Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T12:25:10.009Z Has data issue: false hasContentIssue false

Stratigraphy, composition and provenance of argillaceous marls from the Calcare di Base Formation, Rossano Basin (northeastern Calabria)

Published online by Cambridge University Press:  15 April 2014

FRANCESCO PERRI*
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
ROCCO DOMINICI
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
SALVATORE CRITELLI
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
*
Author for correspondence: [email protected]

Abstract

The Calcare di Base Formation is a part of the Rossano Basin characterizing the Foreland Basin System of northeastern Calabria. Messinian argillaceous marls from the Calcare di Base Formation have been studied to characterize the sedimentary evolution of this formation during the post-orogenic phases of the Calabria–Peloritani Arc. The mineralogical assemblage of the argillaceous marls is dominated by phyllosilicates (illite, chlorite, illite/smectite mixed layers and traces of kaolinite), carbonate minerals (calcite, aragonite and dolomite), quartz and traces of feldspars (both K-feldspars and plagioclase), gypsum and celestine. The palaeoweathering index records changes at the source, reflecting variations in the tectonic regime as shown in the A–CN–K plot, where the studied samples describe a trend typical of a source area in which active tectonism allows erosion of all zones within weathering profiles developed on source rocks. The studied samples are derived from an environment in which non-steady-state weathering conditions prevailed. This trend could record deformational events that affected the Mediterranean area during the Miocene. The Th/Sc versus Zr/Sc ratios and Al–Zr–Ti plot suggest that the samples likely record a recycling effect from their basement rocks. The geochemical proxies of these samples suggest a provenance from a mainly felsic source. The Messinian argillaceous marls record that deposition probably occurred in a semi-closed marine environment mainly subject to hypersalinity with local episodes of meteoric water influx, during a period characterized by persistent dry and warm/arid conditions alternating with relatively wet conditions.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J. & Maynard, J. B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansastype cyclothems. Chemical Geology 206, 289318.Google Scholar
Armstrong-Altrin, J. S., Lee, Y., Verma, S. & Ramasamy, S. 2004. Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research 74, 285–97.CrossRefGoogle Scholar
Barone, M., Critelli, S., Le Pera, E., Di Nocera, S., Matano, F. & Torre, M. 2006. Stratigraphy and detrital modes of Upper Messinian post-evaporitic sandstones of the Southern Apennines, Italy: evidence of foreland-basin evolution during the Messinian Mediterranean salinity crisis. International Geology Review 48, 702–24.CrossRefGoogle Scholar
Barone, M., Dominici, R., Muto, F. & Critelli, S. 2008. Detrital modes in a late Miocene wedge-top basin, northeastern Calabria, Italy: compositional record of wedge-top partitioning. Journal of Sedimentary Research 78, 693711.CrossRefGoogle Scholar
Bhatia, M. R. & Crook, K. A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contribution to Mineralogy and Petrology 92, 181–93.CrossRefGoogle Scholar
Bonardi, G., Cavazza, W., Perrone, V. & Rossi, S. 2001. Calabria-Peloritani Terrane and Northern Ionian Sea. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (eds Vai, G. B. & Martini, I. P.), pp. 287306. Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
Bonardi, G., De Capoa, P., Di Staso, A., Perrone, V., Sonnino, M. & Tramontana, M. 2005. The age of the Paludi Formation: a major constraint to the beginning of the Apulia-verging orogenic transport in the northern sector of the Calabria-Peloritani Arc. Terra Nova 17, 331–37.Google Scholar
Boström, K. & Bach, W. 1995. Trace element determinations by X-ray fluorescence analysis: advantages, limitations, and alternatives. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 142 (eds Batiza, R., Storms, M. A. & Allan, J. F.), pp. 61–8. College Station, Texas.Google Scholar
Bracciali, L., Marroni, M., Luca, P. & Sergio, R. 2007. Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. Geological Society of America Special Papers 420, 7393.Google Scholar
Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N. & Marković, S. 2011. An evaluation of geochemical weather indices in loess-paleosol studies. Quaternary International 240, 1221.Google Scholar
Caracciolo, L., Gramigna, P., Critelli, S., Calzona, A. B. & Russo, F. 2013. Petrostratigraphic analysis of a Late Miocene mixed siliciclastic-carbonate depositional system (Calabria, Southern Italy): implications for Mediterranean paleogeography. Sedimentary Geology 284, 117–32.Google Scholar
Caracciolo, L., Le Pera, E., Muto, F. & Perri, F. 2011. Sandstone petrology and mudstone geochemistry of the Peruc-Korycany Formation (Bohemian Cretaceous Basin, Czech Republic). International Geology Review 53, 1003–31.Google Scholar
Cianflone, G. & Dominici, R. 2011. Physical stratigraphy of the upper Miocene sedimentary succession in the northeastern Catanzaro Through (Central Calabria, Italy). Rendiconti Online della Società Geologica Italiana 17, 63–9.Google Scholar
Cianflone, G., Dominici, R. & Sonnino, M. 2012. Preliminary study of the primary and resedimented Messinian facies of the Northeastern sector of Catanzaro Trough. Rendiconti Online della Società Geologica Italiana 21, 71–3.Google Scholar
CIESM. 2008. The Messinian Salinity Crisis from Mega-Deposits to Microbiology – A Consensus Report. Almeria, Spain, 7–10 November 2007. CIESM Workshop Monographs no. 33, pp. 128. Monaco: Ciesm.Google Scholar
Corzo, A., Luzon, A., Mayayo, M., Van Bergeijk, S., Mata, P. & Garcia De Lomas, L. 2005. Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta Lake (Spain). Geomicrobiology Journal 22, 283–98.Google Scholar
Cox, R., Lowe, D. & Cullers, R. L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in southwestern United States. Geochimichima et Cosmochimica Acta 59, 2919–40.Google Scholar
Critelli, S. 1999. The interplay of lithospheric flexure and thrust accommodation in forming stratigraphic sequences in the southern Apennines foreland basin system, Italy. Memorie dell’Accademia Nazionale dei Lincei 10, 257326.Google Scholar
Critelli, S. & Le Pera, E. 1995. Tectonic evolution of the Southern Apennines thrust-belt (Italy) as reflected in modal compositions of Cenozoic sandstone. Journal of Geology 103, 95105.Google Scholar
Critelli, S. & Le Pera, E. 1998. Post-Oligocene sediment dispersal systems and unroofing history of the Calabrian Microplate, Italy. International Geology Review 48, 609–37.Google Scholar
Critelli, S., Le Pera, E., Galluzzo, F., Milli, S., Moscatelli, M., Perrotta, S. & Santantonio, M. 2007. Interpreting siliciclastic-carbonate detrital modes in foreland basin systems: an example from Upper Miocene arenites of the central Apennines, Italy. Special Paper of the Geological Society of America 420, 107–33.Google Scholar
Critelli, S., Mongelli, G., Perri, F., Martìn-Algarra, A., Martìn-Martìn, M., Perrone, V., Dominici, R., Sonnino, M. & Zaghloul, M. N. 2008. Compositional and geochemical signatures for the sedimentary evolution of the Middle Triassic–Lower Jurassic continental redbeds from Western-Central Mediterranean Alpine Chains. Journal of Geology 116, 375–86.Google Scholar
Critelli, S., Muto, F., Tripodi, V. & Perri, F. 2011. Relationships between Lithospheric Flexure, Thrust Tectonics and Stratigraphic Sequences in Foreland Setting: the Southern Apennines Foreland Basin System, Italy. In New Frontiers in Tectonic Research - At the Midst of Plate Convergence (ed. Schattner, U.), pp. 121–70. Rijeka, Croatia: InTech Open Access Publisher.Google Scholar
Critelli, S., Muto, F., Tripodi, V. & Perri, F. 2013. Link between thrust tectonics and sedimentation processes of stratigraphic sequences from the southern Apennines foreland basin system, Italy. Rendiconti Online della Società Geologica Italiana 25, 2142.Google Scholar
Cullers, R. L. 1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediments in Kansas, USA. Geochimica et Cosmochimica Acta 58, 4955–72.CrossRefGoogle Scholar
Cullers, R. L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51, 181203.Google Scholar
Cullers, R. L. 2002, Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology 191, 305–27.Google Scholar
Cullers, R. L. & Podkovyrov, V. M. 2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research 117, 1157–83.Google Scholar
Decima, A., Mckenzie, J. A. & Schreiber, B. C. 1988. The origin of evaporative limestones: an example from the Messinian of Sicily (Italy). Journal of Sedimentary Petrology 58, 256–72.CrossRefGoogle Scholar
Dessau, G., Gonfi Antini, R. & Tongiorgi, E. 1959. L’origine dei giacimenti solfi feri italiani alla luce delle indagini isotopiche sui carbonati della serie gessoso solfi fera della Sicilia. Bollettino del Servizio Geologico Italiano 81, 313–48.Google Scholar
Di Stefano, A., Verducci, M., Lirer, F., Ferraro, L., Iaccarino, S. M., Hüsing, S. K. & Hilgen, F. J. 2010. Paleoenvironmental conditions preceding the Messinian Salinity Crisis in the Central Mediterranean: integrated data from the Upper Miocene Trave section (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 297, 3753.CrossRefGoogle Scholar
Fauquette, S., Suc, J. P., Bertini, A., Popescu, S. M., Warny, S., Taoufiq, N. B., Perez Villa, M. G., Chikhi, H., Feddi, N., Subally, D., Clauzon, G. & Ferrier, J. 2006. How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology 238, 281301.Google Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unravelling the effect of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.Google Scholar
Franzini, M., Leoni, L. & Saitta, M. 1972. A simple method to evaluate the matrix effects in X-ray fluorescence analysis. X-Ray Spectrometry 1, 151–4.Google Scholar
Gaetani, G. A. & Cohen, A. L. 2006. Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochimica et Cosmochimica Acta 70, 4617–34.CrossRefGoogle Scholar
Garcia, D., Coehlo, J. & Perrin, M. 1991 Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (northern Portugal). European Journal of Mineralogy 3, 401–14.CrossRefGoogle Scholar
Garcia-Veigas, J., Orti, F., Rosell, L., Ayora, C., Rouchy, J. M. & Lugli, S. 1995. The Messinian salt of the Mediterranean: geochemical study of the salt from the Central Sicily Basin and comparison with the Lorca Basin (Spain). Bulletin de la Societé géologique de France 166, 699710.Google Scholar
Guido, A., Jacob, J., Gautret, P., Laggoun-DéFarge, F., Mastandrea, A. & Russo, F. 2007. Molecular fossils and other organic markers as palaeoenvironmental indicators of the Messinian Calcare di Base Formation: normal versus stressed marine deposition (Rossano Basin, northern Calabria, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 255, 265–83.Google Scholar
Harnois, L. 1988. The C.I.W. index: a new chemical index of weathering. Sedimentary Geology 55, 319–22.Google Scholar
Hsü, K. J., Ryan, W. B. F. & Cita, M. B. 1973. Late Miocene desiccation of the Mediterranean. Nature 242, 240–4.Google Scholar
Krumm, S. 1996. WINFIT 1.2: version of November 1996 (The Erlangen geological and mineralogical software collection) of “WINFIT 1.0: a public domain program for interactive profile-analysis under WINDOWS”. XIII Conference on Clay Mineralogy and Petrology, Praha, 1994. Acta Universitatis Carolinae Geologica 38, 253–61.Google Scholar
Lacassie, J. P., Hervè, F. & Roser, B. 2006. Sedimentary provenance study of the post-Early Permian to pre-Early Cretaceous metasedimentary Duque de York Complex, Chile. Revista Geologica de Chile 33, 199219.Google Scholar
Land, L. S. 1980. The isotopic and trace element geochemistry of dolomite: the state of the art. In Concepts and Models of Dolomitization (eds Zenger, D. H., Dunham, J. B. & Ethington, R. L.), pp. 87110. Society of Economic Paleontologists and Mineralogists Special Publication no. 28.CrossRefGoogle Scholar
Last, W. M. & Ginn, F. W. 2005. Saline system of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology. Saline Systems 1, 138.Google Scholar
Leoni, L. & Saitta, M. 1976. X-ray fluorescence analysis of 29 trace elements in rock and mineral standards. Rendiconti Società Italiana di Mineralogia e Petrologia 32, 497510.Google Scholar
Le Pera, E., Arribas, J., Critelli, S. & Tortosa, A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): implications for provenance studies. Sedimentology 48, 357–77.Google Scholar
Le Pera, E., Critelli, S. & Sorriso-Valvo, M. 2000. Weathering of gneiss in Calabria, Southern Italy. Catena 42, 115.Google Scholar
Liu, Y. S., Hu, Z. C., Li, M. & Gao, S. 2013. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin 58, 3863–78.Google Scholar
Machel, H. G. & Anderson, J. H. 1989. Pervasive subsurface dolomitization of the Nisku Formation in central Alberta. Journal of Sedimentary Petrology 59, 891911.Google Scholar
Mahjoor, A. S., Karimi, M. & Rastegarlari, A. 2009 Mineralogical and geochemical characteristics of clay deposits from South Abarkouh district of clay deposit (Central Iran) and their applications. Journal of Applied Sciences 9, 601–14.CrossRefGoogle Scholar
Manzi, V., Lugli, S., Roveri, M., Schreiber, B. C. & Gennari, R. 2010. The Messinian “Calcare di Base” (Sicily, Italy) revisited. Geological Society of America Bulletin 123, 347–70.Google Scholar
Matson, S. D. & Fox, D. L. 2010. Stable isotopic evidence for terrestrial latitudinal climate gradients in the Late Miocene of the Iberian Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 287, 2844.Google Scholar
McLennan, S. M., Hemming, D. K. & Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America Special Papers 284, 2140.CrossRefGoogle Scholar
McLennan, S. M., Taylor, S. R. & Hemming, S. R. 2006. Composition, differentiation, and evolution of continental crust: constrains from sedimentary rocks and heat flow. In Evolution and Differentiation of the Continental Crust (eds Brown, M. & Rushmer, T.), pp. 92134. Cambridge: Cambridge University Press.Google Scholar
Melaku, S., Wondimu, T., Dams, R. & Moens, L. 2004. Simultaneous determination of trace elements in Tinishu Akaki River water sample, Ethiopia, by ICP-MS. Canadian Journal of Analytical Sciences and Spectroscopy 49, 374–84.Google Scholar
Mongelli, G. 2004. Rare-earth elements in Oligo-Miocenic pelitic sediments from Lagonegro basin, southern Apennines, Italy: implications for provenance and source-area weathering. International Journal of Earth Sciences 93, 612–20.Google Scholar
Mongelli, G., Critelli, S., Perri, F., Sonnino, M. & Perrone, V. 2006. Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy. Geochemical Journal 40, 197209.Google Scholar
Mongelli, G., Cullers, R. & Muelheisen, S. 1996. Geochemistry of Cenozoic shales from the Varicolori Formation, Southern Apennines, Italy: implications for mineralogical, grain size control and provenance. European Journal of Mineralogy 8, 733–54.CrossRefGoogle Scholar
Mongelli, G., Mameli, P., Oggiano, G. & Sinisi, R. 2012. Messinian palaeoclimate and palaeo-environment in the western Mediterranean realm: insights from the geochemistry of continental deposits of NW Sardinia (Italy). International Geology Review 54, 971–90.Google Scholar
Nesbitt, H. W., Fedo, C. M. & Young, G. M. 1997. Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology 105, 173–91.Google Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–7.Google Scholar
Nesteroff, W. D. 1973. Un modèle pour les evaporates messiniennes en Méditerranée des bassins peu profonds avec depot d’evaporites lagunaires. In Messinian Events in the Mediterranean (ed. Drooger, C. W.), pp. 6881. Amsterdam: North-Holland Publishing Company.Google Scholar
Ogniben, L. 1955. Le argille scagliose del Crotonese. Memorie e Note dell’Istituto di Geologia Applicata. Napoli 6, 172.Google Scholar
Ogniben, L. 1957. Petrografia della serie Solfigera Siciliana e considerazioni geologiche relative. Memorie Descrittive della Carta Geologica d’Italia 33, 1.Google Scholar
Ogniben, L. 1962. Le Argille Scagliose e i sedimenti messiniani a sinistra del Trionto (Rossano, Cosenza). Geologica Romana 1, 255–82.Google Scholar
Ogniben, L. 1969. Schema introduttivo alla geologia del confine calabro-lucano. Memorie della Società Geologica Italiana 8, 453763.Google Scholar
Ohta, T. & Arai, H. 2007. Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering. Chemical Geology 240, 280–97.Google Scholar
Patacca, E., Sartori, R. & Scandone, P. 1990. Tyrrhenian Basin and Apenninic arcs: kinematic relations since late Tortonian times. Memorie della Società Geologica Italiana 45, 425–51.Google Scholar
Pedley, H. M. & Grasso, M. 1993. Controls on faunal sediment cyclicity within the “Tripoli” and Calcare di Base basins (Late Miocene) of central Sicily. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 337–60.Google Scholar
Peltola, P., Brun, C., Ström, M. & Tomilina, O. 2008. High K/Rb ratios in stream waters – exploring plant litter decay, ground water and lithology as potential controlling mechanisms. Chemical Geology 257, 92100.CrossRefGoogle Scholar
Perri, F. 2014. Composition, provenance and source weathering of Mesozoic sandstones from Western-Central Mediterranean Alpine Chains. Journal of African Earth Sciences 91, 3243.Google Scholar
Perri, F., Cirrincione, R., Critelli, S., Mazzoleni, P. & Pappalardo, A. 2008. Clay mineral assemblages and sandstone compositions of the Mesozoic Longobucco Group, northeastern Calabria: implications for burial history and diagenetic evolution. International Geology Review 50, 1116–31.CrossRefGoogle Scholar
Perri, F., Critelli, S., Cavalcante, F., Mongelli, G., Dominici, R., Sonnino, M. & De Rosa, R. 2012 a. Provenance signatures for the Miocene volcaniclastic succession of the Tufiti di Tusa Formation, southern Apennines, Italy. Geological Magazine 149, 423–42.Google Scholar
Perri, F., Critelli, S., Dominici, R., Muto, F., Tripodi, V. & Ceramicola, S. 2012 b. Provenance and accommodation pathways of late Quaternary sediments in the deep-water northern Ionian Basin, southern Italy. Sedimentary Geology 280, 244–59.CrossRefGoogle Scholar
Perri, F., Critelli, S., Martìn-Algarra, A., Martìn-Martìn, M., Perrone, V., Mongelli, G. & Zattin, M. 2013. Triassic redbeds in the Malaguide Complex (Betic Cordillera – Spain): petrography, geochemistry, and geodynamic implications. Earth-Science Reviews 117, 128.Google Scholar
Perri, F., Critelli, S., Mongelli, G. & Cullers, R. L. 2011. Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic M.te di Gioiosa mudstones (Sicily, southern Italy). International Journal of Earth Sciences 100, 1569–87.Google Scholar
Perri, F., Muto, F. & Belviso, C. 2011. Links between composition and provenance of Mesozoic siliciclastic sediments from Western Calabria (Southern Italy). Italian Journal of Geosciences 130, 318–29.Google Scholar
Plank, T. & Langmuir, C. H. 1998. The chemical composition of subducting sediment and its composition for the crust and mantle: Chemical Geology 145, 325–94.Google Scholar
Roda, C. 1964. Distribuzione e facies dei sedimenti neogenici nel Bacino Crotonese. Geologica Romana 3, 319–66.Google Scholar
Roda, C. 1967. I sedimenti neogenici autoctoni ed alloctoni della zona di Cirò-Cariati (Catanzaro e Cosenza). Memorie della Società Geologica Italiana 6, 137–49.Google Scholar
Rouchy, J. M. & Caruso, A. 2006. The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sedimentary Geology 188–189, 3567.Google Scholar
Roveri, M., Lugli, S., Manzi, V. & Schreiber, B. C. 2008 a. The Messinian Sicilian stratigraphy revisited: new insights for the Messinian salinity crisis. Terra Nova 20, 483–8.CrossRefGoogle Scholar
Roveri, M., Manzi, V., Gennari, R., Iaccarino, S. M. & Lugli, S. 2008 b. Recent advancements in the Messinian stratigraphy of Italy and their Mediterranean-scale implications. Bollettino della Società Paleontologica Italiana 47, 7185.Google Scholar
Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilusis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locatura, J., Marsina, K., Mazreku, A., O’Connnor, P. J., Olsson, S. A., Otteen, R.-T., Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I., Sandstrom, H., Siwers, U., Steenfelt, A. & Tarvainen, T. 2005. Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps. Espoo, Finland: Geological Survey of Finland, 526 pp.Google Scholar
Sánchez-Román, M., McKenzie, J. A., de Luca Rebello Wagener, A., Rivadeneyra, M. A. & Vasconcelos, C. 2009. Presence of sulfate does not inhibit low-temperature dolomite precipitation. Earth and Planetary Science Letters 285, 131–9.Google Scholar
Selli, R. 1973. An outline of the Italian Messinian. In Messinian Events in the Mediterranean (ed. Drooger, C. W.), pp. 150–70. Amsterdam: North-Holland Publishing Company.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell.Google Scholar
Thomson, J., Crudeli, D., De Lange, G. J., Slomp, C., Erba, E. & Corselli, C. 2004. Florisphaera profunda and the origin and diagenesis of carbonate phases in eastern Mediterranean sapropel units. Paleoceanography 19, PA3003.Google Scholar
Tripodi, V., Muto, F. & Critelli, S. 2013. Structural style and tectono-stratigraphic evolution of the Neogene-Quaternary Siderno Basin, southern Calabrian Arc, Italy. International Geology Review 55, 468–81.Google Scholar
Van Dijk, J. P., Bello, M., Brancaleoni, G. P., Cantarella, G., Costa, V., Frixa, A., Golfetto, F., Merlini, F., Riva, M., Torricelli, S., Toscano, C. & Zerilli, A. 2000. A regional structural model for the northern sector of the Calabrian Arc (southern Italy). Tectonophysics 324, 2360.CrossRefGoogle Scholar
Wrafter, J. P. & Graham, J. R. 1989. Ophiolitic detritus in the Ordovician sediments of South Mayo Ireland. Journal of the Geological Society, London 146, 213–5.Google Scholar
Wronkiewicz, D. J. & Condie, K. C. 1989. Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0 Ga old continental craton. Geochimica et Cosmochimica Acta 53, 1537–49.CrossRefGoogle Scholar
Zaghloul, M. N., Critelli, S., Perri, F., Mongelli, G., Perrone, V., Sonnino, M., Tucker, M., Aiello, M. & Ventimiglia, C. 2010. Depositional systems, composition and geochemistry of Triassic rifted-continental margin redbeds of Internal Rif Chain, Morocco. Sedimentology 57, 312–50.Google Scholar
Zecchin, M., Caffau, M., Civile, D., Critelli, S., Di Stefano, A., Maniscalco, R., Muto, F., Sturiale, G. & Roda, C. 2012. The Plio-Pleistocene evolution of the Crotone Basin (southern Italy): interplay between sedimentation, tectonics and eustasy in the frame of Calabrian Arc migration. Earth-Science Reviews 115, 273303.Google Scholar
Zecchin, M., Ceramicola, S., Gordini, E., Deponte, M. & Critelli, S. 2011. Cliff overstep model and variability in the geometry of transgressive erosional surfaces in high-gradient shelves: the case of the Ionian Calabrian margin (southern Italy). Marine Geology 281, 4358.Google Scholar
Zecchin, M., Civile, D., Caffau, M., Muto, F., Di Stefano, A., Maniscalco, R., Critelli, S. 2013 a. The Messinian succession of the Crotone Basin (southern Italy) I: stratigraphic architecture reconstructed by seismic and well data. Marine and Petroleum Geology 48, 455–73.Google Scholar
Zecchin, M., Caffau, M., Di Stefano, A., Maniscalco, R., Lenaz, D., Civile, D., Muto, F. & Critelli, S. 2013 b. The Messinian succession of the Crotone Basin (southern Italy) II: Facies architecture and stratal surfaces across the Miocene-Pliocene boundary. Marine and Petroleum Geology 48, 474–92.CrossRefGoogle Scholar