Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T16:18:29.179Z Has data issue: false hasContentIssue false

Superimposed deformation of the Solonker Belt and nearby regions in western Inner Mongolia, China

Published online by Cambridge University Press:  10 April 2018

GUANZHONG SHI
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
CHAO LIANG
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
HUA WANG*
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
CHUANYAN HUANG
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
*
Author for correspondence: [email protected]

Abstract

The deformation of the Solonker Belt and nearby regions is helpful for understanding the tectonic evolution of the Central Asian Orogenic Belt. This study carried out structural analysis in the Mandula and Ganqi areas of western Inner Mongolia, including the Solonker Belt, the Southern Orogenic Belt and the northern Yinshan Belt (Langshan range). Our results reveal that the Solonker Belt, the Southern Orogenic Belt and the northern Yinshan Belt underwent two stages (D1 and D2) of deformation during the Mesozoic period. The D1 stage produced the NNE-directed thrusts and asymmetric folds, indicating a NNE–SSW contraction. The northern Yinshan Belt, the Southern Orogenic Belt and the Solonker Belt formed as a series of NNE-verging tectonic nappes. The D2 stage developed the NE-trending folds and the SE- or NW-directed thrusts that cross-cut the D1 structures. The two events of nearly orthogonal or oblique shortening gave rise to the superimposed structures (e.g. fold interference patterns). The quartz veins that filled the fractures of the D1 deformation contain zircons of Middle Triassic U–Pb ages. The new dating data, along with the regional sedimentary hiatus, led us to infer that the D1 stage of deformation occurred in Middle Triassic time and the D2 stage occurred in Late Jurassic time. We consider that the D1 stage of deformation resulted from a convergent event, which might be related to the closure of the Palaeo-Asian Ocean or limited, narrow ocean basins; and the D2 stage of deformation was the far-field result of subduction of the Palaeo-Pacific Ocean and the closure of the Mongol-Okhotsk Ocean.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badarch, G., Cunningham, W. D. & Windley, B. F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of central Asia. Journal of Asian Earth Sciences 21, 87110.10.1016/S1367-9120(02)00017-2Google Scholar
Charvet, J., Shu, L. S., Laurent-Charvet, S., Wang, B., Faure, M., Cluzel, D., Chen, Y. & De Jong, K. 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China: Earth Sciences 54, 166–84.Google Scholar
Chen, B., Jahn, B. M., Wilde, S. & Xu, B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics 328, 157–82.Google Scholar
Chen, C., Zhang, Z. C., Guo, Z. J., Li, J. F., Feng, Z. S. & Tang, W. H. 2012. Geochronology, geochemistry, and its geological significance of the Permian Mandula mafic rocks in Damaoqi, Inner Mongolia. Science China: Earth Sciences 55, 3952.Google Scholar
Chenin, P., Manatschal, G., Picazo, S., Müntener, O., Karner, G., Johnson, C. & Ulrich, M. 2017. Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere 13, 118.Google Scholar
Chu, H., Zhang, J. R., Wei, C. J., Wang, H. & Ren, Y. 2013. A new interpretation of the tectonic setting and age of meta-basic volcanics in the Ondor Sum Group, Inner Mongolia. Chinese Science Bulletin 58, 3580–7.Google Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. & Kinny, P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469500.10.2113/0530469Google Scholar
Cui, S. & Wu, Z. 1997. On the Mesozoic and Cenozoic intracontinental orogenesis of the Yanshan Area, China. In Proceedings of the 30th International Geological Congress (eds Zheng, Y., Davis, G. A. & Yin, A.), pp. 277–92. Utrecht: VSP.Google Scholar
Darby, B. J. & Ritts, B. D. 2002. Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold-thrust belt, China. Earth and Planetary Science Letters 205, 1324.Google Scholar
Davis, G. A., Darby, B. J., Zheng, Y. & Spell, T. L. 2002. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China. Geology 30, 1003–6.Google Scholar
Davis, G. A., Meng, J. F., Cao, W. R. & Du, X. Q. 2009. Triassic and Jurassic tectonics in the eastern Yanshan Belt, North China: insights from the controversial Dengzhangzi Formation and its neighboring units. Earth Science Frontiers 16, 6986.Google Scholar
Davis, G. A., Zheng, Y., Wang, C., Darby, B. J., Zhang, Ch. & Gehrels, G. E. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. In Paleozoic and Mesozoic Tectonic Evolution of Central and Asia: From Continental Assembly to Intracontinental Deformation (eds Hendrix, M. S. & Davis, G. A.), pp. 171–94. Geological Society of American Memoir 194.Google Scholar
De Jong, K., Xiao, W. J., Windley, B. F., Masago, H. & Lo, C. H. 2006. Ordovician 40Ar/39Ar phengite ages from the blueschist-facies Ondor Sum subduction-accretion complex (Inner Mongolia) and implications for the early Paleozoic history of continental blocks in China and adjacent areas. American Journal of Science 306, 799845.Google Scholar
Deng, H. L. & Koyi, H. A. 2015. Mega arrowhead interference patterns in the central part of the Yanshan Orogenic Belt, North China. Journal of Structural Geology 80, 2537.10.1016/j.jsg.2015.06.004Google Scholar
Deng, H. L., Koyi, H. A. & Nilfouroushan, F. 2016. Superimposed folding and thrusting by two phases of mutually orthogonal or oblique shortening in analogue models. Journal of Structural Geology 83, 2845.Google Scholar
Dong, Y. P., Zhang, G. W., Neubauer, F., Liu, X. M., Genser, J. & Hauzenberger, C. 2011. Tectonic evolution of the Qinling orogen, China: review and synthesis. Journal of Asian Earth Sciences 41, 213–37.10.1016/j.jseaes.2011.03.002Google Scholar
Eizenhöfer, P. R., Zhao, G. C., Sun, M., Zhang, J., Han, Y. G. & Hou, W. Z. 2015a. Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolian arcs and tectonic implications. Geological Society of America Bulletin 127, 1422–36.Google Scholar
Eizenhöfer, P. R., Zhao, G. C., Zhang, J., Han, Y. G., Hou, W. Z., Liu, D. X. & Wang, B. 2015b. Geochemical characteristics of the Permian basins and their provenances across the Solonker Suture Zone: assessment of net crustal growth during the closure of the Palaeo-Asian Ocean. Lithos 224, 240–55.Google Scholar
Eizenhöfer, P. R., Zhao, G. C., Zhang, J. & Sun, M. 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 33, 441–63.Google Scholar
Faure, M., Lin, W. & Chen, Y. 2012. Is the Jurassic (Yanshanian) intraplate tectonics of North China due to westward indentation of the North China block? Terra Nova 24, 456–66.Google Scholar
Faure, M., Trap, P., Lin, W., Monie, P. & Bruguier, O. 2007. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights in Lüliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes 30, 96107.Google Scholar
Feng, L. X., Brown, R. W., Han, B. F., Wang, Z. Z., Łuszczak, K., Liu, B., Zhang, Z. C. & Ji, J. Q. 2017. Thrusting and exhumation of the southern Mongolian Plateau: joint thermochronological constraints from the Langshan Mountains, western Inner Mongolia, China. Journal of Asian Earth Sciences 144, 287302.Google Scholar
Gao, H. L. 2010. Structure evolution and chronology constraints of Langshan in Neimeng Autonomous Region. Master's thesis, China University of Geosciences, Beijing, China. 70 pp. (in Chinese with English Abstract). Published thesis.Google Scholar
Geisler, T., Schaltegger, U. & Tomaschek, F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements 3, 4350.Google Scholar
Gurnis, M., Hall, C. & Lavier, L. 2004. Evolving force balance during incipient subduction. Geochemistry, Geophysics, Geosystems 5, Q07001. doi: 10.1029/2003GC000681.Google Scholar
Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L. & Müller, R. 2003. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters 212, 1530.Google Scholar
Han, J., Zhou, J. B., Wang, B. & Cao, J. L. 2015. The final collision of the CAOB: constraint from the zircon U–Pb dating of the Linxi Formation, Inner Mongolia. Geoscience Frontiers 6, 211–5.Google Scholar
Hoskin, P. W. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta 69, 637–48.Google Scholar
Hu, J., Gong, W., Wu, S., Liu, Y. & Liu, S. 2014. LA-ICP-MS zircon U–Pb dating of the Langshan Group in the northeast margin of the Alxa Block, with tectonic implications. Precambrian Research 255, 756–70.Google Scholar
Huang, X. F., Shi, W., Chen, P. & Li, H. Q. 2015. Superposed deformation in the Helanshan Structural Belt: implications for Mesozoic intracontinental deformation of the North China Plate. Journal of Asian Earth Sciences 144, 140–54.Google Scholar
Jahn, B. M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In Aspects of the Tectonic Evolution of China (eds Malpas, J., Fletcher, C. J. N., Ali, J. R. & Aitchison, J. C.), pp. 73100. Geological Society of London, Special Publication no. 226.Google Scholar
Jian, P., Liu, D. Y., Kröner, A., Windley, B. F., Shi, Y. R., Zhang, F. Q., Shi, G. H., Miao, L. C., Zhang, W., Zhang, Q., Zhang, L. Q. & Ren, J. S. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: implications for continental growth. Lithos 101, 233–59.Google Scholar
Jian, P., Liu, D. Y., Kroner, A., Windley, B. F., Shi, Y. R., Zhang, W., Zhang, F. Q., Miao, L. C., Zhang, L. Q. & Tomurhuu, D. 2010. Evolution of a Permian intraoceanic arc–trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118, 169–90.Google Scholar
Kusky, T. M. & Li, J. H. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences 22, 383–97.Google Scholar
Kusky, T. M., Windley, B. & Zhai, M. 2007. Tectonic evolution of the North China Block: from orogen to craton to orogen. In Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia (eds Zhai, M., Windley, B., Kusky, T. & Meng, Q.), pp. 134. Geological Society of London, Special Publication no. 280.Google Scholar
Lawrie, K., Mernagh, T. P., Ryan, C. G., van Achterbergh, E. & Black, L. P. 2007. Chemical fingerprinting of hydrothermal zircons: an example from the Gidginbung high sulphidation Au–Ag–(Cu) deposit, New South Wales, Australia. Proceedings of the Geologists’ Association 118, 3746.Google Scholar
Li, Y. L., Brouwer, F. M., Xiao, W. J., Wang, K. L., Lee, Y. H., Luo, B. J., Su, Y. P. & Zheng, J. P. 2017a. Subduction-related metasomatic mantle source in the eastern Central Asian Orogenic Belt: evidence from amphibolites in the Xilingol Complex, Inner Mongolia, China. Gondwana Research 43, 193212.Google Scholar
Li, Y. L., Brouwer, F. M., Xiao, W. J. & Zheng, J. P. 2017b. A Paleozoic fore-arc complex in the eastern Central Asian Orogenic Belt: petrology, geochemistry and zircon U–Pb–Hf isotopic composition of paragneisses from the Xilingol Complex in Inner Mongolia, China. Gondwana Research 47, 323–41.Google Scholar
Li, Y. L., Brouwer, F. M., Xiao, W. J. & Zheng, J. P. 2017c. Late Devonian to Early Carboniferous arc-related magmatism in the Baolidao arc, Inner Mongolia, China: significance for southward accretion of the eastern Central Asian Orogenic Belt. Geological Society of America Bulletin 129, 677–97.Google Scholar
Li, K., Jolivet, M., Zhang, Z. C., Li, J. F. & Tang, W. H. 2016. Long-term exhumation history of the Inner Mongolian Plateau constrained by apatite fission track analysis. Tectonophysics 666, 121–33.Google Scholar
Li, Y. L., Zhou, H. W., Brouwer, F. M., Xiao, W. J., Wijbrans, J. R. & Zhong, Z. Q. 2014. Early Paleozoic to Middle Triassic bivergent accretion in the Central Asian Orogenic Belt: insights from zircon U–Pb dating of ductile shear zones in central Inner Mongolia, China. Lithos 205, 84111.Google Scholar
Lin, W., Faure, M., Nomade, S., Shang, Q. H. & Renne, P. R. 2008. Permian–Triassic amalgamation of Asia: insight from Northeast China sutures and their place in the final collision of North China and Siberia. Comptes Rendus Geoscience 340, 190201.Google Scholar
Lin, J., Liu, Y. S., Chen, H. H., Zhou, L., Hu, Z. C. & Gao, S. 2015. Review of high-precision Sr isotope analyses of low-Sr geological samples. Journal of Earth Science 26, 763–74.Google Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.Google Scholar
Liu, Y. J., Li, W. M., Feng, Z. Q., Wen, Q. B., Neubauer, F. & Liang, C. Y. 2016. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research 43, 123–48.Google Scholar
Liu, Q., Zhao, G. C., Han, Y. G., Eizenhöfer, P. R., Zhu, Y. L., Hou, W. Z. & Zhang, X. R. 2017. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites. Lithos 274–275, 1930.Google Scholar
Luo, Z. W., Xu, B., Shi, G. Z., Zhao, P., Faure, M. & Chen, Y. 2016. Solonker ophiolite in Inner Mongolia, China: a late Permian continental margin-type ophiolite. Lithos 261, 7291.Google Scholar
McNaughton, N. J., Mueller, A. G. & Groves, D. I. 2005. The age of the giant Golden Mile Deposit, Kalgoorlie, Western Australia: ion-microprobe zircon and monazite U–Pb geochronology of a synmineralization lamprophyre dike. Economic Geology 100, 1427–40.Google Scholar
Meng, Q. R., Wei, H. H., Wu, G. L. & Duan, L. 2014. Early Mesozoic tectonic settings of the northern North China craton. Tectonophysics 611, 155–66.Google Scholar
Mossakovsky, A. A., Ruzhentsev, S. V., Samygin, S. G. & Kheraskova, T. N. 1993. The Central Asian fold belt: geodynamic evolution and formation history. Geotectonics 26, 455–73.Google Scholar
Nei Mongol Bureau of Geology and Mineral Resources (NMBGMR). 1991. Regional Geology of Nei Mongol Autonomous Region. Beijing: Geological Publishing House.Google Scholar
Park, C., Song, Y., Chung, D., Kang, I. M., Khulganakhuu, M. C. & Yi, K. 2016. Recrystallization and hydrothermal growth of high U–Th zircon in the Weondong deposit, Korea: record of post-magmatic alteration. Lithos 260, 268–85.Google Scholar
Pelleter, E., Cheilletz, A., Gasquet, D., Mouttaqi, A., Annich, M., El Hakour, A., Deloule, E. & Féraud, G. 2007. Hydrothermal zircons: a tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit—Morocco). Chemical Geology 245, 135–61.Google Scholar
Ramsay, J. G. & Huber, M. 1987. Session 21: Strain and small scale structures in folds. In The Techniques of Modern Structural Geology, Vol. 2 Folds and Fractures, pp. 445–73. London: Academic Press.Google Scholar
Schaltegger, U. 2007. Hydrothermal zircon. Elements 3, 5179.Google Scholar
Sengör, A. M. C., Natal'in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299307.Google Scholar
Shi, G. Z. 2013. Polycyclic evolution of the Eastern Central Asia Orogenic Belt: microtectonic analysis, geochronology and tectonics in Central Inner Mongolia. Ph.D. thesis, Université d'Orléans, France. Published thesis.Google Scholar
Shi, G. Z., Faure, M., Xu, B., Zhao, P., Chen, Y. 2013. Structural and kinematic analysis of the Early Paleozoic Ondor Sum-Hongqi mélange belt, eastern part of the Altaids (CAOB) in Inner Mongolia, China. Journal Asian Earth Science 66, 123–39.Google Scholar
Shao, J. A., Tang, K. D. & He, G. Q. 2014. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China. Acta Petrologica Sinica 30, 1858–66 (in Chinese with English abstract).Google Scholar
Song, S., Wang, M. M., Xu, X., Wang, C., Niu, Y., Allen, M. B. & Su, L. 2015. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics 34, doi: 10.1002/2015TC003948.Google Scholar
Wang, Z. Z., Han, B. F., Feng, L. X. & Liu, B. 2015. Geochronology, geochemistry and origins of the Paleozoic–Triassic plutons in the Langshan area, western Inner Mongolia, China. Journal of Asian Earth Sciences 97, 337–51.Google Scholar
Wang, Z. Z., Han, B. F., Feng, L. X., Liu, B., Zheng, B. & Kong, L. J. 2016. Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean–Paleoproterozoic evolution of the Western North China Craton: evidence from LA-ICP-MS zircon U–Pb dating of the Langshan basement. Lithos 261, 278–95.Google Scholar
Wang, Q. & Liu, X. Y. 1986. Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China. Tectonics 5, 1073–88.Google Scholar
Wang, C. Y., Wang, P. & Li, W. G. 2004. Conodonts from the Permian Jisu Honguer (Zhesi) Formation of Inner Mongolia, China. Geobios 37, 471–80.Google Scholar
Wang, X. C., Wilde, S. A., Xu, B. & Pang, C. J. 2016. Origin of arc-like continental basalts: implications for deep-Earth fluid cycling and tectonic discrimination. Lithos 261, 545.Google Scholar
Wang, Y., Zhou, L. Y. & Li, J. Y. 2011. Intracontinental superimposed tectonics – a case study in the Western Hills of Beijing, eastern China. Geological Society of America Bulletin 123, 1033–55.Google Scholar
Wang, Y., Zhou, L. Y. & Zhao, L. J. 2013. Cratonic reactivation and orogeny: an example from the northern margin of the North China Craton. Gondwana Research 24, 1203–22.Google Scholar
Webb, L. E., Johnson, C. L. & Minjin, C. 2010. Late Triassic sinistral shear in the East Gobi Fault Zone, Mongolia. Tectonophysics 495, 246–55.Google Scholar
Windley, B. F., Alexeiev, D. V., Xiao, W., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London 164, 3147.Google Scholar
Xiao, W. J., Windley, B. F., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22, 1069.Google Scholar
Xiao, W. J., Windley, B. F., Huang, B. C., Han, C. M., Yuan, C., Chen, H. L., Sun, M., Sun, S. & Li, J. L. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences 98, 1189–217.Google Scholar
Xiao, W. J., Windley, B. F., Sun, S., Li, J. L., Huang, B. C., Han, C. M., Yuan, C., Sun, M. & Chen, H. L. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences 43, 477507.Google Scholar
Xu, B., Charvet, J., Chen, Y., Zhao, P. & Shi, G. Z. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research 23, 1342–64.Google Scholar
Xu, B., Xu, Y., Li, J. & Li, Q. S. 2016. Age of the Ondor Sum Group in western Inner Mongolia and its position in the Central Asia Orogenic Belt. Earth Science Frontiers 23, 120–7.Google Scholar
Zhang, J., Li, J. Y., Li, Y. F., Qi, W. H. & Zhang, Y. P. 2014. Mesozoic–Cenozoic multi-stage intraplate deformation events in the Langshan Region and their tectonic implications. Acta Geologica Sinica (English edition) 88, 78102.Google Scholar
Zhang, J., Li, J. Y., Xiao, W. X., Wang, Y. N. & Qi, W. H. 2013. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China: new constraints on the relationship between the North China Plate and the Alxa block. Journal of Structural Geology 57, 3857.Google Scholar
Zhang, J. R., Wei, C. J. & Chu, H. 2015. Blueschist metamorphism and its tectonic implication of Late Paleozoic–Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China. Journal of Asian Earth Sciences 97, 352–64.Google Scholar
Zhang, J. R., Wei, C. J., Chu, H. & Chen, Y. P. 2016. Mesozoic metamorphism and its tectonic implication along the Solonker suture zone in central Inner Mongolia, China. Lithos 261, 262–77.Google Scholar
Zhang, X. H., Zhang, H. F., Tang, Y. J., Wilde, S. A. & Hu, Z. C. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology 249, 262–81.Google Scholar
Zhang, S.-H., Zhao, Y., Kröner, A., Liu, X.-M., Xie, L.-W. & Chen, F.-K. 2009a. Early Permian plutons from the northern North China Block: constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. International Journal of Earth Sciences 98, 1441–67.Google Scholar
Zhang, S.-H., Zhao, Y., Song, B., Hu, J.-M., Liu, S.-W., Yang, Y.-H., Chen, F.-K., Liu, X.-M. & Liu, J. 2009b. Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive belts from the northern margin of the North China block: geochronology, petrogenesis and tectonic implications. Geological Society of America Bulletin 120, 181200.Google Scholar
Zhang, S.-H., Zhao, Y., Ye, H., Liu, J. M. & Hu, C. Z. 2014. Origin and evolution of the Bainaimiao arc belt: implications for crustal growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin 126, 1275–300.Google Scholar
Zhao, G., Sun, M. & Wilde, S. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177200.Google Scholar
Zhou, Y. Z., Han, B. F., Zhang, B., Xu, Z., Ren, R., Li, X. W. & Su, L. 2013. The Yingba shear zone on the Sino-Mongolian border: southwestern extension of the Zuunbayan Fault from Mongolia to China and implications for Late Mesozoic intracontinental extension in Eastern Asia. Tectonophysics 574–575, 118–32.Google Scholar
Zhu, G., Liu, G., Niu, M., Xie, C., Wang, Y. & Xiang, B. 2009. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. International Journal of Earth Sciences 98, 135–55.Google Scholar
Zhu, G., Wang, Y., Liu, G., Niu, M., Xie, C. & Li, C. 2005. 40Ar/39Ar dating of strike-slip motion on the Tan–Lu fault zone, East China. Journal of Structural Geology 27, 1379–98.Google Scholar
Zhu, M. T., Zhang, L. C., Dai, Y. P., Wang, C. L. & Peng, Z. D. 2017. Hydrothermal modification of zircon geochemistry and Lu–Hf isotopes from the Hongtoushan Cu–Zn deposit, China. Ore Geology Reviews 86, 707–18.Google Scholar
Supplementary material: File

Shi et al. supplementary material

Shi et al. supplementary material

Download Shi et al. supplementary material(File)
File 47.6 KB