Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T19:59:16.693Z Has data issue: false hasContentIssue false

Workflow for analysis of compositional data in sedimentary petrology: provenance changes in sedimentary basins from spatio-temporal variation in heavy-mineral assemblages

Published online by Cambridge University Press:  22 August 2018

J. VERHAEGEN*
Affiliation:
Department of Earth and Environmental Sciences, University of Leuven, Celestijnenlaan 200E, P.O. Box 2410, 3001 Leuven, Belgium
G.J. WELTJE
Affiliation:
Department of Earth and Environmental Sciences, University of Leuven, Celestijnenlaan 200E, P.O. Box 2410, 3001 Leuven, Belgium
D. MUNSTERMAN
Affiliation:
Netherlands Institute of Applied Geoscience TNO – The Geological Survey of the Netherlands, P.O. Box 80015, 3508TA Utrecht, The Netherlands
*
Author for correspondence: [email protected].

Abstract

The field of provenance analysis has seen a revival in the last decade as quantitative data-acquisition techniques continue to develop. In the 20th century, many heavy-mineral data were collected. These data were mostly used as qualitative indications for stratigraphy and provenance, and not incorporated in a quantitative provenance methodology. Even today, such data are mostly only used in classic data tables or cumulative heavy-mineral plots as a qualitative indication of variation. The main obstacle to rigorous statistical analysis is the compositional nature of these data which makes them unfit for standard multivariate statistics. To gain more information from legacy data, a straightforward workflow for quantitative analysis of compositional datasets is provided. First (1) a centred log-ratio transformation of the data is carried out to fix the constant-sum constraint and non-negativity of the compositional data. Next, (2) cluster analysis is followed by (3) principal component analysis and (4) bivariate log-ratio plots. Several (5) proxies for the effects of sorting and weathering are included to check the provenance significance of observed variations and finally a (6) spatial interpolation of a provenance proxy extracted from the dataset can be carried out. To test this methodology, available heavy-mineral data from the southern edge of the Miocene North Sea Basin are analysed. The results are compared with available information from literature and are used to gain improved insight into Miocene sediment input variations in the study area.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriaens, R. 2015. Neogene and Quaternary clay minerals in the southern North sea. Ph.D. thesis, KU Leuven, Belgium. Published thesis.Google Scholar
Aitchison, J. 1986. The Statistical Analysis of Compositional Data. London: Chapman and Hall.CrossRefGoogle Scholar
Andò, S., Garzanti, E., Padoan, M. & Limonta, M. 2012. Corrosion of heavy minerals during weathering and diagenesis: a catalog for optical analysis. Sedimentary Geology 280, 165–78.CrossRefGoogle Scholar
Baak, J. A. 1936. Regional petrology of the southern North Sea. Ph.D. thesis, Leyden University, Leyden, Netherlands. Published thesis.Google Scholar
Becke, F. 1897. Gesteine des Columbretes. Tschermaks Mineralogische Petrographische Mitteilungen 16, 308–36.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III, & Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.), pp. 129212. SEPM, Special Publication no. 54.CrossRefGoogle Scholar
Bloemsma, M. R., Zabel, M., Stuut, J. B. W., Tjallingii, R., Collins, J. A. & Weltje, G. J. 2012. Modelling the joint variability of grain size and chemical composition in sediments. Sedimentary Geology 280, 135–48.CrossRefGoogle Scholar
Burger, A. W. 1987. Heavy-mineral assemblages in Neogene marine and near-coastal deposits of the south-eastern Netherlands. Mededelingen Werkgroup Tertiaire en Kwartaire Geologie 24, 1530.Google Scholar
Cameron, T. D. J., Bulat, J. & Mesdag, C. S. 1993. High resolution seismic profile through a late Cenozoic delta complex in the Southern North Sea. Marine and Petroleum Geology 10, 591–9.CrossRefGoogle Scholar
Chayes, F. 1960. On correlation between variables of constant sum. Journal of Geophysical Research 65, 4185–93.CrossRefGoogle Scholar
Clarke, K. R., Somer, P. J. & Gorley, R. N. 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366, 5669.CrossRefGoogle Scholar
Davis, J. C. 2002. Statistics and Data Analysis in Geology. Hoboken, New Jersey: John Wiley & Sons, Inc.Google Scholar
Deckers, J. & Louwye, S. 2017. A reinterpretation of the ages and depositional environments of the lower and middle Miocene stratigraphic records in a key area along the southern margin of the North Sea Basin. Geological Magazine, published online 6 December 2017. doi: 10.1017/S0016756817000991Google Scholar
De Meuter, F. & Laga, P. 1976. Lithostratigraphy and biostratigraphy based on benthonic foraminifera of the Neogene deposits of Northern Belgium. Bulletin de la Société Belge de Géologie 85, 133–52.Google Scholar
Demyttenaere, R. 1989. The post-Paleozoic geological history of north-eastern Belgium. Brussel Mededelingen Koninklijke Academie Van Wetenschappen, Letteren en Schone Kunsten België, Klasse der Wetenschappen 51, 5181.Google Scholar
Derkachev, A. N. & Nikolaeva, N. A. 2007. Multivariate analysis of heavy mineral assemblages of sediments from the marginal seas of the Western Pacific. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 439–64. Developments in Sedimentology 58.CrossRefGoogle Scholar
Dickinson, W. R. 2008. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth and Planetary Science Letters 275, 8092.CrossRefGoogle Scholar
Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A. & Ryberg, P. T. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94, 222–35.2.0.CO;2>CrossRefGoogle Scholar
Doornenbal, H. & Stevenson, A. (eds) 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. Houten: EAGE Publications.Google Scholar
Doppert, J. W. Chr., Laga, P. G. & De Meuter, F. J. 1979. Correlation of the biostratigraphy of marine Neogene deposits, based on benthonic foraminifera, established in Belgium and the Netherlands. Mededelingen Rijks Geologische Dienst 31, 18.Google Scholar
Edelman, C. H. & Doeglas, D. J. 1933. Bijdrage tot de petrologie van het Nederlandsche Tertiair. Verhandelingen van het Geologisch-mijnbouwkundig genootschap voor Nederland en koloniën, Geologische serie 10, 138.Google Scholar
Eisma, D. 1968. Composition, origin and distribution of Dutch coastal sands between Hoek van Holland and the island of Vlieland. Ph.D. thesis Groningen University, Groningen, Netherlands. Published thesis.CrossRefGoogle Scholar
Folk, R. L. 1980. Petrology of Sedimentary Rocks. Austin, Texas: Hemphill Publishing Company.Google Scholar
Garzanti, E. 2016. From static to dynamic provenance analysis – sedimentary petrology upgraded. Sedimentary Geology 336, 313.CrossRefGoogle Scholar
Garzanti, E. 2017. The maturity myth in sedimentology and provenance analysis. Journal of Sedimentary Research 87, 353–65.CrossRefGoogle Scholar
Garzanti, E. & Andò, S. 2007. Plate tectonics and heavy mineral suites of modern sands. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 741–63. Developments in Sedimentology 58.CrossRefGoogle Scholar
Garzanti, E., Andò, S., France-Lanord, C., Vezzoli, G., Censi, P., Galy, V. & Najman, Y. 2010. Mineralogical and chemical variability of fluvial sediments. 1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters 299, 368–81.CrossRefGoogle Scholar
Garzanti, E., Andò, S. & Vezzoli, G. 2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters 273, 138–51.CrossRefGoogle Scholar
Garzanti, E., Andò, S. & Vezzoli, G. 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters 277, 422–32.CrossRefGoogle Scholar
Geets, S. & De Breuck, W. 1991. De zware-mineraleninhoud van Belgische mesozoïsche en cenozoïsche afzettingen. Neogeen. Natuurwetenschappelijk Tijdschrift 73, 337.Google Scholar
Geets, S., De Breuck, W. & Jacobs, P. 1985. De zware-mineraleninhoud van Belgische Mesozoïsche en Cenozoïsche afzettingen. E. Midden- en Boven-Eoceen. Natuurwetenschappelijk Tijdschrift 67, 325.Google Scholar
Geets, S., De Breuck, W. & Jacobs, P. 1986. De zware-mineraleninhoud van Belgische Mesozoïsche en Cenozoïsche afzettingen. F. Eo-Oligocene overgangslagen en Oligoceen. Natuurwetenschappelijk Tijdschrift 68, 74128.Google Scholar
Gibbard, P. L. & Lewin, J. 2016. Filling the North Sea Basin: Cenozoic sediment sources and river styles. Geologica Belgica 19, 201–17.CrossRefGoogle Scholar
Gullentops, F. 1957. L'origine des collines du Hageland. Bulletin de la Société Belge de Géologie 66, 81–5.Google Scholar
Gullentops, F. 1973. Grainsize and mineralogy of Miocene glass-sands of Maasmechelen, Belgian Limburg. Mededelingen Rijks Geologische Dienst 23, 2534.Google Scholar
Gullentops, F. & Huyghebaert, L. 1999. A profile through the Pliocene of Northern Kempen, Belgium. Aardkundige Mededelingen 9, 191202.Google Scholar
Gulinck, M. 1962. Essai d'une carte géologique de la Campine. Etat de nos connaissances sur la nature des terrains néogènes recoupés par sondages. In Symposium sur la stratigraphie du Néogène nordique (eds Heinzelin, J. de & Tavernier, R.), pp. 30–9. Brussel Société belge de Géologie, Mémoires 6.Google Scholar
Hinderer, M. 2012. From gullies to mountain belts: a review of sediment budgets at various scales. Sedimentary Geology 280, 2159.CrossRefGoogle Scholar
Hooyberghs, H. J. F. & De Meuter, F. J. C. 1972. Biostratigraphy and inter-regional correlation of the Miocene deposits of northern Belgium based on planktonic foraminifera; the Oligocene-Miocene boundary on the southern edge of the North Sea Basin. Mededelingen Koninklijke Academie Van Wetenschappen, Letteren en Schone Kunsten België, Klasse der Wetenschappen 34, 47 pp.Google Scholar
Houbolt, J. J. H. C. 1982. A comparison of recent shallow marine tidal sand ridges with Miocene sand ridges in Belgium. In The Ocean Floor (eds Scrutton, A. & Talwani, M.), pp. 6980. New York: John Wiley & Sons Ltd.Google Scholar
Houthuys, R. 2014. A reinterpretation of the Neogene emersion of central Belgium based on the sedimentary environment of the Diest Formation and the origin of the drainage pattern. Geologica Belgica 17, 211–35.Google Scholar
Huisman, D. J. & Klaver, G. T. 2007. Heavy minerals in the subsurface: tracking sediment sources in three dimensions. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 869–85. Developments in Sedimentology 58.CrossRefGoogle Scholar
Ibbeken, H. & Schleyer, R. 1991. Source and Sediment – A Case Study of Provenance and Mass Balance at an Active Plate Margin (Calabria, Southern Italy). Berlin and Heidelberg: Springer-Verlag.Google Scholar
Imbrie, J. & Van Andel, T. H. 1964. Vector analysis of heavy-mineral data. Geological Society of America Bulletin 75, 1131–56.CrossRefGoogle Scholar
Jacobs, P. 1995. Eocene sediment supply in western Belgium as determined through heavy mineral distribution. Contributions to Tertiary and Quaternary Geology 32, 3552.Google Scholar
Komar, P. D. 2007. The entrainment, transport and sorting of heavy minerals by waves and currents. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 348. Developments in Sedimentology 58.CrossRefGoogle Scholar
Köthe, A., Gaedicke, C. & Lutz, R. 2008. Erratum: the age of the Mid-Miocene Unconformity (MMU) in the G-11-1 borehole, German North Sea sector. German Journal of Geology (ZDGG) 159, 687–9.Google Scholar
Laga, P., Louwye, S. & Geets, S. 2001. Paleogene and Neogene lithostratigraphic units (Belgium). Geologica Belgica 4, 135–52.Google Scholar
Langenaeker, V. 2000. The Campine Basin. Stratigraphy, structural geology, coalification and hydrocarbon potential for the Devonian to Jurassic. Aardkundige Mededelingen 10, 142 pp.Google Scholar
Louwye, S. 2000. Dinoflagellate cysts and acritarchs from the Miocene Zonderschot sands, Northern Belgium: stratigraphic significance and correlation with contiguous areas. Geologica Belgica 3, 5565.Google Scholar
Louwye, S. 2002. Dinoflagellate cyst biostratigraphy of the Upper Miocene Deurne Sands (Diest Formation) of Northern Belgium, southern North Sea Basin. Geological Journal 37, 5567.CrossRefGoogle Scholar
Louwye, S. 2005. The Early and Middle Miocene transgression at the southern border of the North Sea Basin (northern Belgium). Geologica Belgica 40, 441–56.CrossRefGoogle Scholar
Louwye, S., De Coninck, J. & Verniers, J. 1999. Dinoflagellate cyst stratigraphy and depositional history of Miocene and Lower Pliocene formations in northern Belgium (southern North Sea Basin). Geologie en Mijnbouw 78, 3146.CrossRefGoogle Scholar
Louwye, S., De Coninck, J. D. E. & Verniers, J. 2000. Shallow marine Lower and Middle Miocene deposits at the southern margin of the North Sea Basin (northern Belgium): dinoflagellate cyst biostratigraphy and depositional history. Geological Magazine 137, 381–94.CrossRefGoogle Scholar
Louwye, S. & De Schepper, S. 2010. The Miocene–Pliocene hiatus in the southern North Sea Basin (northern Belgium) revealed by dinoflagellate cysts. Geological Magazine 147, 760–76.CrossRefGoogle Scholar
Louwye, S., De Schepper, S., Laga, P. & Vandenberghe, N. 2007. The Upper Miocene of the southern North Sea Basin (northern Belgium): a palaeoenvironmental and stratigraphical reconstruction using dinoflagellate cysts. Geological Magazine 144, 3352.CrossRefGoogle Scholar
Louwye, S. & Laga, P. 1998. Dinoflagellate cysts of the shallow marine Neogene succession in the Kalmthout well, northern Belgium. Bulletin of the Geological Society of Denmark 45, 7386.Google Scholar
Louwye, S. & Laga, P. 2008. Dinoflagellate cyst stratigraphy and palaeoenvironment of the marginal marine Middle and Upper Miocene of the eastern Campine area, northern Belgium (southern North Sea Basin). Geological Journal 43, 7594.CrossRefGoogle Scholar
Louwye, S., Marquet, R., Bosselaers, M. & Lambert, O. 2010. Stratigraphy of an Early–Middle Miocene Sequence near Antwerp in Northern Belgium (Southern North Sea Basin). Geologica Belgica 13, 269–84.Google Scholar
Malusà, M. G., Resentini, A. & Garzanti, E. 2016. Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research 31, 119.CrossRefGoogle Scholar
Mange, A. & Wright, D. T. (eds) 2007. Heavy Minerals in Use. Developments in Sedimentology 58.Google Scholar
Martín-Fernández, J. A., Barceló-Vidal, C. & Pawlowsky-Glahn, V. 2003. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology 35, 253–78.CrossRefGoogle Scholar
Michon, L., Van Balen, R. T., Merle, O. & Pagnier, H. 2003. The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale. Tectonophysics 367, 101–26.CrossRefGoogle Scholar
Milliken, K. L. 2007. Provenance and diagenesis of heavy minerals: Cenozoic units of the northwestern Gulf of Mexico sedimentary basin. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 247–61. Developments in Sedimentology 58.CrossRefGoogle Scholar
Moecher, D. P. & Samson, S. D. 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth and Planetary Science Letters 247, 252–66.CrossRefGoogle Scholar
Morton, A. C. & Hallsworth, C. 1994. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology 90, 241–56.CrossRefGoogle Scholar
Morton, A. C. & Hallsworth, C. R. 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology 124, 329.CrossRefGoogle Scholar
Morton, A. C. & Hallsworth, C. 2007. Stability of detrital heavy minerals during burial diagenesis. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 215–45. Developments in Sedimentology 58.CrossRefGoogle Scholar
Morton, A. C., Hallsworth, C. & Chalton, B. 2004. Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance. Marine and Petroleum Geology 21, 393410.CrossRefGoogle Scholar
Munsterman, D. K. & Brinkhuis, H. 2004. A southern North Sea Miocene dinoflagellate cyst zonation. Geologie en Mijnbouw / Netherlands Journal of Geosciences 83, 267–85.CrossRefGoogle Scholar
Olivarius, M., Rasmussen, E. S., Siersma, V., Knudsen, C., Kokfelt, T. F. & Keulen, N. 2014. Provenance signal variations caused by facies and tectonics: zircon age and heavy mineral evidence from Miocene sand in the north-eastern North Sea Basin. Marine and Petroleum Geology 49, 114.CrossRefGoogle Scholar
Olivarius, M., Rasmussen, E. S., Siersma, V., Knudsen, C. & Pedersen, G. K. 2011. Distinguishing fluvio-deltaic facies by bulk geochemistry and heavy minerals: an example from the Miocene of Denmark. Sedimentology 58, 1155–79.CrossRefGoogle Scholar
Overeem, I., Weltje, G. J., Bishop-Kay, C. & Kroonenberg, S. B. 2001. The Late Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate signal in sediment supply. Basin Research 13, 293312.CrossRefGoogle Scholar
Parfenoff, A., Pomerol, C. & Tourenq, J. 1970. Les minéraux en grains: methodes d’étude et determination. Paris: Masson et Cie.Google Scholar
Pawlowsky-Glahn, V. & Buccianti, A. 2002. Visualization and modeling of sub-populations of compositional data: statistical methods illustrated by means of geochemical data from fumarolic fluids. International Journal of Earth Sciences 91, 357–68.CrossRefGoogle Scholar
Prinz, L., Schäfer, A., McCann, T., Utescher, T., Lokay, P. & Asmus, S. 2017. Facies analysis and depositional model of the Serravallian-age Neurath Sand, Lower Rhine Basin (W Germany). Netherlands Journal of Geosciences 96, 211–31.CrossRefGoogle Scholar
Rasmussen, E. S. & Dybkjaer, K. 2014. Patterns of Cenozoic sediment flux from western Scandinavia: discussion. Basin Research 26, 338–46.CrossRefGoogle Scholar
Rittenhouse, G. 1944. Transportation and deposition of heavy minerals. Geological Society of America Bulletin 54, 1725–80.CrossRefGoogle Scholar
Rubey, W. W. 1933. The size-distribution of heavy minerals within a water-laid sandstone. Journal of Sedimentary Research 3, 329.Google Scholar
Ryan, P. D., Mange, M. A. & Dewey, J. F. 2007. Statistical analysis of high-resolution heavy mineral stratigraphic data from the Ordovician of Western Ireland and its tectonic consequences. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 465–89. Developments in Sedimentology 58.CrossRefGoogle Scholar
Schäfer, A. & Utescher, T. 2014. Origin, sediment fill, and sequence stratigraphy of the Cenozoic Lower Rhine Basin (Germany) interpreted from well logs. German Journal of Geology (ZDGG) 165, 287314.Google Scholar
Schäfer, A., Utescher, T., Klett, M. & Valdivia-Manchego, M. 2005. The Cenozoic Lower Rhine Basin – rifting, sedimentation, and cyclic stratigraphy. International Journal of Earth Sciences 94, 621–39.CrossRefGoogle Scholar
Schärer, U., Berndt, J., Scherer, E.E., Kooijman, E., Deutsch, A. & Klostermann, J. 2012. Major geological cycles substantiated by U–Pb ages and εHfi of detrital zircon grains from the Lower Rhine Basin. Chemical Geology 294–295, 6374.CrossRefGoogle Scholar
van der Kolk, J. L. C. Schroeder 1898. Bijdrage tot de karteering onzer zandgronden (III). Koninklijke Akademie van Wetenschappen Amsterdam, Verhandelingen (tweede sectie) VI 4, 23 pp.Google Scholar
Schuiling, R. D., Scholten, M. J., de Meijer, R. J. & Riezebos, H. J. 1985. Grain size distribution of different minerals in a sediment as a function of their specific density. Geologie en Mijnbouw 64, 199203.Google Scholar
Schüttenhelm, R. T. E. & Laban, C. 2005. Heavy minerals, provenance and large scale dynamics of seabed sands in the Southern North Sea: Baak's (1936) heavy mineral study revisited. Quaternary International 134, 179–93.CrossRefGoogle Scholar
Sissingh, W. 2003. Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 229–63.CrossRefGoogle Scholar
Slupik, A. A., Wesselingh, F. P., Janse, A. C. & Reumer, J. W. F. 2007. The stratigraphy of the Neogene-Quaternary succession in the southwest Netherlands from the Schelphoek borehole (42G4-11/42G0022) – a sequence-stratigraphic approach. Geologie en Mijnbouw / Netherlands Journal of Geosciences 86, 317–32.CrossRefGoogle Scholar
Tatzel, M., Dunkl, I. & von Eynatten, H. 2017. Provenance of Palaeo-Rhine sediments from zircon thermochronology, geochemistry, U/Pb dating and heavy mineral assemblages. Basin Research 29, 396417.CrossRefGoogle Scholar
Tavernier, R. 1943. Le Néogène de la Belgique. Bulletin de la Société Belge de Géologie 52, 734.Google Scholar
Thamó-Bozsó, E. & Kovács, L. Ó. 2007. Evolution of Quaternary to modern fluvial network in the Mid-Hungarian Plain, indicated by heavy mineral distributions and statistical analysis of heavy mineral data. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 491514. Developments in Sedimentology 58.CrossRefGoogle Scholar
Tolosana-Delgado, R. 2012. Uses and misuses of compositional data in sedimentology. Sedimentary Geology 280, 6079.CrossRefGoogle Scholar
Tsikouras, B., Pe-Piper, G., Piper, D. J. W. & Schaffer, M. 2011. Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sedimentary Geology 237, 150–65.CrossRefGoogle Scholar
Van Adrichem Boogaert, H. A. & Kouwe, W. F. P. 1997. Stratigraphic nomenclature of the Netherlands. Mededelingen Rijks Geologische Dienst 50, 39 pp.Google Scholar
Van Andel, T.J. H., 1950. Provenance, transport and deposition of Rhine sediment. Ph.D. thesis Groningen University, Groningen, Netherlands. Published thesis.Google Scholar
Vandenberghe, N., Harris, W. B., Wampler, J. M., Houthuys, R., Louwye, S., Adriaens, R., Vos, K., Lanckacker, T., Matthijs, J., Deckers, J., Verhaegen, J., Laga, P., Westerhoff, W. & Munsterman, D. 2014. The implications of K-Ar glauconite dating of the Diest Formation on the paleogeography of the Upper Miocene in Belgium. Geologica Belgica 17, 161–74.Google Scholar
Vandenberghe, N., Laga, P., Louwye, S., Vanhoorne, R., Marquet, R., De Meuter, F., Wouters, K. & Hagemann, H. W. 2005. Stratigraphic interpretation of the Neogene marine-continental record in the Maaseik well (49W0220) in the Roer Valley Graben, NE Belgium. Memoirs of the Geological Survey of Belgium 52, 39 pp.Google Scholar
Vandenberghe, N., Laga, P., Steurbaut, E., Hardenbol, J. & Vail, P. R. 1998. Tertiary sequence stratigraphy at the southern border of the North Sea Basin in Belgium. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds Graciansky, P.-C. de, Hardenbol, J., Jacquin, T. & Vail, P. R.), pp. 119–54. SEPM Special Publication 60.CrossRefGoogle Scholar
Vandenberghe, N. & Mertens, J. 2013. Differentiating between tectonic and eustatic signals in the Rupelian Boom clay cycles (Lower Oligocene, Southern North Sea Basin). Newsletters on Stratigraphy 46, 319–37.CrossRefGoogle Scholar
Vandenberghe, N., Van Simaeys, S., Steurbaut, E., Jagt, J. W. M. & Felder, P. J. 2004. Stratigraphic architecture of the Upper Cretaceous and Cenozoic along the southern border of the North Sea Basin in Belgium. Netherlands Journal of Geosciences 83, 155–71.Google Scholar
Van Loon, A. J. & Mange, M. A. 2007. ‘In situ’ dissolution of heavy minerals through extreme weathering and the application of the surviving assemblages and their dissolution characteristics to correlation of Dutch and German silver sands. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 189213. Developments in Sedimentology 58.10.1016/S0070-4571(07)58006-4CrossRefGoogle Scholar
Verbeek, J. W., de Leeuw, C. S., Parker, N. & Wong, Th. E. 2002. Characterisation and correlation of Tertiary seismostratigraphic units in the Roer Valley Graben. Netherlands Journal of Geosciences 81, 159–66.10.1017/S0016774600022393CrossRefGoogle Scholar
Verhaegen, J., Adriaens, R., Louwye, S., Vandenberghe, N. & Vos, K. 2014. Sediment-petrological study supporting the presence of the Kasterlee Formation in the Heist-op-den-Berg and Beerzel hills, southern Antwerp Campine, Belgium. Geologica Belgica 17, 323–32.Google Scholar
Verma, S. P., Guevara, M. & Agrawal, S. 2006. Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. Journal of Earth System Sciences 115, 485528.10.1007/BF02702907CrossRefGoogle Scholar
Vermeesch, P. & Garzanti, E. 2015. Making geological sense of ‘Big Data’ in sedimentary provenance analysis. Chemical Geology 409, 20–7.10.1016/j.chemgeo.2015.05.004CrossRefGoogle Scholar
Vezzoli, G., Garzanti, E. & Monguzzi, S. 2004. Erosion in the Western Alps (Dora Baltea basin): 1. Quantifying sediment provenance. Sedimentary Geology 171, 227–46.Google Scholar
Vinken, R. (ed.) 1988. The Northwest European Tertairy Basin: Geologisches Jahrbuch, Reihe A, H. 100, 508 pp.Google Scholar
von Eynatten, H., Barceló-vidal, C. & Pawlowsky-Glahn, V. 2003. Composition and discrimination of sandstones: a statistical evaluation of different analytical methods. Journal of Sedimentary Research 73, 4757.10.1306/070102730047CrossRefGoogle Scholar
von Eynatten, H. & Dunkl, I. 2012. Assessing the sediment factory: the role of single grain analysis. Earth-Science Reviews 115, 97120.10.1016/j.earscirev.2012.08.001CrossRefGoogle Scholar
Ward, J. H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–44.10.1080/01621459.1963.10500845CrossRefGoogle Scholar
Weltje, G. J. 2002. Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth-Science Reviews 57, 211–53.10.1016/S0012-8252(01)00076-9CrossRefGoogle Scholar
Weltje, G. J. 2004. A quantitative approach to capturing the compositional variability of modern sands. Sedimentary Geology 171, 5977.10.1016/j.sedgeo.2004.05.010CrossRefGoogle Scholar
Weltje, G. J. 2012. Quantitative models of sediment generation and provenance: state of the art and future developments. Sedimentary Geology 280, 420.10.1016/j.sedgeo.2012.03.010CrossRefGoogle Scholar
Weltje, G. J. & Brommer, M. B. 2011. Sediment-budget modelling of multi-sourced basin fills: application to recent deposits of the western Adriatic mud wedge (Italy). Basin Research 23, 291308.10.1111/j.1365-2117.2010.00484.xCrossRefGoogle Scholar
Weltje, G. J. & von Eynatten, H. 2004. Quantitative provenance analysis of sediments: review and outlook. Sedimentary Geology 171, 1–11.10.1016/j.sedgeo.2004.05.007CrossRefGoogle Scholar
Wouters, L. & Vandenberghe, N. 1994. Geologie van de Kempen. Een Synthese. Brussels: NIRAS (Nationale Instelling voor Radioactief Afval en Verrijkte Splijtstoffen), 208 pp.Google Scholar
Zack, T., von Eynatten, H. & Kronz, A. 2004. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology 171, 3758.10.1016/j.sedgeo.2004.05.009CrossRefGoogle Scholar
Ziegler, P. A. 1992. European Cenozoic rift system. Tectonophysics 208, 91111.10.1016/0040-1951(92)90338-7CrossRefGoogle Scholar
Supplementary material: File

Verhaegen et al. supplementary material

Appendix 1

Download Verhaegen et al. supplementary material(File)
File 22.6 KB
Supplementary material: File

Verhaegen et al. supplementary material

Appendix 2

Download Verhaegen et al. supplementary material(File)
File 119.3 KB