Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T04:26:24.990Z Has data issue: false hasContentIssue false

Subtidal flat-pebble conglomerate from the Upper Devonian of Poland: a multiprovenant high-energy product

Published online by Cambridge University Press:  01 May 2009

J. Kaźmierczak
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, 02–089 Warszawa, Zwirki i Wigury 93, Poland
R. Goldring
Affiliation:
Department of Geology, University of Reading, Reading RG6 2AB, England

Summary

Calcirudites in the Upper Devonian (Frasnian) of Central Poland are often couplets with a laminated intrapelsparite upper part and a lower section of intraformational calcarenitic and micritic flat pebbles. The pebbles are associated with bioclasts derived from 3 offshore environments: I, a fully marine area (echinoderms, rugose and tabulate corals, brachiopods, trilobites and conodonts); II, phytogenic banks (globose stromatoporoid stromatolites and Renalcis); III, restricted lagoons (ramose stromatoporoids, calcispheres, ostracodes and peloids). Many of the flat pebbles are only slightly displaced and had been partially cemented before being reworked. The depositional environment was subtidal. The considerable size of the flat pebbles and the complex nature of the surrounding matrix suggest that storm surges or tsunami may have disrupted beds and led to channelling and pebble formation.

Type
Articles
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beales, F. 1971. Cementation in ancient pelleted limestone. In Carbonate Cements (ed. Bricker, O. P.), pp. 216–24. The Johns Hopkins Press.Google Scholar
Braun, M. & Friedman, G. M. 1969. Carbonate lithofacies and environment of the Tribes Hill Formation (Lower Ordovician) of the Mohawk Valley, New York. J. sedim. Petrol. 39, 113–35.Google Scholar
Chudzikiewicz, L. 1975. Intraformational conglomerates in the Gogolin Beds (Middle Triassic, southern Poland). Annls. Soc. geol. Pol. 45, 320.Google Scholar
Coleman, P. J. 1968. Tsunamis as geological agents. J. geol. Soc. Aust. 15, 267–73,CrossRefGoogle Scholar
Franke, W. 1973. Fazies, Bau und Entwicklungsgeschichte des Ibergen Riffes (Mitteldevon bis Unterkarbon III, NW-Harz, W-Deutschland). Geol. Jb. A 11, 3127.Google Scholar
Ham, W. E. & Rowland, T. L. 1971. Burial cementation in the Wapanucka Limestone (Pennsylvanian) of Oklahoma. In Carbonate Cements (ed. Bricker, O. P.), pp. 198204. The Johns Hopkins Press.Google Scholar
Jamieson, E. 1971. Paleoecology of Devonian reefs in western Canada. Proceedings of the North American Paleontological Convention 1969, part J, 1300–40.Google Scholar
Jansa, L. F. & Fischbuch, N. R. 1974. Evolution of a Middle and Upper Devonian sequence from a clastic coastal plain-delta sequence into overlying carbonate reef complexes and banks, Sturgeon—Mitsue area, Alberta. Bull. geol. Surv. Can. 234.Google Scholar
Jones, B. & Dixon, O. A. 1976. Storm deposits in the Read Bay Formation (Upper Silurian), Somerset Island, Arctic Canada (an application of Markov Chain analysis). J. sedim. Petrol. 46, 393401.Google Scholar
Kaźmiefczak, J. 1976. Volvocacean nature of some Palaeozoic non-radiosphaerid calcispheres and parathuramminid foraminifera. Acta pal. Pol. 21, 245–58.Google Scholar
Kelling, G. & Mullin, P. R. 1975. Graded limestones and limestone quartzite couplets: possible storm-deposits from the Moroccan Carboniferous. Sediment. Geol. 13, 161–90.CrossRefGoogle Scholar
Klovan, J. E. 1964. Facies analysis of the Redwater reef complex. Bull. Can. Petrol. Geol. 12, 1100.Google Scholar
Krebs, W. 1966. Der Bau des Oberdevonischen Langenaubach–Breitscheider Rifles und seine Entwicklung im Unterkarbon (Rheinisches Schiefergebirge). Abh. Senckenb. naturforsch. Ges. 511, 1105.Google Scholar
Krebs, W. 1974. Devonian carbonate complexes in western Europe. In Reefs in Space and Time (ed. Laporte, L. F.). Spec. PubIs Soc. econ. Palaeont. Miner., Tulsa 18, 155208.Google Scholar
Pray, L. C. 1960. Compaction in calcilutites. Bull. geol. Soc. Am. 71, p. 1946 (abstract).Google Scholar
Purser, B. H. 1973. Sedimentation around bathymetric highs in southern Persian Gulf. In The Persian Gulf (ed. Purser, B. H..), pp. 157–77. Springer.CrossRefGoogle Scholar
Read, J. F. 1973. Carbonate cycles, Pillara Formation (Devonian) Canning Basin, western Australia. Bull. Can. Petrol. Geol. 21, 3851.Google Scholar
Seilacher, A. 1969. Fault-graded beds interpreted as seismites. Sedimentology 13, 155–9.CrossRefGoogle Scholar
Shinn, E. A, 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology 12, 109–44.CrossRefGoogle Scholar
Shinn, E. A., Lloyd, R. M. & Ginsburg, R. N. 1969. Anatomy of a modern carbonate tidal-flat, Andros Island, Bahamas. J. sedim. Petrol. 39, 1202–28.Google Scholar
Stanton, R. J. Jr. 1967. Radiosphaerid calcispheres in North America and remarks on calcisphere classification. Micropaleontology 13, 465–72.CrossRefGoogle Scholar
Szulczewski, M. 1968. Slump structures and turbidites in Upper Devonian limestones of the Holy Cross Mountains. Acta geol. Pol. 18, 303–24.Google Scholar
Szulczewski, M. 1971. Upper Devonian conodonts, stratigraphy and facies development in the Holy Cross Mountains. Acta geol. Pol. 21, 1129.Google Scholar
Szulczewski, M. 1973. Famennian-Tournaisian neptunian dykes and their conodont fauna from Dalnia in the Holy Cross Mountains. Acta geol. Pol. 23, 1559.Google Scholar
Wilson, J. L. 1967. Carbonate evaporite cycles in the Lower Duperow Formation of Williston Basin. Bull. Can. Petrol. Geol. 15, 230312.Google Scholar
Wilson, J. L. 1970. Depositional facies across carbonate shelf margins. Trans. Gulf-Cst Ass. geol. Socs 20, 229–33.Google Scholar
Wilson, J. L. 1974. Characteristics of carbonate platform margins. Bull. Am. Ass. Petrol. Geol. 58, 810–24.Google Scholar
Wilson, J. L. 1975. Carbonate Facies in Geologic History. Springer.CrossRefGoogle Scholar