Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T17:29:39.181Z Has data issue: false hasContentIssue false

Tectonic evolution and stress pattern of South Wagad Fault at the Kachchh Rift Basin in western India

Published online by Cambridge University Press:  27 June 2016

G. C. KOTHYARI*
Affiliation:
Institute of Seismological Research (Department of Science and Technology, Government of Gujarat), Gandhinagar, Gujarat, India
R. K. DUMKA
Affiliation:
Institute of Seismological Research (Department of Science and Technology, Government of Gujarat), Gandhinagar, Gujarat, India
A. P. SINGH
Affiliation:
Institute of Seismological Research (Department of Science and Technology, Government of Gujarat), Gandhinagar, Gujarat, India
G. CHAUHAN
Affiliation:
Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj, Gujarat
M. G. THAKKAR
Affiliation:
Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj, Gujarat
S. K. BISWAS
Affiliation:
Flat No. 201/C-wing, ISM House, Thakur Village, Kandivali (East), Mumbai-400101
*
Author for correspondence: [email protected]

Abstract

We describe a study of the E–W-trending South Wagad Fault (SWF) complex at the eastern part of the Kachchh Rift Basin (KRB) in Western India. This basin was filled during Late Cretaceous time, and is presently undergoing tectonic inversion. During the late stage of the inversion cycle, all the principal rift faults were reactivated as transpressional strike-slip faults. The SWF complex shows wrench geometry of an anastomosing en échelon fault, where contractional and extensional segments and offsets alternate along the Principal Deformation Zone (PDZ). Geometric analysis of different segments of the SWF shows that several conjugate faults, which are a combination of R synthetic and R’ antithetic, propagate at a short distance along the PDZ and interact, generating significant fault slip partitioning. Surface morphology of the fault zone revealed three deformation zones: a 500 m to 1 km wide single fault zone; a 5–6 km wide double fault zone; and a c. 500 m wide diffuse fault zone. The single fault zone is represented by a higher stress accumulation which is located close to the epicentre of the 2001 Bhuj earthquake of Mw 7.7. The double fault zone represents moderate stress at releasing bends bounded by two fault branches. The diffuse fault zone represents a low-stress zone where several fault branches join together. Our findings are well corroborated with the available geological and seismological data.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avouac, J. P., Tapponier, P., Bai, M., You, H. & Wang, G. 1993. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research 98, 6755–804.Google Scholar
Bilham, R. 1999. Slip parameters for the Rann of Kachchh, India, 16 June 1819 earthquake quantified from contemporary accounts. In Coastal Tectonics (eds Stewart, I. S. & Vita-Finzi, C.), pp. 295318. Geological Society of London, Special Publication no. 146.Google Scholar
Biswas, S. K. 1971. The Miliolite rocks of Kutch and Kathiawar (western India). Sedimentary Geology 5, 147–64.Google Scholar
Biswas, S. K. 1980. Structure of Kutch Kathiawar region, Western India. Proceedings of the 3rd Indian Geological Congress. Pune, pp. 255–72.Google Scholar
Biswas, S. K. 1982. Rift basins in western margin of India with special reference to hydrocarbon prospect. AAPG Bulletin 66 (10), 1497–513.Google Scholar
Biswas, S K. 1987. Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics 135, 302–27.CrossRefGoogle Scholar
Biswas, S. K. 1993. Geology of Kutch. KDM Institute of Petroleum Exploration, Dehradune, 450 pp.Google Scholar
Biswas, S. K. 1999. A review on the evolution of rift basins in India during Gondwana with special reference to Western Indian basins and their hydrocarbon prospects. In Gondwana Assembly: New issues and Perspectives (eds Sahni, A. & Loyal, R. S.), pp. 5376. New Delhi: Indian National Science Academy.Google Scholar
Biswas, S. K. 2005. A review of structure and tectonics of Kutch basin, western India with special reference to earthquakes. Current Science 88 (10), 1592–600.Google Scholar
Biswas, S. K. & Khattri, K. N. 2002. A geological study of earthquakes in Kachchh, Gujarat, India. Journal of the Geological Society of India 60, 131–42.Google Scholar
Burbank, D. & Anderson, R. 2001. Tectonic Geomorphology. Oxford: Blackwell Science, 247 pp.Google Scholar
Chatton, M., Malavieille, J., Dominguez, S., Manighetti, I., Romano, C., Beauprêtre, S., Garembois, S. & Larroque, C. 2012. Interaction between slip events, erosion and sedimentation along an active strike-slip fault: insights from analog models. EGU General Assembly. Geophysical Research Abstracts, Vienna (Austria).Google Scholar
Chen, Y.-G., Lai, K.-Y., Lee, Y.-H., Suppe, J., Chen, W.-S., Lin, Y.-N.N., Wang, Y., Hung, J.-H. & Kuo, Y. T. 2007. Coseismic fold scarps and their kinematic behavior in the 1999 Chi-Chi earthquake Taiwan. Journal of Geophysical Research 112, B03S02, http://dx.doi.org/10.1029/2006JB004388.Google Scholar
Chung, W. P. & Gao, H. 1995. Source parameters of the Anjar earthquake of July 21, 1956, India, and its seismotectonic implications for the Kutch rift basin. Tectonophysics 242, 281–92.CrossRefGoogle Scholar
Cloos, H. 1930. Zur experimentellen Tektonik. Die Naturwissenschaften 18, 741–7.Google Scholar
Coltorti, M. & Ollier, C. D. 1999. The significance of high planation surface in the Andes of Ecuador. In Uplift, Erosion and Stability: Perspectives on Long-Term Landscape Development (eds Smith, B. J., Whalley, W. B. & Warke, P. A.), pp. 239–53. Geological Society of London, Special Publication no. 162.Google Scholar
Cotton, C. A. 1950. Tectonic scarps and fault valleys. Geological Society of America Bulletin 61 (7), 717–58.Google Scholar
Cunningham, W. D. 1993. Strike-slip faults in the southernmost Andes and the development of the Patagonian orocline. Tectonics 12, 169–86.Google Scholar
Cunningham, W. D. & Mann, P. 2007. Tectonics of strike–slip restraining and releasing bends. In Tectonics of Strike-Slip Restraining and Releasing Bends (eds Cunningham, W. D. & Mann, P.), pp. 112. Geological Society of London, Special Publication no. 290.Google Scholar
Dolan, J. F. & Haravitch, B. D. 2014. How well do surface measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation. Earth and Planetary Science Letters 388, 3847.Google Scholar
Dumka, R. K. & Rastogi, B. K. 2013. Crustal strain in the Rupture zone of 2001 Bhuj Earthquake. Institute of Seismological Research, Annual Report 2012-2013-45-46P.Google Scholar
Fedden, F. B. 1984. Geology of Kathiawar peninsular. Geological Survey of India, Memoir 21 (2), 41–8.Google Scholar
Fossen, H. 2010. Structural Geology. Cambridge: Cambridge University Press.Google Scholar
Gawthorpe, R. L. & Leeder, M. R. 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research 12 (3–4), 195218.CrossRefGoogle Scholar
Goyal, B., Thakkar, M. G. & Bhandari, S. 2015. Quaternary tectonic deformations and geomorphic setup of Samakhiali alluvial plain, Eastern Kachchh, Western India. Journal of the Geological Society of India 86 (4), 399411.Google Scholar
Grapes, R. & Wellman, H. 1988. The Wairarapa Fault. Wellington, New Zealand: Victoria University of Wellington.Google Scholar
Graveleau, F. & Dominguez, S. 2008. Analogue modelling of the interactions between tectonics, erosion and sedimentation in foreland thrust belts. Comptes Rendus Geoscience 340 (5), 324–33.Google Scholar
Graveleau, F., Strak, V., Dominguez, S., Malavieille, J., Manighetti, I. & Petit, C. 2015. Experimental modelling of tectonics–erosion–sedimentation interactions in compressional, extensional, and strike–slip settings. Geomorphology 244, 146–68.Google Scholar
Johnston, A. C. 1996. Seismic moment assessment of earthquakes in stable continental regions. II. Historical seismicity. Geophysical Journal International 125, 639–78.Google Scholar
Katz, Y., Weinberger, R. & Aydin, A. 2004. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah. Journal of Structural Geology 26, 491501.Google Scholar
Keller, E. A. & Pinter, N. 2001. Active Tectonics. Earthquakes, Uplift, and Landscape. Upper Saddle River, New Jersey: Prentice Hall.Google Scholar
Keller, E. A., Zepeda, R. L., Rockwell, T. K., Ku, T. L. & Dinklage, W. S. 1998. Active tectonics at Wheeler Ridge, southern San Joaquin Valley, California. Geological Society of America Bulletin 110 (3), 298310.Google Scholar
Kennan, L., Lamb, S. H. & Hoke, L. 1997. High-altitude palaeosurfaces in the Bolivian Andes: evidence for late Cenozoic surface uplift. In Palaeosurfaces: Recognition, Reconstruction and Palaeoenvironmental Interpretation (ed. Widdowson, M.), pp. 307–23. Geological Society of London, Special Publication no. 120.Google Scholar
Kothyari, G. C., Rastogi, B. K., Morthekai, P., Dumka, R. K. & Kandergula, R. S. 2016. Active segmentation assessment of the tectonically active South Wagad Fault in Kachchh, Western Peninsular India. Geomorphology 253, 491507.Google Scholar
Mandal, P., Rastogi, B. K., Satyanarayana, H. V. S., Kousalya, M., Vijayraghavan, R., Satyamurty, C., Raju, I. P., Sarma, A. N. S. & Kumar, N. 2004. Characterization of the causative fault system for the 2001 Bhuj earthquake of Mw 7.7. Tectonophysics 378, 105121.Google Scholar
Mandal, P., Satymurty, C. & Raju, I. P. 2009. Iterative de-convolution of the local waveforms: Characterization of the seismic source in Kachchh, India. Tectonophysics 478, 143–57.Google Scholar
Mohan, K., Rastogi, B. K. & Chaudhary, P. 2015. Magnetotelluric studies in the epicenter zone of 2001, Bhuj earthquake. Journal of Asian Earth Sciences 98, 7584.CrossRefGoogle Scholar
Moore, J. M. 1979. Tectonics of the Najd transcurrent fault system, Saudi Arabia. Journal of the Geological Society of London 136, 441–54.Google Scholar
Morley, C. K., Nelson, R. A., Pattoon, T. I. & Munn, S. G. 1990. Transfer zone in East African rift system and their relevance in hydrocarbon. AAPG Bulletin 74, 465–80.Google Scholar
Oldham, R. D. 1926. The Cutch (Kachh) earthquake of 16th June 1819 with a revision of the great earthquake of 12th June 1897. Memoirs of the Geological Survey of India 46, 71147.Google Scholar
Pesci, A., Giordano, T. & Teza, G. 2009. Improving strain rate estimation from velocity data of non-permanent GPS stations; the central Apennines study case (Italy). GPS Solution 13, 249–61.Google Scholar
Petit, C., Gunnell, Y., Gonga-Saholiariliva, N., Meyer, B. & Séguinot, J. 2009. Faceted spurs at normal fault scarps: Insights from numerical modeling. Journal of Geophysical Research 114, doi: 10.1029/2008JB005955.Google Scholar
Rajendran, C. P. & Rajendran, K. 2001. Characteristics of deformation and past seismicity associated with the 1819 Kachchh earthquake, northwestern India. Bulletin of the Seismological Society of America 91, 407–26.Google Scholar
Rajendran, C. P., Rajendran, K. M., Thakkar, M. G. & Bhanu, G. 2008. Assessing the previous activity at the source zone of the 2001 Bhuj earthquake based on the near-source and distant paleoseismological indicators. Journal of Geophysical Research 113, B05311, doi: 10.1029/2006JB004845.Google Scholar
Rajendran, K., Rajendran, C. P., Thakkar, M. G. & Tuttle, M. P. 2001. 2001 Kachchh (Bhuj) earthquake: coseismic surface features and their significance. Current Science 80 (11), 1397–405.Google Scholar
Rao, N. C., Rao, P. N. & Rastogi, B. K. 2013. Evidence for right-lateral strike-slip environment in the Kutch basin of northwestern India from moment tensor inversion studies. Journal of Asian Earth Sciences 64 (2013), 158–67.Google Scholar
Rastogi, B. K., Mandal, P. & Biswas, S. K. 2014. Sesimogenesis of earthquakes occurring in the ancient rift basin of Kachchh, Western India. In Intraplate Earthquakes (ed. Talwani, P.), pp. 126–61. Cambridge: Cambridge University Press.Google Scholar
Riedel, W. 1929. Zur Mechanik geologischer Brucherscheinungen. Zentralblatt fur Mineralogie Abteilung B, 354–68.Google Scholar
Sieh, K. E. & Jahns, R. H. 1984. Holocene activity of the San Andreas fault at Wallace Creek, California. Geological Society of America Bulletin 95 (8), 883–96.Google Scholar
Singh, A. P., Rao, I. G., Kumar, S. & Kayal, J. R. 2015. Seismic source characteristics in Kachchh and Sauashtra regions of Western India: b-value and fractal mapping of aftershock sequence. Natural Hazard 77 (1), 3349.CrossRefGoogle Scholar
Singh, A. P., Zhao, L., Kumar, S. & Mishra, S. 2016. Inversion for earthquake focal mechanism and regional stress in the Kachchh Rift basin, western India: tectonic implications. Journal of Asian Earth Science 117, 269–83.Google Scholar
Strak, V., Dominguez, S., Petit, C., Meyer, B. & Loget, N. 2011. Interactions between tectonics and erosion during normal fault growth: Insights from experimental modelling. Tectonophysics 513 (1–4), 119.Google Scholar
Talwani, P. & Gangopadhyay, A. 2003. Seismogenesis of intraplate earthquakes. Indo-US Workshop on Seismicity & Geodynamics, 6–10 October 2003. Hyderabad, India: NGRI, pp. 1617.Google Scholar
Tchalenko, J. S. 1968. The evolution of kink bands and the development of compression textures in sheared clays. Tectonophysics 6, 159–74.Google Scholar
Tchalenko, J. S. 1970. Similarities between shear zones of different magnitudes. Bulletin of the Geological Society of America 81, 1625–40.Google Scholar
Vassallo, R., Ritz, J. F., Braucher, R., Jolivet, M., Carretier, S., Larroque, C., Chauvet, A., Sue, C., Todbileg, M., Bourles, D. L., Arzahnikova, N. & Arzahnikov, S. 2007. Transpressional tectonics and stream terraces of the Gobi-Altay, Mongolia. Tectonics 26, TC5013, doi: 10.1029/2006TC002081.Google Scholar
Wesson, R. L., Helley, E. J., Lajoie, K. R. & Wentworth, C. M. 1975. Faults and future earthquakes. In Studies for Seismic Zonation of the San Francisco Bay Region (ed. Borchardt, R. D.), pp. 530. Washington DC: United States Geological Survey.Google Scholar
Wilcox, R. E., Harding, T. P. & Seely, D. R. 1973. Basic wrench tectonics. AAPG Bulletin 57, 7496.Google Scholar
Woodcock, N. H. & Fischer, M. 1986. Strike-slip duplexes. Journal of Structural Geology 8, 725–35.Google Scholar
Ziegler, P. A. 1992. Geodynamics of rifting and implications in hydrocarbon habitat. Tectonophysics 215, 221–53.Google Scholar