10.1016/j.sedgeo.2012.04.003.CrossRefGoogle Scholar
Warren, CJ, Greenwood, LV, Argles, TW, Roberts, NMW, Parrish, RR and Harris, NBW (2019) Garnet-monazite rare earth element relationships in sub-solidus metapelites: a case study from Bhutan. In Metamorphic Geology: Microscale to Mountain Belts (eds S Ferrero, P Lanari, P Gonclaves and EG Grosch), pp. 145–66. Geological Society of London, Special Publication no. 478. doi: 10.1144/SP478.1.CrossRefGoogle Scholar
Webb, AAG, Guo, H, Clift, PD, Husson, L, Müller, T, Costantino, D, Yin, A, Xu, Z, Cao, H and Wang, Q (2017) The Himalaya in 3D: slab dynamics controlled mountain building and monsoon intensification. Lithosphere 9, 637–51.Google Scholar
Webb, AAG, Yin, A, Harrison, TM, Célérier, J and Burgess, WP (2007) The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya: implications for the evolution of the Himalayan orogen. Geology 35, 955–8. doi: 10.1130/G23931A.1.CrossRefGoogle Scholar
Webb, AAG, Yin, A, Harrison, TM, Célérier, J, Gehrels, GE, Manning, CE and Grove, M (2011) Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen. Geosphere 7, 1013–61. doi: 10.1130/GES00627.1.CrossRefGoogle Scholar
Weinberg, RF and Searle, MP (1999) Volatile-assisted intrusion and autometasomatism of leucogranites in the Khumbu Himalaya, Nepal. Journal of Geology 107, 2748.CrossRefGoogle Scholar
Whitehouse, MJ and Platt, JP (2003) Dating high-grade metamorphism – constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology 145, 6174. doi: 10.1007/s00410-002-0432-z.CrossRefGoogle Scholar
Whitney, DL, Teyssier, C, Fayon, AK, Hamilton, MA and Heizler, M (2003) Tectonic controls on metamorphism, partial melting, and intrusion: timing and duration of regional metamorphism and magmatism in the Niǧde Massif, Turkey. Tectonophysics 376, 3760. doi: 10.1016/j.tecto.2003.08.009.CrossRefGoogle Scholar
Wingate, MTD, Pisarevsky, SA and Evans, DAD (2002) Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS? Terra Nova 14, 121–8.CrossRefGoogle Scholar
Woodhead, JD and Hergt, JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research 29, 183–95. doi: 10.1111/j.1751-908x.2005.tb00891.x.CrossRefGoogle Scholar
Woodhead, J, Hergt, J, Shelley, M, Eggins, S and Kemp, R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology 209, 121–35. doi: 10.1016/j.chemgeo.2004.04.026.CrossRefGoogle Scholar
Wu, Y and Zheng, Y (2004) Genesis of zircon and its constraints on interpretation of U–Pb age. Chinese Science Bulletin 49, 1554–69. doi: 10.1007/bf03184122.CrossRefGoogle Scholar
Wu, YB, Zheng, YF, Zhang, SB, Zhao, ZF, Wu, FY and Liu, XM (2007) Zircon U–Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. Journal of Metamorphic Geology 25, 9911009. doi: 10.1111/j.1525-1314.2007.00738.x.CrossRefGoogle Scholar
Yakymchuk, C and Brown, M (2019) Divergent behaviour of Th and U during anatexis: implications for the thermal evolution of orogenic crust. Journal of Metamorphic Geology 37, 899916. doi: 10.1111/jmg.12469.CrossRefGoogle Scholar
Yakymchuk, C, Kirkland, CL and Clark, C (2018) Th/U ratios in metamorphic zircon. Journal of Metamorphic Geology 36, 715–37. doi: 10.1111/jmg.12307.CrossRefGoogle Scholar
Yao, J, Cawood, PA, Shu, L, Santosh, M and Li, J (2016) An early Neoproterozoic accretionary prism ophiolitic mélange from the Western Jiangnan Orogenic Belt, South China. The Journal of Geology 124, 587601.CrossRefGoogle Scholar
Yao, JL, Shu, LS, Santosh, M and Zhao, GC (2014) Neoproterozoic arc-related mafic-ultramafic rocks and syn-collision granite from the western segment of the Jiangnan orogen, South China: constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia blocks. Precambrian Research 243, 3962.CrossRefGoogle Scholar
Yin, A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews 76, 1131. doi: 10.1016/j.earscirev.2005.05.004.CrossRefGoogle Scholar
Yin, A, Dubey, CS, Kelty, TK, Webb, AAG, Harrison, TM, Chou, CY and Célérier, J (2010) Geologic correlation of the Himalayan orogen and Indian craton: part 2. Structural geology, geochronology, and tectonic evolution of the eastern Himalaya: Geological Society of America Bulletin 122, 360–95. doi: 10.1130/B26461.1.CrossRefGoogle Scholar
Yin, A and Harrison, TM (2000) Evolution of the earth and core. Annual Review of Earth and Planetary Sciences 28, 211–80.CrossRefGoogle Scholar
Yoshida, M and Upreti, BN (2006) Neoproterozoic India within East Gondwana: constraints from recent geochronologic data from Himalaya. Gondwana Research 10, 349–56.CrossRefGoogle Scholar
Zeh, A and Gerdes, A (2012) U–Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the Pietersburg Greenstone Belt (South Africa) – is there a common provenance with the Witwatersrand Basin? Precambrian Research 204–205, 4656. doi: 10.1016/j.precamres.2012.02.013.CrossRefGoogle Scholar
Zheng, YF, Wu, YB, Zhao, ZF, Zhang, SB, Xu, P and Wu, FY (2005) Metamorphic effect on zircon Lu–Hf and U–Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters 240, 378400. doi: 10.1016/j.epsl.2005.09.025.CrossRefGoogle Scholar
Zhu, DC, Zhao, ZD, Niu, Y, Dilek, Y and Mo, XX (2011) Lhasa terrane in Southern Tibet came from Australia. Geology 39, 727–30. doi: 10.1130/G31895.1.CrossRefGoogle Scholar
Supplementary material: File

Rai et al. supplementary material

Table S1

Download Rai et al. supplementary material(File)
File 64.8 KB
Supplementary material: File

Rai et al. supplementary material

Table S2

Download Rai et al. supplementary material(File)
File 62.3 KB
Supplementary material: File

Rai et al. supplementary material

Table S3

Download Rai et al. supplementary material(File)
File 57.9 KB