Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T15:49:08.030Z Has data issue: false hasContentIssue false

The SPICE carbon isotope excursion in Siberia: a combined study of the upper Middle Cambrian–lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform

Published online by Cambridge University Press:  23 May 2008

ARTEM KOUCHINSKY*
Affiliation:
Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
STEFAN BENGTSON
Affiliation:
Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
YVES GALLET
Affiliation:
Équipe de Paléomagnétisme, UMR CNRS 7154, Institut de Physique du Globe de Paris, France
IGOR KOROVNIKOV
Affiliation:
Institute of Petroleum Geology and Geophysics, Siberian Branch of Russian Academy of Sciences, Academician Koptyug Avenue, 3, 630090 Novosibirsk, Russia
VLADIMIR PAVLOV
Affiliation:
Institute of Physics of the Earth, Bol'shaya Gruzinskaya 10, Moscow 123995, Russia
BRUCE RUNNEGAR
Affiliation:
Department of Earth and Space Sciences, University of California Los Angeles, CA 90095-1567, USA
GRAHAM SHIELDS
Affiliation:
Geologisch-Paläontologisches Institut, Westfälische Wilhelms-Universität, Correnstr. 24, 48149 Münster, Germany
JAN VEIZER
Affiliation:
Ottawa-Carleton Geoscience Centre, University of Ottawa, Ottawa, ON K1N 6N5, Canada
EDWARD YOUNG
Affiliation:
Department of Earth and Space Sciences, University of California Los Angeles, CA 90095-1567, USA
KAREN ZIEGLER
Affiliation:
Department of Earth and Space Sciences, University of California Los Angeles, CA 90095-1567, USA
*
Author for correspondence: [email protected]

Abstract

An integrated, high-resolution chemostratigraphic (C, O and Sr isotopes) and magnetostratigraphic study through the upper Middle Cambrian–lowermost Ordovician shallow-marine carbonates of the northwestern margin of the Siberian Platform is reported. The interval was analysed at the Kulyumbe section, which is exposed along the Kulyumbe River, an eastern tributary of the Enisej River. It comprises the upper Ust'-Brus, Labaz, Orakta, Kulyumbe, Ujgur and lower Iltyk formations and includes the Steptoean positive carbon isotopic excursion (SPICE) studied here in detail from upper Cambrian carbonates of the Siberian Platform for the first time. The peak of the excursion, showing δ13C positive values as high as +4.6‰ and least-altered 87Sr/86Sr ratios of 0.70909, is reported herein from the Yurakhian Horizon of the Kulyumbe Formation. The stratigraphic position of the SPICE excursion does not support traditional correlation of the boundary between the Orakta and Labaz formations at the Kulyumbe River with its supposedly equivalent level in Australia, Laurentia, South China and Kazakhstan, where the Glyptagnostus stolidotus and G. reticulatus biozones are known to immediately precede the SPICE excursion and span the Middle–Upper Cambrian boundary. The Cambrian–Ordovician boundary is probably situated in the middle Nyajan Horizon of the Iltyk Formation, in which carbon isotope values show a local maximum below a decrease in the upper part of the Nyajan Horizon, attributed herein to the Tremadocian Stage. A refined magnetic polarity sequence confirms that the geomagnetic reversal frequency was very high during Middle Cambrian times at 7–10 reversals per Ma, assuming a total duration of about 10 Ma and up to 100 magnetic intervals in the Middle Cambrian. By contrast, the sequence attributed herein to the Upper Cambrian on chemostratigraphic grounds contains only 10–11 magnetic intervals.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P., Axheimer, N., Eriksson, M. E., Schmitz, B. & Terfelt, F. 2006. High-resolution trilobite biostratigraphy and carbon isotope stratigraphy of the middle Cambrian–lower Furongian of Baltica. In 11th International conference of the Cambrian Stage Subdivision Working Group, South Australia, August 14–24, 2006, Abstracts 84 (ed. Jago, J. B.), p. 5. Geological Society of Australia.Google Scholar
Babcock, L. E., Peng, S., Geyer, G. & Shergold, J. H. 2005. Changing perspectives on Cambrian chronostratigraphy and progress toward subdivision of the Cambrian System. Geosciences Journal 9 (2), 101–6.CrossRefGoogle Scholar
Brasier, M. D. & Sukhov, S. S. 1998. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: northern Siberia data. Canadian Journal of Earth Sciences 35, 353–73.CrossRefGoogle Scholar
Buggisch, W. 2006. Stable carbon isotopes of the Late Cambrian Minaret Formation, Ellsworth mountains, West Antarctica. Scientific Committee on Antarctic Research Open Science Conference, July 12–14. Hobart, Tasmania. Abstract, p. 210.Google Scholar
Buggisch, W. In press. Carbon isotope record of Middle Cambrian to Late Silurian carbonate and shale of Northeastern Ellesmere Island. Bulletin of the Canadian Geological Survey.Google Scholar
Buggisch, W., Keller, M. & Lehnert, O. 2003. Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 357–73.CrossRefGoogle Scholar
Cooper, R. A. & Nowlan, G. 1999. Proposed global Stratotype Section and Point for base of the Ordovician System. In Quo vadis Ordovician? (eds Kraft, P. and Fatka, O.), pp. 61–4. Short papers of the 8th International Symposium on the Ordovician System. Acta Universitatis Carolinae, Geologica 43.Google Scholar
Cooper, R. A., Nowlan, G. S. & Williams, S. H. 2001. Global Stratotype Section and Point for base of the Ordovician System. Episodes 24, 1928.CrossRefGoogle Scholar
Datsenko, V. A., Zhuravleva, I. T., Lazarenko, N. P., Popov, Yu. N. & Chernysheva, N. E. 1968. Biostratigrafiya i fauna kembrijskikh otlozhenij severo-zapada Sibirskoj platformy. (Biostratigraphy and fauna of the Cambrian deposits of northwestern Siberian platform). Transactions of the Scientific Research Institute of the Geology of the Arctic (NIIGA) 155, 242 pp.Google Scholar
Dubinina, S. V. 2000. Conodonts and zonal stratigraphy of the Cambrian–Ordovician boundary deposits. Transactions of the Geological Institute of the Russian Acadaemy of Sciences 517. Moscow: Nauka, 239 pp. (in Russian).Google Scholar
Ebneth, S., Shields, G. A., Veizer, J., Miller, J. F. & Shergold, J. 2001. High-resolution strontium isotope stratigraphy across the Cambrian–Ordovician transition. Geochimica et Cosmochimica Acta 65, 2273–92.CrossRefGoogle Scholar
Gallet, Y., Pavlov, V. & Courtillot, V. 2003. Magnetic reversal frequency and apparent polar wander of the Siberian platform in the earliest Palaeozoic, inferred from the Khorbusuonka river section (northeastern Siberia). Geophysical Journal International 154, 829–40.CrossRefGoogle Scholar
Geyer, G. & Shergold, J. 2000. The quest for internationally recognized divisions of Cambrian time. Episodes 23, 188–95.CrossRefGoogle Scholar
Glumac, B. & Walker, K. R. 1998. A Late Cambrian positive carbon-isotope excursion in the Southern Appalachians: Relation to biostratigraphy, sequence stratigraphy, environments of deposition, and diagenesis. Journal of Sedimentary Research 68, 1212–22.CrossRefGoogle Scholar
Kampschulte, A. & Strauss, H. 2004. The sulfur isotopic evolution of Phanerozoic seawater based on analysis of structurally substituted sulfate in carbonates. Chemical Geology 204, 255–86.CrossRefGoogle Scholar
Kaufman, A. J. & Knoll, A. H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research 73, 2749.CrossRefGoogle ScholarPubMed
Krasnov, V. I., Savitsky, V. E., Tesakov, Yu. I. & Khomentovsky, V. V. (eds) 1983. Decrees of the All-Union Stratigraphical Meeting on the Precambrian, Paleozoic and Quaternary Systems of Middle Siberia, Novosibirsk, 1979, Part 1 (Upper Proterozoic and Lower Paleozoic). Leningrad, USSR: Cartographic Publishing House of All-Union Geological Institute, 216 pp. (in Russian).Google Scholar
Lazarenko, N. P. & Pegel', T. V. 2001. Upper Cambrian levels of biostratigraphical correlation in the Khos-Nelege River reference section (northeastern flank of the Siberian platform). In Cambrian System of South China (eds Peng, S., Babcock, L. E. & Zhu, M..), 276–9. Palaeoworld 13. Hefei: Press of University of Science and Technology of China.Google Scholar
Miller, J. F., Ethington, R. L., Evans, K. R., Holmer, L. E., Loch, J. D., Popov, L. E., Repetski, J. E., Ripperdan, R. L. & Taylor, J. F. 2006. Proposed stratotype for the base of the highest Cambrian stage at the first appearance datum of Cordylodus andresi, Lawson Cove section, Utah, USA. Palaeoworld 15 (3–4), 384405.CrossRefGoogle Scholar
Montañez, I. P., Osleger, D. A., Banner, J. L., Mack, L. E. & Musgrove, M. 2000. Evolution of the Sr and C Isotope Composition of Cambrian Oceans. GSA Today 10, 17.Google Scholar
Palmer, A. R. 1965. Trilobites of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. Geological Survey Professional Paper 493, 105 pp.Google Scholar
Palmer, A. R. 1979. Biomere boundaries re-examined. Alcheringa 3, 3341.CrossRefGoogle Scholar
Palmer, A. R. 1984. The Biomere problem: evolution of an idea. Journal of Paleontology 58, 599611.Google Scholar
Pavlov, V. & Gallet, Y. 1998. Upper Cambrian to Middle Ordovician magnetostratigraphy from the Kulumbe river section (northwestern Siberia). Physics of the Earth and Planetary Interiors 108, 4959.CrossRefGoogle Scholar
Pavlov, V. & Gallet, Y. 2001. Middle Cambrian high magnetic reversal frequency (Kulumbe River section, northwestern Siberia) and reversal behaviour during the Early Palaeozoic. Earth and Planetary Science Letters 185, 173–83.CrossRefGoogle Scholar
Pavlov, V. & Gallet, Y. 2005. Third superchron during the Early Paleozoic. Episodes 28, 7884.CrossRefGoogle Scholar
Peng, S., Babcock, L. E., Robison, R. A., Lin, H., Rees, M. N. & Saltzman, M. R. 2004. Global Standard Stratotype-section and Point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia 37, 365–79.CrossRefGoogle Scholar
Peng, S., Babcock, L. E., Zuo, J., Lin, H., Zhu, X., Yang, X., Robison, R. A., Qi, Y., Bagnoli, G. & Chen, Y. 2006. Proposed GSSP for the base of Cambrian Stage 7, coinciding with the first appearance of Lejopyge laevigata, Hunan, China. Palaeoworld 15 (3–4), 367–83.CrossRefGoogle Scholar
Ripperdan, R. 2002. The HERB event: end of the Cambrian carbon cycle paradigm? Geological Society of America Abstracts with Programs 34 (6), 413.Google Scholar
Ripperdan, R. L. & Kirschvink, J. L. 1992. Paleomagnetic results from the Cambrian–Ordovician boundary section at Black Mountain, Georgina Basin, western Queensland, Australia. In Global Perspectives on Ordovician Geology (eds Webby, B. D. & Laurie, J. R..), pp. 381–94. Rotterdam: A. A. Balkema.Google Scholar
Ripperdan, R. L., Magaritz, M. & Kirschvink, J. L. 1993. Carbon isotope and magnetic polarity evidence for non-depositional events within the Cambrian–Ordovician boundary section near Dayangcha Jilin Province, China. Geological Magazine 130, 443–52.CrossRefGoogle Scholar
Ripperdan, R. L., Magaritz, M., Nicoll, R. S. & Shergold, J. H. 1992. Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian–Ordovician boundary interval at Black Mountain, Australia. Geology 20, 1039–42.2.3.CO;2>CrossRefGoogle Scholar
Ripperdan, R. L. & Miller, J. F. 1995. Carbon isotope ratios from the Cambrian– Ordovician boundary section at Lawson Cove, Ibex area, Utah. In Ordovician Odyssey: short papers for the Seventh International Symposium on the Ordovician System (eds Cooper, J. D., Droser, M. L. & Finney, S. C..), pp. 129–32. Pacific Section of Economic Paleontologists and Mineralogists, Special Publication no. 77.Google Scholar
Rozanov, A. Yu., Repina, L. N., Apollonov, M. K., Shabanov, Yu. Ya., Zhuravlev, A. Yu., Pegel', T. V., Fedorov, A. B., Astashkin, V. A., Zhuravleva, I. T., Egorova, L. I., Chugaeva, M. N., Dubinina, S. V., Ermak, V. V., Esakova, N. V., Sundukov, V. V., Sukhov, S. S. & Zhemchuzhnikov, V. G. 1992. Kembrij Sibiri. (The Cambrian of Siberia). Novosibirsk: Nauka, 135 pp.Google Scholar
Rozova, A. V. 1963. Biostratigraficheskaya skhema raschleneniya verkhnego i verkhov srednego kembriya severo-zapada Sibirskoj platformy i novye verkhne-kembrijskie trilobity r. Kulyumbe. (Biostratigraphic scheme of subdivisions of the Upper – upper Middle Cambrian in the northwestern Siberian platform and new Upper Cambrian trilobites of the Kulyumbe River). Geologiya i geofizika 9, 319 (in Russian).Google Scholar
Rozova, A. V. 1964. Biostratigrafiya i opisanie trilobitov srednego i verkhnego kembriya severo-zapada Sibirskoj platformy. (Biostratigraphy and description of trilobites of the Middle and Upper Cambrian of the northwestern Siberian platform). Institute of Geology and Geophysics. Novosibirsk: Academy of Sciences of the USSR, Siberian Division, 148 pp. (in Russian).Google Scholar
Rozova, A. V. 1968. Biostratigrafiya i trilobity verkhnego kembriya i nizhnego ordovika severo-zapada Sibirskoj platformy. (Biostratigraphy and trilobites of the Upper Cambrian and Lower Ordovician of the northwestern Siberian platform). Institute of Geology and Geophysics. Novosibirsk: Academy of Sciences of the USSR, Siberian Division, 196 pp. (in Russian).Google Scholar
Rozova, A. V. 1984. Biostratigraphic zoning and trilobites of the Upper Cambrian and Lower Ordovician of the northwestern Siberian platform. New Delhi: Amerind Publishing Co. Pvt. Ltd., 279 pp. (translated from Rozova, A. V. 1968).Google Scholar
Rozova, A. V. & Yadrenkina, A. G. 1967. Biostratigrafiya i brakhiopody verkhnego kembriya i nizhnego ordovika razreza r. Kulyumbe (Sibirskaya platforma). (Biostratigraphy and brachiopods of the Upper Cambrian and Lower Ordovician of the Kulyumbe River section (Siberian Platform)). Novye dannye po biostratigrafii nizhnego paleozoya Sibirskoj platformy. (New data on the biostratigraphy of the Lower palaeozoic of the Siberian Platform). Moscow: Nauka, 1244. (in Russian)Google Scholar
Saltzman, M. R. 2001. Carbon isotope stratigraphy of the Upper Cambrian Steptoean Stage and equivalents worldwide. Palaeoworld 13, 299.Google Scholar
Saltzman, M. R. 2005. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology 33, 573–6.CrossRefGoogle Scholar
Saltzman, M. R., Cowan, C. A., Runkel, A. C., Runnegar, B., Stewart, M. C. & Palmer, A. R. 2004. The Late Cambrian SPICE (δ13C) event and the SAUK II–SAUK III regression: new evidence from Laurentian basins in Utah, Iowa, and Newfoundland. Journal of Sedimentary Research 74, 366–77.CrossRefGoogle Scholar
Saltzman, M. R., Davidson, J. P., Holden, P., Runnegar, B. & Lohmann, K. C. 1995. Sea-level-driven changes in ocean chemistry at an Upper Cambrian extinction horizon. Geology 23, 893–6.2.3.CO;2>CrossRefGoogle Scholar
Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., Lohmann, K. C., Robinson, R. A., Chang, W. T., Peng, S., Ergaliev, E. K. & Runnegar, B. R. 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: Relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 211–23.CrossRefGoogle Scholar
Saltzman, M. R., Runnegar, B. R. & Lohmann, K. C. 1998. Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of a global oceanographic event. Geological Society of America Bulletin 110, 285–97.2.3.CO;2>CrossRefGoogle Scholar
Shabanov, Yu. Ya., Savitsky, V. E. & Chernysheva, N. E. 1967. Biostratigrafiya majskogo yarusa Igarskogo rajona. (Biostratigraphy of the Mayan Stage of the Igarka region.) SNIIGGiMS Transactions 55.Google Scholar
Shields, G. A., Carden, G. A. F., Veizer, J., Meidla, T., Rong, J.-Y. & Li, R.-Y. 2003. Sr, C and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta 67, 2005–25.CrossRefGoogle Scholar
Sokolov, B. S. (ed.) 1982. Ordovician of the Siberian Platform: key section on the Kulumbe River. Novosibirsk: Nauka, 118 pp. (in Russian).Google Scholar
Squire, R. J., Campbell, I. H., Allen, C. M. & Wilson, C. J. L. 2006. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth and Planetary Science Letters 250, 116–33.CrossRefGoogle Scholar
Sukhov, S. S. 1997. Cambrian depositional history of the Siberian craton: evolution of the carbonate platforms and basins. Sedimentary Facies and Palaeogeography 17, 2739.Google Scholar
Tesakov, Yu. I., Kanygin, A. V., Yadrenkina, A. G., Simonov, O. N., Sychev, O. V., Abaimova, G. P., Divina, T. A. & Moskalenko, N. A. 2003. Ordovician of the northwestern Siberian platform. Novosibirsk: Publishing House of the Siberian Division of the Russian Academy of Sciences, 364 pp. (in Russian).Google Scholar
Varlamov, A. I., Pak, K. L. & Rozova, A. V. 2006. The Upper Cambrian of the Chopko River section, Norilsk region, northwestern Siberian platform: Stratigraphy and trilobites. Paleontological Journal 40, Supplement 1, S1S56.CrossRefGoogle Scholar
Yang, Z., Otofuji, Y., Sun, Z. & Huang, B. 2002. Magnetostratigraphic constraints on the Gondwanan origin of North China: Cambrian/Ordovician boundary results. Geophysical Journal International 151, 110.CrossRefGoogle Scholar
Zhu, M., Zhang, J., Li, G. & Yang, A. 2004. Evolution of C isotopes in the Cambrian of China: Implications for Cambrian subdivision and trilobite mass extinctions. Geobios 37, 287310.CrossRefGoogle Scholar
Zhu, M., Babcock, L. E. & Peng, S. 2006. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15 (3–4), 217–22.CrossRefGoogle Scholar
Supplementary material: File

Kouchinsky supplementary material

Supplementary table1

Download Kouchinsky supplementary material(File)
File 313.3 KB
Supplementary material: File

Kouchinsky supplementary material

Supplementary table2

Download Kouchinsky supplementary material(File)
File 85.5 KB
Supplementary material: File

Kouchinsky supplementary material

Supplementary table3

Download Kouchinsky supplementary material(File)
File 34.8 KB
Supplementary material: File

Kouchinsky supplementary material

Supplementary table4

Download Kouchinsky supplementary material(File)
File 20.5 KB
Supplementary material: File

Kouchinsky supplementary material

Supplementary table5

Download Kouchinsky supplementary material(File)
File 30.7 KB