Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T14:37:15.215Z Has data issue: false hasContentIssue false

Timing of plutonism in the Gällivare area: implications for Proterozoic crustal development in the northern Norrbotten ore district, Sweden

Published online by Cambridge University Press:  27 April 2017

ZMAR SARLUS*
Affiliation:
Division of Geosciences and Environmental Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
ULF B. ANDERSSON
Affiliation:
Luossavaara-Kiirunavaara AB, SE-981 86 Kiruna, Sweden
TOBIAS E. BAUER
Affiliation:
Division of Geosciences and Environmental Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
CHRISTINA WANHAINEN
Affiliation:
Division of Geosciences and Environmental Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
OLOF MARTINSSON
Affiliation:
Division of Geosciences and Environmental Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
ROGER NORDIN
Affiliation:
Boliden Mineral AB, SE- 936 81 Boliden, Sweden
JOEL B.H. ANDERSSON
Affiliation:
Division of Geosciences and Environmental Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden Luossavaara-Kiirunavaara AB, SE-981 86 Kiruna, Sweden
*
Author for correspondence: [email protected]

Abstract

Zircon ion probe (secondary-ion mass spectrometry or SIMS) data from a set of intrusive rocks emplaced in the vicinity of major ore bodies, as well as from large igneous intrusions in the Gällivare area, gave the following results: (1) the Dundret ultramafic–mafic layered complex (1883±5 Ma), the Aitik granite (1883±5 Ma), the Nautanen diorite (1870±12 Ma), the Vassaravaara ultramafic–mafic layered complex (1798±4 Ma), the Aitik dolerite (1813±9 Ma), the Bergmästergruvan and Sikträsk syenites (1795±4 Ma and 1801±3 Ma, respectively) and the Naalojärvi granite (1782±5 Ma). These data broadly fall within the ranges 1.89–1.87 Ga (early Svecofennian) and 1.80–1.78 Ga (late Svecofennian), but geochronologically allow further subdivision into pulses at 1885–1880, 1875–1870, 1800 and 1780 Ma. During these events, large layered ultramafic–mafic and felsic plutonic rocks were generated with distinct overlap in time suggesting coeval felsic–mafic magmatism. Results also indicate the presence of inherited c. 1.87 Ga zircon crystals in the plutonic rocks at 1.78 Ga, supporting reworking of the previous crust. These data indicate the importance of mantle-derived mafic underplating in the process of crustal magma generation in the region. The c. 1.88 Ga event that generated ultramafic–mafic layered complexes is tentatively suggested to have played an important role in the formation of the Aitik Cu–Au porphyry system. The later event at c. 1.80 Ga, generating voluminous mafic–felsic units, is suggested to be coupled to the regional iron-oxide-copper-gold (IOCG) overprint.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alapieti, T. & Lahtinen, J. 2002. Platinum-group element mineralization in layered intrusions of northern Finland and the Kola Peninsula, Russia. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-group Elements (Ed. Cabri, L. J.), 507–46. Canadian Institute of Mining, Metallurgy, and Petroleum 54.Google Scholar
Andersen, T., Andersson, U. B., Graham, S., Åberg, G. & Simonsen, S. L. 2009. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Paleoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of Geological Society 166 (2), 233–48.Google Scholar
Andersson, U. B. 1991. Granitoid episodes and mafic-felsic magma interaction in the Svecofennian of the Fennoscandian Shield, with main emphasis on the 1.8 Ga plutonics. Precambrian Research 51, 127–49.Google Scholar
Andersson, U. B. 1997. An overview of the Fennoscandian rapakivi granite complexes, with emphasis on the Swedish occurrences. In Rapakivi Granites and Related Rocks in Central Sweden (eds Ahl, M., Andersson, U. B., Lundqvist, Th. & Sundblad, K.), pp. 3349. Geological Survey of Sweden (SGU), C Series no. 87.Google Scholar
Andersson, U. B., Eklund, O. & Claeson, D. T. 2004 a. Geochemical character of the mafic-hybrid magmatism in the Småland-Värmland belt. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of its Character and Evolution (Högdahl, K., Andersson, U. B. & Eklund, O. eds), pp. 3755. Geological Survey of Finland, Special Paper no. 37.Google Scholar
Andersson, U. B., Rutanen, H., Johansson, Å., Mansfeld, J. & Rimša, A. 2007. Characterisation of the Palaeoproterozoic mantle beneath the Fennoscandian Shield: geochemistry and isotope geology (Nd, Sr) of ~1.8 Ga mafic plutonic rocks from the Transscandinavian Igneous Belt in southeast Sweden. International Geology Reviews 49, 587–25.Google Scholar
Andersson, U. B., Sjöström, H., Högdahl, K. & Eklund, O. 2004 b. The Transscandinavian Igneous Belt: evolutionary models. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of its Character and Evolution (Högdahl, K., Andersson, U. B. & Eklund, O. eds), pp. 104–12. Geological Survey of Finland, Special Paper no. 37.Google Scholar
Barton, M. D. & Johnson, D. A. 2000. Alternative brine sources for Fe-oxide (Cu-Au) systems: Implications for hydrothermal alteration and metals. In Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective (ed. Porter, T. M.), pp. 4360. Adelaide: Australian Mineral Foundation.Google Scholar
Bergman, S., Billström, K., Persson, P. O., Skiöld, T. & Evins, P. 2006. U-Pb age evidence for repeated Palaeoproterozoic metamorphism and deformation near the Pajala shear zone in the northern Fennoscandian shield. Geologiska Föreningens i Stockholm Förhandlingar 128 (1), 720.Google Scholar
Bergman, S., Kübler, L. & Martinsson, O. 2001. Description of regional geological and geophysical maps of northern Norrbotten county (east of the Caledonian orogen). Sveriges Geologiska Undersökning Ba 56, 5100.Google Scholar
Bergström, U., Bergman, S. & Hellström, F. 2015. The Kukkola gneiss-protolith age of an Archean metatonalite, northern Sweden. Svergies Geologiska Undersökning, Rapport 2015:07, 12.Google Scholar
Billström, K., Broman, C., Eilu, P., Martinsson, O., Niranen, T., Ojala, J., Wanhainen, C. & Weihed, P. 2010. IOCG and related mineral deposits of the Northern Fennoscandian Shield. In 2010 - Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective Advances in the Understanding of IOCG Deposits Vol. 4 (ed. Porter, T. M.), pp. 381414. Adelaide: PGC Publishing.Google Scholar
Boliden. 2005. New Boliden AB. Boliden annual report 2015. Boliden in cooperation with Narva, Göteborgstryckeriet, Mölndal 2016, 124 pp. Available at: www.Boliden.com.Google Scholar
Cliff, R. A., Rickard, D. & Blake, K. 1990. Isotope systematics of the Kiruna magnetite ores, Sweden: part 1. Age of the ore. Economic Geology 85 (8), 1770–6.Google Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469500.Google Scholar
Hanski, E. J., Huhma, H., Rastas, P. & Kamenetsky, V. S. 2001. The Palaeoproterozoic Komatiite-Picrite Association of Finnish Lapland. Journal of Petrology 42, 855–76.Google Scholar
Hitzman, M. W., Oreskes, N. & Einaudi, M. T. 1992. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Resarch 58, 241–87.Google Scholar
Högdahl, K., Andersson, U. & Eklund, O. 2004. The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37, 1125.Google Scholar
Holmqvist, P. 1905. Studien über die Granite von Schweden. Alqvist & Wiksells. Bulletin of the Geological Institution of the University of Uppsala 7, 77269.Google Scholar
Johansson, Å., Andersson, U. B. & Hålenius, U. 2011. Ultrabasic-basic intrusions of Roslagen, east-central Sweden: mineralogy and geochemistry of early Svecofennian arc cumulates. Geological Journal 47, 557–93.Google Scholar
Johansson, Å. & Hålenius, U. 2013. Palaeoproterozoic mafic intrusions along the Avesta-Östhammar belt, east-central Sweden: mineralogy, geochemistry, and magmatic evolution. International Geology Review 55, 131–57.Google Scholar
Kathol, B. & Martinsson, O. 1999. Berggrunds-kartan. 30J Rensjön, 1: 50,000. Geological Survey of Sweden Ai.Google Scholar
Koistinen, T., Stephens, M. B., Bogatchev, V., Nordgulen, Ø., Wennerstrom, M. & Korhonen, J. 2001. Geological Map of the Fennoscandian Shield, Scale 1:2 000 000. Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia.Google Scholar
Lahtinen, R., Garde, A. A. & Melezhik, V. A. 2008. Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes 31, 20–8.Google Scholar
Lahtinen, R., Huhma, H., Lahaye, Y., Kousa, J. & Luukas, J. 2015. Archean–Proterozoic collision boundary in central Fennoscandia: Revisited. Precambrian Research 261, 127–65.Google Scholar
Lahtinen, R., Korja, A. & Nironen, M. 2005. Paleoproterozoic tectonic evolution. Developments in Precambrian Geology 14, 481531.Google Scholar
LKAB (Luossavaara-Kiirunavaara AB). 2015. LKAB annual and sustainability report 2015. LKAB in cooperation with Rippler Communications and Berger & Pihl, Lule Grafiska, 140 pp. Available at: www.lkab.com.Google Scholar
Ludwig, K. R. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 70 pp.Google Scholar
Lundqvist, T., Skiöld, T. & Vaasjoki, M. 2000. Archaean–Proterozoic geochronology of the Vallen-Alhamn area, northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 122, 273–80.Google Scholar
Lynch, E. P., Jönberger, J., Bauer, T. E., Sarlus, Z. & Martinsson, O. 2015. Meta-volcanosedimentary rocks in the Nautanen area, Norrbotten: preliminary lithological and deformation characteristics. Barents project 2014, Sveriges Geologiska Undersökning, Rapport 2015:30, 51 pp.Google Scholar
Martinsson, O. 1997. Paleoproterozoic greenstones at Kiruna in northern Sweden: a product of continental rifting and associated mafic-ultramafic volcanism. Paper 1 in Tectonic setting and metallogeny of the Kiruna greenstones. Ph.D. thesis, Division of Applied Geology, Luleå University of Technology. Published thesis.Google Scholar
Martinsson, O. 2004. Geology and metallogeny of the Northern Norrbotten Fe-Cu-Au Province. Society of Economic Geologists 33, 131–48.Google Scholar
Martinsson, O., Billström, K., Broman, C., Weihed, P. & Wanhainen, C. 2016. Metallogeny of the Northern Norrbotten Ore Province, northern Fennoscandian Shield with emphasis on IOCG and apatite-iron ore deposits. Ore Geology Reviews 78, 447–92.Google Scholar
Martinsson, O. & Perdahl, J.-A. 1995. Paleoproterozoic extensional and compressional magmatism in northern Sweden. Paper II in Svecofennian volcanism in northernmost Sweden (Perdahl, J.-A.). Ph.D. thesis, Division of Applied Geology, Luleå University of Technology. Published thesis.Google Scholar
Martinsson, O., Vaasjoki, M. & Persson, P. 1999. U-Pb zircon ages of Archaean to Palaeoproterozoic granitoids in the Torne-träsk-Råstojaure area, northern Sweden. In Radiometric Dating Results (ed. Bergman, S.), pp. 7090. Division of Bedrock Geology, Geological Survey of Sweden, Uppsala, Series C, 1999, 70–90.Google Scholar
Mellqvist, C., Öhlander, B., Skiöld, T. & Wikström, A. 1999. The Archaean–Proterozoic Palaeoboundary in the Luleå area, northern Sweden: field and isotope geochemical evidence for a sharp terrane boundary. Precambrian Research 96, 225–43.Google Scholar
Nyström, J. 1982. Post-Svecokarelian andinotype evolution in central Sweden. Geologische Rundschau 71 (1), 141–57.Google Scholar
Öhlander, B., Mellqvist, C. & Skiöld, T. 1999. Sm–Nd isotope evidence of a collisional event in the Precambrian of northern Sweden. Precambrian Research 93, 105–17.Google Scholar
Öhlander, B. & Skiöld, T. 1994. Diversity of 1.8 Ga potassic granitoids along the edge of the Archaean craton in northern Scandinavia: a result of melt formation at various depths and from various sources. Lithos 33, 265–83.Google Scholar
Öhlander, B., Skiöld, T., Elming, S.-Å., Claesson, S. & Nisca, D. H. 1993. Delineation and character of the Archaean-Proterozoic boundary in northern Sweden. Precambrian Research 64, 6784.Google Scholar
Romer, R. L. 1996. U-Pb systematics of stilbite-bearing low-temperature mineral assemblages from the Malmberget iron ore, northern Sweden. Geochimica et Cosmochimica Acta 60, 1951–61.Google Scholar
Romer, R., Martinsson, O. & Perdahl, J.-A. 1994. Geochronology of the Kiruna iron ores and hydrothermal alterations. Economic Geology 89, 1249–61.Google Scholar
Romer, R. & Wright, J. 1992. U-Pb dating of columbites: a geochronologic tool to date magmatism and ore deposits. Geochimica et Cosmochimica Acta 56, 2137–42.Google Scholar
Rutanen, H. & Andersson, U. B. 2009. Mafic plutonic rocks in a continental-arc setting: Geochemistry of 1.87–1.78 Ga rocks from south-central Sweden and models of their palaeotectonic setting. Geological Journal 44 (3), 241–79.Google Scholar
Sarlus, Z. 2016. Geochemical and geochronological constraints on 1.88 and 1.80 Ga magmatic events in the Gällivare area, northern Sweden. Licenciate thesis, Luleå Univervisty of Technolology, Luleå, Sweden, 33 pp. Published thesis.Google Scholar
Skiöld, T. 1979. Zircon ages from an Archaean gneiss province in northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 101, 169–71.Google Scholar
Skiöld, T. 1981. U-Pb isotope analyses from a Precambrian gneiss area in northern Sweden and their chronostratigraphic implications. Geologiska Föreningens i Stockholm Förhandlingar 103, 1725.Google Scholar
Skiöld, T. 1986. On the age of the Kiruna Greenstones, northern Sweden. Precambrian Research 32, 3544.Google Scholar
Skiöld, T. 1988. Implications of new U-Pb zircon chronology to early Proterozoic crustal accretion in northern Sweden. Precambrian Research 38, 147–64.Google Scholar
Skiöld, T., Öhlander, B. & Markkula, H. 1993. Chronology of Proterozoic orogenic processes at the Archaean continental margin in northern Sweden. Precambrian Research 64, 225–38.Google Scholar
Skiöld, T., Öhlander, B., Vocke, R. D. & Hamilton, P. J. 1988. Chemistry of Proterozoic orogenic processes at a continental margin in northern Sweden. Chemical Geology 69, 193207.Google Scholar
Smith, M., Storey, C. & Jeffries, T. 2005. LA-ICPMS U-Pb dating of titanite: New constraints on multistage geological evolution of the Norrbotten mining district, Sweden. In Proceedings of Mineral Deposit Research: Meeting the Global Challenge 829–32 pp. Berline, Heidelberg: Springer.Google Scholar
Smith, M., Storey, C., Jeffries, T. & Ryan, C. 2009. In situ U-Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden: new constraints on the timing and origin of mineralization. Journal of Petrology 50, 2063–94.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a 2-stage model. Earth and Planetary Science Letters 26, 207–21.Google Scholar
Storey, C., Smith, M. & Jeffries, T. 2007. In situ LA-ICP-MS U-Pb dating of metavolcanics of Norrbotten, Sweden: Records of extended geological histories in complex titanite grains. Chemical Geology 240, 163–81.Google Scholar
Tollefsen, E. 2014. Thermal and chemical variations in metamorphic rocks in Nautanen, Gällivare, Sweden. Master's thesis. Stockholm University, Stockholm, Sweden, 50 pp. Published thesis.Google Scholar
Vaasjoki, M. 2001. Radiometric age determinations from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geological Survey of Finland, Special Paper 33, 279 pp.Google Scholar
Wanhainen, C. 2005. On the origin and evolution of the Palaeoproterozoic Aitik Cu-Au-Ag deposit, Northern Sweden. Ph.D. thesis, Luleå Univervisty of Technolology, Luleå, Sweden, 38 pp. Published thesis.Google Scholar
Wanhainen, C., Billström, K. & Martinsson, O. 2006. Age, petrology and geochemistry of the porphyritic Aitik intrusion, and its relation to the disseminated Aitik Cu-Au-Ag deposit, northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 128, 273–86.Google Scholar
Wanhainen, C., Billström, K., Martinsson, O., Stein, H. & Nordin, R. 2005. 160 Ma of magmatic/hydrothermal and metamorphic activity in the Gällivare area: Re-Os dating of molybdenite and U-Pb dating of titanite from the Aitik Cu-Au-Ag deposit, northern Sweden. Mineralium Deposita 40 (4), 435–47.Google Scholar
Wanhainen, C., Broman, C., Martinsson, O. & Magnor, B. 2012. Modification of a Palaeoproterozoic porphyry-like system: integration of structural, geochemical, petrographic, and fluid inclusion data from the Aitik Cu-Au-Ag deposit, northern Sweden. Ore Geology Reviews 48, 306–31.Google Scholar
Weihed, P., Arndt, N., Billström, K., Duchesne, J. C., Eilu, P., Martinsson, O., Papunen, H. & Lahtinen, R. 2005. Precambrian geodynamics and ore formation: The Fennoscandian Shield. Ore Geology Reviews 27, 273322.Google Scholar
Weihed, P., Billström, K., Persson, P. O. & Weihed, J. B. 2002. Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield. Geologiska Föreningens i Stockholm Förhandlingar 124, 163–80.Google Scholar
Westhues, A., Hanchar, J. M., Whitehouse, M. J. & Martinsson, O. 2016. New constraints on the timing of host-rock emplacement, hydrothermal alteration, and iron oxide-apatite mineralization in the Kiruna district, Norrbotten, Sweden. Economic Geology 111 (7), 1595–618.Google Scholar
Whitehouse, M. J. & Kamber, B. S. 2005. Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. Journal of Petrology 46 (2), 291318.Google Scholar
Whitehouse, M. J., Kamber, B. S. & Moorbath, S. 1999. Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland: a reassessment based on combined ion-microprobe and imaging studies. Chemical Geology 160 (3), 201–24.Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C. & Spiegel, W. 1995. Three natural zircon standards for the U-Th-Pb, Lu-Hf, trace element and REE analysis. Geostandards Newsletter 19, 123.Google Scholar
Wilson, M. 1980. Granite types in Sweden. Geologiska Föreningens i Stockholm Förhandlingar 102 (2), 167–76.Google Scholar