Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T15:58:11.512Z Has data issue: false hasContentIssue false

Volcanism from fissure zones and the Caldeira central volcano of Faial Island, Azores archipelago: geochemical processes in multiple feeding systems

Published online by Cambridge University Press:  03 January 2013

VITTORIO ZANON*
Affiliation:
Centro de Vulcanologia e Avaliação de Riscos Geológicos, Universidade dos Açores, Ponta Delgada, Portugal
ULRICH KUEPPERS
Affiliation:
Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität (LMU), Munich, Germany
JOSÉ MANUEL PACHECO
Affiliation:
Centro de Vulcanologia e Avaliação de Riscos Geológicos, Universidade dos Açores, Ponta Delgada, Portugal
INÊS CRUZ
Affiliation:
Departemento de Geologia and CGUL/IDL, Universidade de Lisboa, Portugal
*
Author for correspondence: [email protected]

Abstract

Magmas in Faial Island, Azores (Portugal), were mostly erupted from two fissure zones and the Caldeira central volcano during overlapping periods. The fissure zones follow extensional trends oriented WNW and ESE and erupted nepheline- to hypersthene-normative basalts and hawaiites. The Caldeira central volcano builds the central part of the island, which is cut by the fissure zones. Ne-normative basalts show similar high-field-strength element (HFSE) concentrations but higher large ion lithophile element (LILE) concentrations than hy-normative equivalents. Primitive melts were generated by small (3–5%) degrees of partial melting of garnet-bearing peridotite, variably enriched in incompatible elements. Overall, basalts from Faial show relatively higher LILE abundances and LILE/HFSE ratios than those of the other islands of the Azores and of many other volcanoes in the Atlantic area. This feature indicates the existence of chemical heterogeneities in the mantle sources characterized by variable degrees of metasomatism, both at local and regional scales. Hawaiites evolved from basalts through 30–40% fractional crystallization of mafic phases plus some plagioclase, in deep reservoirs, at about 430–425 MPa (~ 15 km). The Caldeira central volcano rocks range from basalts to trachytes. Basalts, produced under similar conditions as fissure basalts, evolved to trachytes through large degrees of polybaric fractional crystallization (100–760 MPa; i.e. ~ 3.6–26 km), involving olivine, clinopyroxene, feldspar and minor quantities of amphibole, biotite, apatite and oxides. In contrast, mafic magmas from the fissure zones were erupted directly onto the surface from magma reservoirs mainly located at the crust–mantle boundary.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acocella, V. & Neri, M. 2003. What makes flank eruptions? The 2001 Etna eruption and its possible triggering mechanisms. Bulletin of Volcanology 65, 517–29.CrossRefGoogle Scholar
Adam, J. & Green, T. 2006. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology 152, 117.CrossRefGoogle Scholar
Andersen, D. J. & Lindsley, D. H. 1985. New (and final) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. Abstracts of the American Geophysical Union 1985 Spring Meeting, EOS 66, 416.Google Scholar
Andersen, D. J., Lindsley, D. H. & Davidson, P. M. 1993. QUILF: a Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Computers and Geosciences 19, 1333–50.CrossRefGoogle Scholar
Asimow, P. D., Dixon, J. E. & Langmuir, C. H. 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems 5, Q01E16, doi: 10.1029/2003GC000568.CrossRefGoogle Scholar
Beier, C., Haase, K. M., Abouchami, W., Krienitz, M.-S. & Hauff, F. 2008. Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochemistry, Geophysics, Geosystems 9, Q12013, doi: 10.1029/2008GC002112.Google Scholar
Beier, C., Haase, K. M. & Hansteen, T. H. 2006. Magma evolution of the Sete Cidades volcano, São Miguel, Azores. Journal of Petrology 47, 1375–411.Google Scholar
Beier, C., Haase, K. M. & Turner, S. P. 2012. Conditions of melting beneath the Azores. Lithos 144–145, 111.Google Scholar
Beier, C., Stracke, A. & Haase, K. M. 2007. The peculiar geochemical signatures of São Miguel (Azores) lavas: metasomatised or recycled mantle sources? Earth and Planetary Science Letters 259, 186–99.Google Scholar
Bonatti, E. 1990. Not so hot “hot spots” in the oceanic mantle. Science 250, 107–11.Google Scholar
Borgia, A., Ferrari, L. & Pasquarè, G. 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mt. Etna. Nature 357, 231–5.Google Scholar
Borgia, A. 1994. Dynamic basis of volcanic spreading. Journal of Geophysical Research 99, 17791–804.CrossRefGoogle Scholar
Bourdon, B., Turner, S. P. & Ribe, N. M. 2005. Partial melting and upwelling rates beneath the Azores from a U-series isotope perspective. Earth and Planetary Science Letters 239, 4256.CrossRefGoogle Scholar
Cannat, M., Briais, A., Deplus, C., Escartín, J., Georgen, J., Lin, J., Mercouriev, S., Meyzen, C., Muller, M., Pouliquen, G., Rabain, A. & Da Silva, P. 1999. Mid-Atlantic Ridge–Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago. Earth and Planetary Science Letters 173, 257–69.CrossRefGoogle Scholar
Civile, D., Lodolo, E., Tortorici, L., Lanzafame, G. & Brancolini, G. 2008. Relationships between magmatism and tectonics in a continental rift: the Pantelleria Island region (Sicily Channel, Italy). Marine Geology 251, 3246.Google Scholar
Claude-Ivanaj, C., Joron, J. L. & Allègre, C. J. 2001. 238U–230Th–226Ra fractionation in historical lavas from the Azores: long-lived source heterogeneity vs. metasomatism fingerprints. Chemical Geology 176, 295310.CrossRefGoogle Scholar
Coltorti, M. & Gregoire, M. 2008. Metasomatism in oceanic and continental lithospheric mantle: introduction. In Metasomatism in Oceanic and Continental Lithospheric Mantle (eds Coltorti, M. & Gregoire, M.), pp. 19. Geological Society of London, Special Publication no. 293.Google Scholar
Corsaro, R. A., Métrich, N., Allard, P., Andronico, D., Miraglia, L. & Fourmentraux, C. 2009. The 1974 flank eruption of Mount Etna: an archetype for deep dike-fed eruptions at basaltic volcanoes and a milestone in Etna's recent history. Journal of Geophysical Research 114, B07204, doi: 10.1029/2008JB006013.Google Scholar
Corsaro, R. A. & Pompilio, M. 2004. Magma dynamics in the shallow plumbing system of Mt. Etna as recorded by compositional variations in volcanics of recent summit activity (1995–1999). Journal of Volcanology and Geothermal Research 137, 5571.CrossRefGoogle Scholar
Dañobeitia, J. J. & Canales, J. P. 2000. Magmatic underplating in the Canary Archipelago. Journal of Volcanology and Geothermal Research 103, 2741.Google Scholar
Davidson, J. P., Morgan, D. J., Charlier, B. L. A., Harlou, R. & Hora, J. M. 2007. Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annual Review of Earth and Planetary Sciences 35, 273311.CrossRefGoogle Scholar
Dias, N. A., Matias, L., Lourenço, N., Madeira, J., Carrilho, F. & Gaspar, J. L. 2007. Crustal seismic velocity structure near Faial and Pico Islands (AZORES), from local earthquake tomography. Tectonophysics 445, 301–31.Google Scholar
Donaldson, C. H. 1976. An experimental investigation of olivine morphology. Contributions to Mineralogy and Petrology 57, 187213.CrossRefGoogle Scholar
Elliott, T., Blichert-Toft, J., Heumann, A., Koetsier, G. & Forjaz, V. H. 2007. The origin of enriched mantle beneath São Miguel, Azores. Geochimica et Cosmochimica Acta 71, 219–40.CrossRefGoogle Scholar
Escartín, J., Cannat, M., Pouliquen, G., Rabain, A. & Lin, J. 2001. Crustal thickness of V-shaped ridges south of the Azores: interaction of the Mid-Atlantic Ridge (36°–39°N) and the Azores hot spot. Journal of Geophysical Research 106, B10, 2171921735, doi: 10.1029/2001JB000224.CrossRefGoogle Scholar
Féraud, G., Kaneoka, I. & Allègre, C. J. 1980. K/Ar ages and stress pattern in the Azores: geodynamic implications. Earth and Planetary Science Letters 46, 275–86.Google Scholar
França, Z. T. M., Tassinari, C. C. G., Cruz, J. V., Aparicio, A. Y., Araña, V. & Rodrigues, B. N. 2006. Petrology, geochemistry and Sr–Nd–Pb isotopes of the volcanic rocks from Pico Island – Azores (Portugal). Journal of Volcanology and Geothermal Research 156, 7189.Google Scholar
Garcia, M. O., Pietruszka, A. J., Rhodes, J. M. & Swanson, K. 2000. Magmatic processes during the prolonged Pu'u ’O'o eruption of Kilauea volcano, Hawaii. Journal of Petrology 41, 967–90.CrossRefGoogle Scholar
Green, D. H. & Ringwood, A. E. 1976. The genesis of basaltic magmas. Contributions to Mineralogy and Petrology 15, 103–90.Google Scholar
Gupta, A. K., Green, D. H. & Taylor, W. R. 1987. The liquidus surface of the system forsterite-nepheline-silica at 28 kb. American Journal of Science 287, 560–5.Google Scholar
Hildenbrand, A., Madureira, P., Ornelas Marques, F., Cruz, I., Henry, B. & Silva, P. 2008. Multi-stage evolution of a sub-aerial volcanic ridge over the last 1.3 Myr: S. Jorge Island, Azores Triple Junction. Earth and Planetary Science Letters 273, 289–98.CrossRefGoogle Scholar
Hildenbrand, A., Marques, F. O., Costa, A. C. G., Sibrant, A. L. R., Silva, P. F., Henry, B., Miranda, J. M. & Madureira, P. 2012. Reconstructing the architectural evolution of volcanic islands from combined K/Ar, morphologic, tectonic, and magnetic data: the Faial Island example (Azores). Journal of Volcanology and Geothermal Research 241–242, 3948.Google Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.Google Scholar
Klügel, A., Hansteen, T. H. & Galipp, K. 2005. Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands). Earth and Planetary Science Letters 236, 211–26.Google Scholar
Lacasse, C., Sigurdsson, H., Carey, S. N., Jóhannesson, H., Thomas, L. E. & Rogers, N. W. 2007. Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bulletin of Volcanology 69, 373–99.Google Scholar
Macdonald, G. A. 1968. Composition and origin of Hawaiian lavas. Geological Society of America Memoir 116, 477522.Google Scholar
Machado, F., Parsons, W. H., Richards, A. F. & Mulford, J. W. 1962. Capelinhos eruption of Fayal Volcano, Azores. Journal of Geophysical Research 67, 3519–29.CrossRefGoogle Scholar
Madeira, J. & Silveira, A. B. 2003. Active tectonics and first paleoseismological results in Faial, Pico and S. Jorge Islands (Azores, Portugal). Annals of Geophysics 46, 733–61.Google Scholar
Madureira, P., Mata, J., Mattielli, N., Queiroz, G. & Silva, P. 2011. Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos 126, 402–18.CrossRefGoogle Scholar
Maia, M., Goslin, J. & Gente, P. 2007. Evolution of the accretion processes along the Mid-Atlantic Ridge north of the Azores since 5.5 Ma: an insight into the interactions between the ridge and the plume. Geochemistry, Geophysics, Geosystems 8, Q03013, doi: 10.1029/2006GC001318, 19 pp.Google Scholar
McDonough, W. F. & Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.Google Scholar
McKenzie, D. A. N. & O'Nions, R. K. 1991. Partial melt distributions from inversion of rare Earth element concentrations. Journal of Petrology 32, 1021–91.Google Scholar
McKenzie, D. A. N. & O'Nions, R. K. 1995. The source regions of Ocean Island Basalts. Journal of Petrology 36, 133–59.CrossRefGoogle Scholar
Melzer, S. & Wunder, B. 2001. K-Rb-Cs partitioning between phlogopite and fluid: experiments and consequences for the LILE signatures of island arc basalts. Lithos 59, 6990.CrossRefGoogle Scholar
Métrich, N., Bizouard, H. & Varet, J. 1981. Petrology of the volcanic series of Fayal, Azores. Bulletin Volcanologique 44, 7193.Google Scholar
Millet, M. A., Doucelance, R., Baker, J. A. & Schiano, P. 2009. Reconsidering the origins of isotopic variations in Ocean Island Basalts: insights from fine-scale study of São Jorge Island, Azores archipelago. Chemical Geology 265, 289302.CrossRefGoogle Scholar
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. & Hung, S. H. 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–43.Google Scholar
Moreira, M., Doucelance, R., Dupré, B. & Allègre, C. J. 1999. Helium and lead isotope geochemistry in the Azores. Earth and Planetary Science Letters 169, 189205.CrossRefGoogle Scholar
Morimoto, N. 1989. Nomenclature of pyroxenes. Canadian Mineralogist 27, 143–56.Google Scholar
Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems 9, Q04006, doi: 10.1029/2007GC001743, 19 pp.Google Scholar
Münn, S., Walter, T. R. & Klügel, A. 2006. Gravitational spreading controls rift zones and flank instability on El Hierro, Canary Islands. Geological Magazine 143, 257–68.Google Scholar
O'hara, M. J. 1968. The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Science Reviews 4, 69133 Google Scholar
Pacheco, J. M. 2001. Processos associados ao desenvolvimento de erupções vulcânicas hidromagmáticas na Ilha do Faial e sua interpretação numa perspectiva de avaliação do hazard e minimização do risco. Ph.D. thesis, Departamento de Geociências, Ponta Delgada: Universidade dos Açores. Published thesis.Google Scholar
Peccerillo, A., Barberio, M. R., Yirgu, G., Ayalew, D., Barbieri, M. & Wu, T. W. 2003. Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian Rift. Journal of Petrology 44, 2003–32.Google Scholar
Peccerillo, A., Donati, C., Santo, A. P., Orlando, A., Yirgu, G. & Ayalew, D. 2007. Petrogenesis of silicic peralkaline rocks in the Ethiopian Rift: geochemical evidence and volcanological implications. Journal of African Earth Sciences 48, 161–73.Google Scholar
Peccerillo, A., Frezzotti, M. L., De Astis, G. & Ventura, G. 2006. Modelling the magma plumbing system of Vulcano (Aeolian Islands, Italy) by integrated fluid-inclusions geobarometry, petrology and geophysics. Geology 34, 1720.Google Scholar
Prytulak, J. & Elliott, T. 2009. Determining melt productivity of mantle sources from 238U-230Th and 235U-231Pa disequilibria; an example from Pico Island, Azores. Geochimica et Cosmochimica Acta 73, 2103–22.Google Scholar
Putirka, K. 2008. Thermometers and barometers for volcanic systems. In Minerals, Inclusions and Volcanic Processes (eds Putirka, K. & Tepley, F.), pp. 61120. Reviews in Mineralogy and Geochemistry 69. Mineralogical Society of America.Google Scholar
Ridolfi, F. & Renzulli, A. 2012. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contributions to Mineralogy and Petrology 163, 877–95.Google Scholar
Robinson, J. A. C. & Wood, B. J. 1998. The depth of the spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters 164, 277–84.Google Scholar
Ryan, M. P., Koyanagi, R. Y. & Fiske, R. S. 1981. Modeling the three dimensional structure of macroscopic magma transport systems: application to Kilauea Volcano, Hawaii. Journal of Geophysical Research 86, 7111–29.CrossRefGoogle Scholar
Scambelluri, M., Herman, J., Morten, L. & Rampone, E. 2006. Melt- versus fluid-induced metasomatism in spinel to garnet wedge peridotites (Ulten Zone, Eastern Italian Alps): clues from trace element and Li abundances. Contributions to Mineralogy and Petrology 151, 372–94.CrossRefGoogle Scholar
Schaefer, B. F., Turner, S., Parkinson, I., Rogers, N. & Hawkesworth, C. 2002. Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume. Nature 420, 304–7.Google Scholar
Schilling, J. G., Bergeron, M. B. & Evans, R. 1980. Halogens in the mantle beneath the North Atlantic. Philosophical Transactions of the Royal Society of London 297, 147–78.Google Scholar
Schwarz, S., Klügel, A. & Wohlgemuth-Ueberwasser, C. 2004. Melt extraction pathways and stagnation depths beneath the Madeira and Desertas rift zones (NE Atlantic) inferred from barometric studies. Contributions to Mineralogy and Petrology 147, 228–40.CrossRefGoogle Scholar
Searle, R. 1980. Tectonic pattern of the Azores spreading centre and triple junction. Earth and Planetary Science Letters 51, 415–34.CrossRefGoogle Scholar
Simon, N. S. C., Neumann, E. R., Bonadiman, C., Coltorti, M., Delpech, G., Gregoire, M. & Widom, E. 2008. Ultra-refractory domains in the oceanic mantle lithosphere sampled as mantle xenoliths at ocean islands. Journal of Petrology 49, 1223–51.Google Scholar
Storey, M. 1981. Trachytic pyroclastics from Água de Pau volcano, São Miguel, Azores: evolution of a magma body over 4,000 years. Contributions to Mineralogy and Petrology 78, 423–32.CrossRefGoogle Scholar
Stormer, J. C. & Nicholls, J. 1978. XLFRAC: a program for the interactive testing of magmatic differentiation models. Computers & Geosciences 4, 143–59.CrossRefGoogle Scholar
Turner, S., Hawkesworth, C., Rogers, N. & King, P. 1997. U-Th isotope disequilibria and ocean island basalt generation in the Azores. Chemical Geology 139, 145–64.Google Scholar
Turner, S., Tonarini, S., Bindeman, I., Leeman, W. P. & Schaefer, B. F. 2007. Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr. Nature 447, 702–5.Google Scholar
Vogt, P. R. & Jung, W. Y. 2004. The Terceira Rift as hyper-slow, hotspot-dominated oblique spreading axis: a comparison with other slow-spreading plate boundaries. Earth and Planetary Science Letters 218, 7790.Google Scholar
Walter, T. R., Klügel, A. & Münn, S. 2006. Gravitational spreading and formation of new rift zones on overlapping volcanoes. Terra Nova 18, 2633.Google Scholar
Wass, S. Y. 1979. Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos 12, 115–32.Google Scholar
White, W. M., Tapia, M. D. M. & Schilling, J. G. 1979. The petrology and geochemistry of the Azores Islands. Contributions to Mineralogy and Petrology 69, 201–13.Google Scholar
Widom, E., Carlson, R. W., Gill, J. B. & Schmincke, H.-U. 1997. Th–Sr–Nd–Pb isotope and trace element evidence for the origin of the São Miguel, Azores, enriched mantle source. Chemical Geology 140, 4968.CrossRefGoogle Scholar
Widom, E. & Shirey, S. B. 1996. Os isotope systematics in the Azores: implications for mantle plume sources. Earth and Planetary Science Letters 142, 451–65.CrossRefGoogle Scholar
Zack, T., Foley, S. F. & Jenner, G. A. 1997. A consistent partition coefficient set for clinopyroxene, amphibole and garnet from laser ablation microprobe analysis of garnet pyroxenites from Kakanui, New Zealand. Neues Jahrbuch fur Mineralogie-Abhandlungen 172, 2341.CrossRefGoogle Scholar
Zanon, V., Frezzotti, M. L. & Peccerillo, A. 2003. Magmatic feeding system and crustal magma accumulation beneath Vulcano Island (Italy): evidence from fluid inclusions in quartz xenoliths. Journal of Geophysical Research 108, 2298–310.Google Scholar
Supplementary material: File

Zanon Supplementary Material

Appendix

Download Zanon Supplementary Material(File)
File 167.8 KB