Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T15:50:43.717Z Has data issue: false hasContentIssue false

Triassic shoshonitic dykes from the northern North China craton: petrogenesis and geodynamic significance

Published online by Cambridge University Press:  09 March 2011

LEBING FU*
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
JUNHAO WEI
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
TIMOTHY M. KUSKY
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, Three Gorges Geohazard Research Centre, China University of Geosciences, Wuhan 430074, China
HUAYONG CHEN
Affiliation:
ARC Centre of Excellence in Ore Deposits, University of Tasmania, Tasmania 7001, Australia
JUN TAN
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
YANJUN LI
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
LINGJUN KONG
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
YONGJIAN JIANG
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
*
Author for correspondence: [email protected]

Abstract

Zircon U–Pb ages, major and trace element geochemistry and Sr, Nd and Pb isotope compositions of diorite and diorite porphyry dykes from the Jinchanggouliang (JCGL) gold ore field on the northern margin of the North China craton (NCC) were studied to investigate their sources, petrogenesis and geodynamic significance. LA-ICP-MS zircon U–Pb dating reveals three major age groups of 2500 Ma (n = 2), 253 ± 7 Ma (n = 5) and 227 ± 1 Ma (n = 9). The inherited ages of 2500 Ma, contemporary with the Archaean NCC continental growth, imply that crustal material was involved in the magma source. The igneous zircons with a concordia age of 227 ± 1 Ma may record the emplacement age of the JCGL dykes. Both diorite and diorite porphyry exhibit a wide range of SiO2 and MgO contents and are characterized by high concentrations of Na2O+K2O and Al2O3, and low abundances of P2O5 and TiO2. They are enriched in large ion lithophile elements and light rare earth elements without significant Eu anomalies, and depleted in high-field-strength elements; all are categorized as shoshonitic rocks. All samples show a narrow range of Sr isotope compositions with initial 87Sr/86Sr ratios from 0.70394 to 0.70592, variable εNd(t) values (1.1 to −12.0) and TDM2 ages of 913–1972 Ma. Their Pb isotope compositions form continuous variation trends and plot in the fields between enriched mantle 1 (EM1) and lower continental crust (LCC). The above results suggest that the JCGL dykes studied could have been derived from mixing of lower crust, lithospheric mantle of the NCC and ascending asthenospheric melt in a post-orogenic extensional geodynamic setting. These shoshonitic dykes, together with the geochronological data of regional ENE-trending retrograded eclogites, ophiolites, continental arc magmatic belt, A-type granite, alkaline intrusions and metamorphic core complex from the northern NCC and Central Asian Orogenic Belt (CAOB) suggest that closure of the Palaeo-Asian Ocean (i.e. stage of pre-collision to collision) had completed during latest Permian to earliest Triassic time, and that the CAOB was subsequently tectonically dominated by post-orogenic extensional regimes. The involvement of asthenospheric melt in the magma source implies that the sub-continental lithospheric mantle (SCLM) of the NCC had been modified, and the onset of lithospheric destruction and thinning beneath the northern NCC may have occurred in Middle–Late Triassic time as a result of post-orogenic subducting slab detachment and lithospheric delamination.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M. G., Lentz, D. R., Shaw, C. S. J., Williams, P. F., Archibald, D. A. & Cousens, B. 2005. Eocene shoshonitic mafic dykes intruding the Monashee Complex, British Columbia: a petrogenetic relationship with the Kamloops Group volcanic sequence. Canadian Journal of Earth Sciences 42, 1124.CrossRefGoogle Scholar
Anderson, T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Canning, J. C., Henney, P. J., Morrison, M. A. & Gaskarth, J. W. 1996. Geochemistry of late Caledonian minettes from Northern Britain: implications for the Caledonian sub-continental lithospheric mantle. Mineralogical Magazine 60, 221–36.CrossRefGoogle Scholar
Chen, B., Jahn, B. M. & Tian, W. 2009. Evolution of the Solonker suture zone: constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences 34, 245–57.CrossRefGoogle Scholar
Chen, B., Jahn, B. M., Wilde, S. & Xu, B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics 328, 157–82.CrossRefGoogle Scholar
Chen, B., Jahn, B. M. & Zhai, M. G. 2003. Sr–Nd isotopic characteristics of the Mesozoic magmatism in the Taihang–Yanshan orogen, North China craton, and implications for Archaean lithosphere thinning. Journal of the Geological Society, London 160, 963–70.CrossRefGoogle Scholar
Chen, D., Sun, J. G., Liang, S. N., Feng, W., Chang, Y., Chen, L. & Men, L. J. 2008. Sr-Nd isotope characteristics and petrogenesis of dykes from Jinchanggouliang. In Proceedings of the 9th Chinese Mineral Deposits Meeting (eds Chen, Y. C., Xue, C. J. & Zhang, C. Q.), pp. 446–8. Beijing: Geological publishing house (in Chinese).Google Scholar
Chen, J. Q., Sun, J. G., Piao, S. C., Zhao, J. K. & Zhai, Y. F. 2005. Genesis and significance of dark dikes in the Jinchanggouliang mine area, Inner Mongolia: evidences from geochemistry of the major and trace elements. Journal of Jilin University (Earth Science Edition) 35, 707–13 (in Chinese with English abstract).Google Scholar
Chen, B. & Zhai, M. G. 2003. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle. Geological Magazine 140, 8793.CrossRefGoogle Scholar
Chistyakova, S. & Latypov, R. 2008. Fine-scale chemical zonation in small mafic dykes, Kestiö Island, SW Finland. Geological Magazine 146, 485–96.CrossRefGoogle Scholar
Cope, T., Ritts, B. D., Darby, B. J., Fildani, A. & Graham, S. A. 2005. Late Paleozoic sedimentation on the northern margin of the North China block: implications for regional tectonics and climate change. International Geology Review 47, 270–96.CrossRefGoogle Scholar
Currie, K. L. & Williams, P. R. 1993. An Archean calc-alkaline lamprophyre suite, northeastern Yilgarn Block, western Australia. Lithos 31, 3350.CrossRefGoogle Scholar
Davis, G. A., Xu, B., Zheng, Y. D. & Zhang, W. J. 2004. Indonesian extension in the Solonker suture zone: the Sonid Zuoqi core complex, Inner Mongolian, China. Earth Science Frontiers 11 (3), 135–44.Google Scholar
Davis, G. A., Zheng, Y., Wang, C., Darby, B. J., Zhang, C. & Gehrels, G. E. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China. In Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From continental assembly to intracontinental deformation (eds Hendrix, M. S. & Davis, G. A.), pp. 171–97. Geological Society of America, Memoir no. 194.Google Scholar
Gao, S., Rudnick, R. L., Carlson, R. W., McDonough, W. F. & Liu, Y. S. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters 198, 307–22.CrossRefGoogle Scholar
Han, B. F., Kagami, H. & Li, H. M. 2004. Age and Nd-Sr isotopic geochemistry of the Guangtoushan alkaline granite, Hebei Province, China: implications for early Mesozoic crust-mantle interaction in North China Block. Acta Petrologica Sinica 20, 1375–88 (in Chinese with English abstract).Google Scholar
Han, Q. J., Shao, J. A. & Zhou, R. 2000. Petrology, geochemistry and petrogenesis of early Mesozoic diorites in Harqin area, Inner-Mongolia. Acta Petrologica Sinica 16, 385–91 (in Chinese with English abstract).Google Scholar
Hart, C. J. R., Goldfrab, R. J., Qiu, Y. M., Snee, L., Miller, L. D. & Miller, M. L. 2002. Gold deposits of the northern margin of the North China Craton: multiple late Paleozoic-Mesozoic mineralizing events. Mineralium Deposita 37, 326–51.CrossRefGoogle Scholar
Hong, D. W., Huang, H. Z., Xiao, Y. J., Xu, H. M. & Jin, M. Y. 1995. Permian alkaline granites in central Inner Mongolia and their geodynamic significance. Acta Geologica Sinica 8, 2739.Google Scholar
Hong, D. W., Wang, S. G., Xie, X. L. & Zhang, J. S. 2000. Genesis of positive εNd(t) granitoids in the Da Hinggan Mts–Mongolia orogenic belt and continental crust growth. Earth Science Frontiers 7, 441–56 (in Chinese with English abstract).Google Scholar
Hou, G. T., Wang, Y. X. & Hari, K. R. 2010. The Late Triassic and Late Jurassic stress fields and tectonic transmission of North China craton. Journal of Geodynamics 50, 318–24.CrossRefGoogle Scholar
Hou, G. T., Wang, C. C., Li, J. H. & Qian, X. L. 2006. Late Paleoproterozoic extention and paleostress field reconstruction of the North China Craton, Tectonophysics 422, 8998.CrossRefGoogle Scholar
Jahn, B. M. & Condie, K. C. 1995. Evolution of the Kaapvaal craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites. Geochimica et Cosmochimica Acta 59, 2239–58.CrossRefGoogle Scholar
Jahn, B. M., Wu, F. Y., Lo, C. H. & Tsai, C. H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology 157, 119–46.CrossRefGoogle Scholar
Jian, P., Liu, D. Y., Kröner, A., Windley, B. F., Shi, Y. R., Zhang, W., Zhang, F. Q., Miao, L. C., Zhang, L. Q. & Tomurhuu, D. 2010. Evolution of a Permian intraoceanic arc–trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 34, 245–57.Google Scholar
Kusky, T. M., Li, J. H. & Santosh, M. 2007. The Paleoproterozoic north Hebei orogen: North China craton's collisional suture with Columbia supercontinent. Gondwana Research 12, 428.CrossRefGoogle Scholar
Kusky, T. M., Windley, B. F. & Zhai, M. G. 2007 a. Tectonic evolution of the North China Block: from orogen to craton to orogen. In Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R.), pp. 134. Geological Society of London, Special Publication no. 280.Google Scholar
Kusky, T. M., Windley, B. F. & Zhai, M. G. 2007b. Lithospheric thinning in eastern Asia; constraints, evolution, and tests of models. In Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R.), pp. 331–43. Geological Society of London, Special Publication no. 280.Google Scholar
Liégeois, J. 1998. Preface – Some words on the post-collisional magmatism. Lithos 45, xvxvii.Google Scholar
Lin, B. Q., Shang, L., Shen, E. S., Zhang, L. D., Taylor, B. E., Robert, F., Mortersen, J. K. & Poulsen, K. H. 1993. Vein gold deposits of the Liaoxi Uplift, North China Platform. In Proceedings of the Eighth Quadrennial IAGOD Symposium (ed. Maurice, Y. T.), pp. 597612. Ottawa: E. Schweizerbart'sche Verlagsbuchhandlung, Science Publishers.Google Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537–71.CrossRefGoogle Scholar
Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Qi, L., Zhong, H., Xiao, T. F., Qi, Y. Q., Wang, T. & Coulson, I. M. 2008 a. Zircon U–Pb geochronology and major, trace elemental and Sr–Nd–Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China: constrains on their petrogenesis and geodynamic significance. Chemical Geology 255, 329–45.CrossRefGoogle Scholar
Liu, D., Nutman, A. P., Compston, W., Wu, J. & Shen, Q. 1992. Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339–42.2.3.CO;2>CrossRefGoogle Scholar
Liu, Y. S., Zong, K. Q., Kelemen, P. B. & Gao, S. 2008 b. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology 247, 133–53.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User's manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no. 4.Google Scholar
Lugmair, G. W. & Marti, K. 1978. Lunar initial 134Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
Luo, Z. H., Wei, Y., Xin, H. T., Zhan, H. M., Ke, S. & Li, W. T. 2006. Petrogenesis of the post orogenic dike complex – constraints to lithosphere delamination. Acta Petrologica Sinica 22, 1672–84 (in Chinese with English abstract).Google Scholar
Mayborn, K. R., Lesher, C. E. & Connelly, J. N. 2008. Geochemical constraints on the late-stage evolution of basaltic magma as revealed by composite dikes within the Kangamiut dike swarm, West Greenland. Lithos 104, 428–38.CrossRefGoogle Scholar
Menzies, M., Xu, Y. G., Zhang, H. F. & Fan, W. M. 2007. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96, 121.CrossRefGoogle Scholar
Miao, L. C., Fan, W. M., Liu, D. Y., Zhang, F. Q., Shi, Y. R. & Guo, F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asia Earth Science 32, 348–70.CrossRefGoogle Scholar
Miao, L. C., Fan, W. M., Qiu, Y. M., Mcnaughton, N. J. & Groves, D. I. 2003. Zircon SHRIMP U-Pb geochronology of the granitoid intrusions from Jinchanggouliang-Erdaogou gold orefield and its significance. Acta Petrologica Sinica 19, 7180 (in Chinese with English abstract).Google Scholar
Miao, L., Zhang, F., Fan, W. & Liu, D. 2007. Phanerozoic evolution of the Inner Mongolia-Daxinganling orogenic belt in North China: constraints from geochronology of ophiolites and associated formations. In Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R.), pp. 223237. Geological Society of London, Special Publication no. 280.Google Scholar
Mu, B. L., Shao, J. A., Chu, Z. Y., Yan, G. H. & Qiao, G. S. 2001. Sm-Nd age and Sr, Nd isotopic characteristics of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei Province, China. Acta Petrologica Sinica 17, 358–65 (in Chinese with English abstract).Google Scholar
Müller, D., Rock, N. M. S. Groves, D. I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a plot study. Mineralogy and Petrology 46, 259–89.CrossRefGoogle Scholar
Ni, Z. Y., Zhai, M. G., Wang, R. M. & Tong, Y. 2006. Late Paleozoic retrograded eclogites from within the northern margin of the North China Craton: evidence for subduction of the Paleo-Asian Ocean. Gondwana Research 9, 209–24.CrossRefGoogle Scholar
Pearce, J. A. 1982. Trace element characteristic of lavas from destructive plate boundaries. In Andesites: Orogenic Andesites and Related Rocks (ed. Thorpe, R. S.), pp. 528–48. New York: Wiley.Google Scholar
Pe-Piper, G., Piper, D. J. W., Koukouvelas, I., Dolansky, L. M. & Kokkalas, S. 2009. Postorogenic shoshonitic rocks and their origin by melting underplated basalts: the Miocene of Limnos, Greece. Geological Society of America Bulletin 121, 3954.Google Scholar
Prelevic, D., Foley, S. F., Cvetkovi, V. & Romer, R. L. 2004. Origin of minette by mixing of lamproite and dacite magmas in Veliki Majdan, Serbia. Journal of Petrology 45, 759–92.CrossRefGoogle Scholar
Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology 36, 891931.CrossRefGoogle Scholar
Rudnick, R. L. & Fountain, D. M. 1995. Nature and compositions of the continental crust: a lower crustal perspective. Reviews of Geophysics 33, 267309.CrossRefGoogle Scholar
Rudnick, R. L., Gao, S., Ling, W. L., Liu, Y. S. & McDonough, W. F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 77, 609–37.CrossRefGoogle Scholar
Scarrow, J. H., Leat, P. T., Wareham, C. D. & Millar, I. L. 1998. Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith: a record of arc evolution. Contributions to Mineralogy and Petrology 131, 289305.Google Scholar
Shang, Q. H. 2004. Occurrences of Permian radiolarians in central and eastern Nei Mongol (Inner Mongolia) and their geological significance to the Northern China Orogen. Chinese Science Bulletin 49, 2613–19.CrossRefGoogle Scholar
Shao, J. A. 1991. Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate. Beijing: Publishing House of Peking University, 138 pp. (in Chinese with English abstract).Google Scholar
Shao, J., Han, Q. & Li, H. 2000. Discovery of the early Mesozoic granulite xenoliths in North China Craton. Science in China Series D: Earth Science: 43, 245–52.CrossRefGoogle Scholar
Shao, J. A., Han, Q. J., Zhang, L. Q. & Mu, B. L. 1999. Cumulate complex xenoliths in the early Mesozoic in eastern Inner Mongolia. Chinese Science Bulletin 44, 1272–9.CrossRefGoogle Scholar
Shao, J. A., Zhang, R. H., Han, Q. J., Zhang, L. Q., Qiao, G. S. & Shang, H. Q. 2000. Geochronology of cumulate xenoliths and their host diorites from Harqin, eastern Nei Mongol. Geochimica 29, 331–6 (in Chinese with English abstract).Google Scholar
Shao, J. A., Zhang, Y. B., Zhang, L. Q., Wang, P. Y. & Guo, F. 2003. Early Mesozoic dike swarms of carbonatites and lamprophyres in Datong area. Acta Petrologica Sinica 19, 93104 (in Chinese with English abstract).Google Scholar
She, H. Q., Wang, Y. W., Li, Q. H., Zhang, D. Q., Feng, C. Y. & Li, D. X. 2006. The mafic granulite xenoliths and its implications to mineralization in Chaihulanzi gold deposit, Inner Mongolia, China. Acta Geologica Sinica 80, 863–75 (in Chinese with English abstract).Google Scholar
She, H. Q., Xu, G. Z., Zhou, R., Wang, Y. F., Yan, D. P., Yang, Z. D. & Yang, Y. 2000. Tectonic and magmatic activities in early Mesozoic and their controlling on gold mineralization in Honghuagou gold ore field, Inner Mongolia. Earth Science – Journal of China University of Geosciences 12, 408–16 (in Chinese with English abstract).Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tan, J., Wei, J. H., Guo, L. L., Zhang, K. Q., Yao, C. L., Lu, J. P. & Li, H. M. 2008. LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes, Guocheng, Jiaodong Peninsula: implications for North China Craton lithosphere evolution. Science in China Series D: Earth Science 51, 1483–500.CrossRefGoogle Scholar
Tan, J., Wei, J. H., Li, Y. H., Tan, W. J., Guo, D. Z. & Yang, C. F. 2007. Geochemical characteristics of late Mesozoic dikes, Jiaodong Peninsula, North China Craton: petrogenesis and geodynamic setting. International Geology Review 49, 931–46.CrossRefGoogle Scholar
Tang, K. D. 1990. Tectonic development of Paleozoic foldbelts at the northern margin of the Sino–Korean craton. Tectonics 9, 249–60.CrossRefGoogle Scholar
Thompson, R. N., Leat, P. T., Dickin, A. P., Morrison, M. A., Hendry, G. L. & Gibson, S. A. 1990. Strongly potassic mafic magmas from lithospheric mantle source during continental extension and heating: evidence from Miocene minettes of northwest Colorado, U.S.A. Earth and Planetary Science Letters 98, 139–54.CrossRefGoogle Scholar
Tian, W., Chen, B., Liu, C. Q. & Zhang, H. F. 2007. Zircon U-Pb age and Hf isotopic composition of the Xiaozhangjiakou ultramafic pluton in northern Hebei. Acta Petrologica Sinica 23, 583–90 (in Chinese with English abstract).Google Scholar
Vaughan, A. P. M. 1996. A tectonomagmatic model for the genesis and emplacement of Caledonian calc-alkaline lamprophyres. Journal of the Geological Society, London 253, 613–24.CrossRefGoogle Scholar
Wan, T. F. 2004. Tectonics of China. Beijing: Geology Publishing House, pp.152162 (in Chinese with English abstract).Google Scholar
Wang, Z., Xu, Z. X. & Yang, F. H. 1989. Geology and genesis of Erdaogou gold deposit, Liaoning Province. Journal of Changchun University of Earth Science 19, 287–97 (in Chinese).Google Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Windley, B. F., Alexeiev, D., Xiao, W. J., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian orogenic belt. Journal of the Geological Society, London 164, 3148.CrossRefGoogle Scholar
Wu, F. Y., Jahn, B. M., Wilde, S. A., Lo, C. H., Yui, T. F., Lin, Q., Ge, W. C. & Sun, D. Y. 2003. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67, 191204.CrossRefGoogle Scholar
Wu, F. Y., Jahn, B. M., Wilde, S. A. & Sun, D. Y. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics 328, 89113.CrossRefGoogle Scholar
Wu, F. Y., Walker, R. J., Yang, Y. H., Yuan, H. L. & Yang, J. H. 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China craton. Geochimica et Cosmochimica Acta 70, 5013–34.CrossRefGoogle Scholar
Wu, F. Y., Xu, Y. G., Gao, S. & Zheng, J. P. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica 24, 1145–74 (in Chinese with English abstract).Google Scholar
Xiao, W. J., Windley, B. F., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22, 1484–505.CrossRefGoogle Scholar
Xu, B. & Chen, B. 1997. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China plate in northern Inner Mongolia. Science in China Series D: Earth Science 40, 463–9.CrossRefGoogle Scholar
Xu, Y. G., Li, H. Y., Pang, C. J. & He, B. 2009. On the timing and duration of the destruction of the North China craton. Chinese Science Bulletin 54, 3379–96.CrossRefGoogle Scholar
Xu, X. W., Zhang, B. L., Qin, K. Z. & Cai, X. P. 2007. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, western Yunnan, China. Lithos 99, 339–62.CrossRefGoogle Scholar
Yan, G. H., Mu, B. L., Xu, B. L., He, G. Q., Tan, L. K., Zhao, H., He, Z. F., Zhang, R. H. & Qiao, G. S. 1999. Triassic alkaline intrusives in the Yanliao-Yinshan area: their chronology, Sr, Nd and Pb isotopic characteristics and their implication. Science in China Series D: Earth Science 42, 582–7.CrossRefGoogle Scholar
Yang, J. H., Chung, S. L., Zhai, M. G. & Zhou, X. H. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos 73, 145–60.CrossRefGoogle Scholar
Zhang, H. F., Goldstein, S. L., Zhou, X. H., Sun, M., Zheng, J. P. & Cai, Y. 2008 a. Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contributions to Mineralogy and Petrology 155, 271–93.CrossRefGoogle Scholar
Zhang, H. F., Sun, M., Zhou, X. H., Fan, W. M., Zhai, M. G. & Yin, J. F. 2002. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology 144, 241–53.CrossRefGoogle Scholar
Zhang, H. F., Sun, M., Zhou, M. F., Fan, W. M., Zhou, X. H. & Zhai, M. G. 2004. Highly heterogeneous late Mesozoic lithospheric mantle beneath the North China craton: evidence from Sr–Nd–Pb isotopic systematics of mafic igneous rocks. Geological Magazine 141, 5562.Google Scholar
Zhang, H. F. & Yang, Y. H. 2007. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China craton. Acta Petrologica Sinica 23, 285–94 (in Chinese with English abstract).Google Scholar
Zhang, X. H., Zhang, H. F., Tang, Y. J., Wilde, S. A. & Hu, Z. C. 2008 b. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asia Orogenic Belt. Chemical Geology 249, 262–81.CrossRefGoogle Scholar
Zhang, X. H., Zhang, H. F., Zhai, M. G., Wilde, S. A. & Xie, L. W. 2009 a. Geochemistry of Middle Triassic gabbros from northern Liaoning, North China: origin and tectonic implications. Geological Magazine 146, 540–51.CrossRefGoogle Scholar
Zhang, S. H., Zhao, Y., Liu, X. C., Liu, D. Y., Chen, F. K., Xie, L. W. & Chen, H. H. 2009 b. Late Paleozoic to early Mesozoic mafic–ultramafic complexes from the northern North China Block: constraints on the composition and evolution of the lithospheric mantle. Lithos 110, 229–46.CrossRefGoogle Scholar
Zhang, S. H., Zhao, Y., Song, B., Hu, J. M., Liu, S. W., Yang, Y. H., Chen, F. K., & Liu, X. M. 2009 c. Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China craton: geochronology, petrogenesis, and tectonic implications. Geological Society of America Bulletin 121, 181200.Google Scholar
Zhang, S. H., Zhao, Y., Song, B., Yang, Z. Y., Hu, J. M. & Wu, H. 2007. Carboniferous granitic plutons from the northern margin of the North China block: implications for a late Palaeozoic active continental margin. Journal of the Geological Society, London 164, 451–63.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2001. Archaean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research 107, 4573.CrossRefGoogle Scholar
Zheng, J. P., Griffin, W. L., O'reilly, S. Y., Lu, F. X., Wang, C. Y., Zhang, M., Wang, F. Z. & Li, H. M. 2004 a. 3.6 Ga lower crust in central China: new evidence on the assembly of the North China craton. Geology 32, 229–32.CrossRefGoogle Scholar
Zheng, J. P., Griffin, W. L., O'reilly, S. Y., Lu, F. X., Yu, C. M. & Li, H. M. 2004 b. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the North China Craton. Contributions to Mineralogy and Petrology 148, 79103.CrossRefGoogle Scholar
Zheng, J. P. & Lu, F. X. 1999. Mantle xenoliths from kimberlites, Shandong and Liaoning: Paleozoic mantle character and its heterogeneity. Acta Petrologica Sinica 15, 6574 (in Chinese with English abstract).Google Scholar
Zhou, X. H., Yin, J. F., Zhang, L. C. & Zhang, Y. T. 2009. The petrogenesis of late Mesozoic volcanic rock and the contributions from ancient micro-continents: constraints from the zircon U-Pb dating and Sr-Nd-Pb-Hf isotopic systematics. Earth Science – Journal of China University of Geosciences 34, 110 (in Chinese with English abstract).Google Scholar
Zhou, X. H., Zhang, G. H., Yang, J. H., Chen, W. J. & Sun, M. 2001. Sr-Nd-Pb isotope mapping of late Mesozoic volcanic rocks across northern margin of North China Craton and implications to geodynamic processes. Geochimica 30, 1023 (in Chinese with English abstract).Google Scholar
Zindler, A. & Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar