Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T13:36:29.644Z Has data issue: false hasContentIssue false

Skeletal carbonate productivity and phosphogenesis at the lower–middle Cambrian transition of Scania, southern Sweden

Published online by Cambridge University Press:  16 June 2009

J. JAVIER ÁLVARO*
Affiliation:
Departamento Ciencias de la Tierra, Universidad de Zaragoza, E-50009 Zaragoza, Spain
PER AHLBERG
Affiliation:
GeoBiosphere Science Centre, Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
NIKLAS AXHEIMER
Affiliation:
GeoBiosphere Science Centre, Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
*
Author for correspondence: [email protected]

Abstract

The lower–middle Cambrian transitional interval of Scania is largely represented by condensed limestone beds, lithostratigraphically grouped in the Gislöv Formation (1–5.7 m thick), and the Forsemölla and Exsulans Limestone beds (lower part of the Alum Shale Formation, up to 4 m thick). The strata display a combination of skeletal carbonate productivity, episodic nucleation of phosphate hardground nodules, and polyphase reworking recorded on a platform bordering the NW corner of Baltica. The shell accumulations can be subdivided into three deepening-upward parasequences, separated by distinct erosive unconformities. The parasequences correspond biostratigraphically to the Holmia kjerulfi, Ornamentaspis? linnarssoni and Ptychagnostus gibbus zones, the latter two generally being separated by a stratigraphic gap that includes the middle Cambrian Acadoparadoxides oelandicus Superzone. Except for the Exsulans Limestone, the carbonates reflect development of a prolific epibenthic biota, dominated by filter-feeding nonreefal chancelloriid–echinoderm–sponge meadows, rich in trilobites and brachiopods, and which were subjected to high-energy conditions. The absence of microbial mats or veneers encrusting the erosive surfaces of these event-concentration low-relief shoal complexes may be related to long hiatal episodes resulting in microboring proliferation. High levels of nutrient supply resulted in high primary productivity, eutrophic conditions, glauconite precipitation, phosphogenesis (in some case microbially mediated) and microendolithic infestation. An early-diagenetic mildly reducing environment is suggested by the presence of authigenic (subsequently reworked) pyrite, which contrasts with the syndepositional normal oxygenated conditions reflected by macroburrowing and the abundance of benthic fossils.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P. 1983. A Lower Cambrian trilobite fauna from Jämtland, central Scandinavian Caledonides. Geologiska Föreningens i Stockholm Förhandlingar 105, 349–61.CrossRefGoogle Scholar
Ahlberg, P. 1998. Cambrian shelly faunas and biostratigraphy of Scandinavia. In Guide to excursions in Scania and Västergötland, Southern Sweden (ed. Ahlberg, P.), pp. 5–9. Lund Publications in Geology 141.Google Scholar
Ahlberg, P. & Bergström, J. 1978. Lower Cambrian ptychopariid trilobites from Scandinavia. Sveriges Geologiska Undersökning Ca 49, 141.Google Scholar
Ahlberg, P. & Bergström, J. 1998. The Cambrian of Scania. In Guide to excursions in Scania and Västergötland, Southern Sweden (ed. Ahlberg, P.), pp. 20–3. Lund Publications in Geology 141.Google Scholar
Al-Assam, I., Taylor, B. E. & South, B. 1990. Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chemical Geology 80, 119–25.Google Scholar
Allen, J. R. & Matthews, R. K. 1982. Isotopic signature associated with early meteoric diagenesis. Sedimentology 29, 791817.Google Scholar
Álvaro, J. J. & Clausen, S. 2005. Major geodynamic and sedimentary constraints on the chronostratigraphic correlation of the Lower–Middle Cambrian transition in the western Mediterranean region. Geosciences Journal 9, 145–60.CrossRefGoogle Scholar
Álvaro, J. J. & Clausen, S. 2006. Microbial crusts as indicators of stratigraphic diastems in the Cambrian Micmacca Breccia, Moroccan Atlas. Sedimentary Geology 185, 255–65.CrossRefGoogle Scholar
Álvaro, J. J. & Clausen, S. 2008. Paleoenvironmental significance of hiatal shelled accumulations in a Cambrian intracratonic aborted rift, Atlas Mountains, Morocco. In Dynamics of Epeiric Seas (eds Pratt, B. R. & Holmden, C.), pp. 3954. Geological Association of Canada, Special Paper no. 48.Google Scholar
Álvaro, J. J. & Vennin, E. 1997. Episodic development of Cambrian eocrinoid–sponge meadows in the Iberian Chains (NE Spain). Facies 37, 4964.CrossRefGoogle Scholar
Álvaro, J. J. & Vennin, E. 1998. Stratigraphic signature of a terminal Early Cambrian regressive event in the Iberian Peninsula. Canadian Journal of Earth Sciences 35, 402–11.Google Scholar
Álvaro, J. J., Elicki, O., Geyer, G., Rushton, A. W. A. & Shergold, J. H. 2003. Palaeogeographical controls on the Cambrian trilobite immigration and evolutionary patterns reported in the western Gondwana margin. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 535.CrossRefGoogle Scholar
Álvaro, J. J., Aretz, M., Boulvain, F., Munnecke, A., Vachard, D. & Vennin, E. 2007. Fabric transitions from shell accumulations to reefs: an introduction with Palaeozoic examples. In Palaeozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls (eds Álvaro, J. J., Aretz, M., Boulvain, F., Munnecke, A., Vachard, D. & Vennin, E.), pp. 116. Geological Society of London, Special Publication no. 275.Google Scholar
Álvaro, J. J., Bauluz, B., Subías, I., Pierre, C. & Vizcaïno, D. 2008. Carbon chemostratigraphy of the Cambrian–Ordovician transition in a midlatitude mixed platform, Montagne Noire, France. Geological Society of America Bulletin 120, 962–75.CrossRefGoogle Scholar
Axheimer, N. & Ahlberg, P. 2003. A core drilling through Cambrian strata at Almbacken, Scania, S. Sweden: trilobites and stratigraphical assessment. GFF 125, 139–56.CrossRefGoogle Scholar
Axheimer, N., Ahlberg, P. & Cederström, P. 2007. A new lower Cambrian eodiscoid trilobite fauna from Swedish Lapland and its implications for intercontinental correlation. Geological Magazine 144, 953–61.Google Scholar
Babcock, L. E., Peng, S. C., Geyer, G. & Shergold, J. H. 2005. Changing perspectives on Cambrian chronostratigraphy and progress toward subdivision of the Cambrian System. Geosciences Journal 9, 101–6.CrossRefGoogle Scholar
Bengtson, S. 1976. The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia 9, 185206.Google Scholar
Bergström, J. & Ahlberg, P. 1981. Uppermost Lower Cambrian biostratigraphy in Scania, Sweden. Geologiska Föreningens i Stockholm Förhandlingar 103, 193214.CrossRefGoogle Scholar
Bergström, J. & Gee, D. G. 1985. The Cambrian in Scandinavia. In The Caledonide Orogen – Scandinavia and Related Areas (eds Gee, D. G. & Sturt, B. A.), pp. 247–71. London: John Wiley and Sons.Google Scholar
Brand, U. & Veizer, J. 1980. Chemical diagenesis of multicomponent carbonate system. 1. Trace elements. Journal of Sedimentary Petrology 50, 1219–50.Google Scholar
Brasier, M. D. 1995. Fossil indicators of nutrient levels. 1. Eutrophization and climatic change. In Marine Palaeoenvironmental Analysis from Fossils (eds Bosence, D. W. J. & Allison, P. A.), pp. 113–32. Geological Society of London, Special Publication no. 83.Google Scholar
Brasier, M. D. & Sukhov, S. S. 1998. The falling amplitude of carbon isotope oscillations through the Lower to Middle Cambrian: Northern Siberia data. Canadian Journal of Earth Sciences 35, 353–73.Google Scholar
Brasier, M. D., Corfield, R. M., Derry, L. A., Rozanov, A. Yu. & Zhuravlev, A. Yu. 1994. Multiple δ13C excursions spanning the Cambrian explosion to the Botoman crisis in Siberia. Geology 22, 455–8.Google Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences 31, 275301.CrossRefGoogle Scholar
Bromley, R. G. 2004. A stratigraphy of marine bioerosion. In The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis (ed. McIlroy, D.), pp. 455–79. Geological Society of London, Special Publication no. 228.Google Scholar
Bromley, R. G. & Asgaard, U. 1993. Endolithic community replacement on a Pliocene rocky coast. Ichnos 2, 93116.CrossRefGoogle Scholar
Brøgger, W. C. 1886. Om alderen af Olenelluszonen i Nordamerika. Geologiska Föreningens i Stockholm Förhandlingar 8, 182213.Google Scholar
Catuneau, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrympe, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. St. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamentier, H. W., Pratt, B. R., Sarg, J. F., Shanley, K. W., Steel, R. J., Strasser, A., Tucker, M. E. & Winker, C. 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews 92, 133.Google Scholar
Chazotte, V., Le Champion-Alsumard, T. & Peyrot-Clausade, M. 1995. Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology 113, 189–98.Google Scholar
Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews 72, 3966.Google Scholar
Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analyses of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133–49.CrossRefGoogle Scholar
Debrenne, F. 1991. Extinction of the Archaeocyatha. Historical Biology 5, 95106.CrossRefGoogle Scholar
Dies Álvarez, M. E., Gozalo, R., Cederström, P. & Ahlberg, P. 2008. Bradoriid arthropods from the lower–middle Cambrian of Scania, Sweden. Acta Palaeontologica Polonica 53, 647–56.Google Scholar
Donnelly, T. H., Shergold, J. H. & Southgate, P. N. 1988. Anomalous geochemical signals from phosphatic Middle Cambrian rocks in the southern Georgina Basin, Australia. Sedimentology 35, 549–70.Google Scholar
Eriksson, M. J. 2004. Formation and significance of a middle Silurian ravinement surface on Gotland, Sweden. Sedimentary Geology 170, 163–75.Google Scholar
Föllmi, K. B. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews 40, 55124.CrossRefGoogle Scholar
Gee, D. G., Kumpulainen, R. & Thelander, T. 1978. The Tåsjön décollement, central Swedish Caledonides. Sveriges Geologiska Undersökning C742, 135.Google Scholar
Geyer, G. 2005. The base of a revised Middle Cambrian: are suitable concepts for a series boundary in reach? Geosciences Journal 9, 8199.Google Scholar
Glaub, I., Golubic, S., Gektidis, M., Radtke, G. & Vogel, K. 2007. Microborings and microbial endoliths: geological implications. In Trace Fossils: Concepts, Problems, Prospects (ed. Miller III, W.), pp. 368–81. Amsterdam: Elsevier.CrossRefGoogle Scholar
Glaub, I. & Vogel, K. 2004. The stratigraphic record of microborings. Fossils and Strata 51, 126–35.Google Scholar
Glumac, B. & Walker, K. R. 1998. A Late Cambrian positive carbon-isotope excursion in the southern Appalachians: relation to biostratigraphy, sequence stratigraphy, environments of deposition, and diagenesis. Journal of Sedimentary Research 68, 1212–22.CrossRefGoogle Scholar
Greiling, R. O., Jensen, S. & Smith, A. G. 1999. Vendian–Cambrian subsidence of the passive margin of western Baltica – application of new stratigraphic data from the Scandinavian Caledonian margin. Norsk Geologisk Tidsskrift 79, 133–44.CrossRefGoogle Scholar
Guo, Qing-Jun, Strauss, H., Liu, Cong-Qiang, Zhao, Yuan-Long, Pi, Dao-Hui, Fu, Ping-Qing, Zhu, Li-Jun & Yang, Rui-Dong. 2005. Carbon and oxygen isotopic composition of Lower to Middle Cambrian sediments at Taijiang, Guizhou Province, China. Geological Magazine 142, 723–33.CrossRefGoogle Scholar
Hough, M. L., Shields, G. A., Evins, L. Z., Strauss, H. & Mackenzie, S. 2006. A major sulphur isotope event at c. 510 Ma: a possible anoxic-extinction-volcanism connection during the Early–Middle Cambrian transition? Terra Nova 18, 257–63.CrossRefGoogle Scholar
Kiær, J. 1917. The Lower Cambrian Holmia Fauna at Tømten in Norway. Norske Videnskapsselskapets Skrifter, 1. Matematisk-Naturvidenskablig Klasse 1916 10, 1140.Google Scholar
Kidwell, S. M. & Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. In Taphonomy: Releasing the Data Locked in the Fossil Record (eds Allison, P. A. & Briggs, D. E. G.), pp. 115209. Topics in Geobiology. New York: Plenum Press.Google Scholar
Krajewski, K. P., Van Cappellen, P., Trichet, J., Kuhn, O., Lucas, J., Martín-Algarra, A., Prévôt, L., Tewari, V. C., Gaspar, L., Knight, R. I. & Lamboy, M. 1994. Biological processes and apatite formation in sedimentary environments. Eclogae Geologica Helvetiae 87, 701–45.Google Scholar
Lindström, M. & Staude, H. 1971. Beitrag zur Stratigraphie der unterkambrischen Sandsteine des südlichsten Skandinaviens. Geologica et Palaeontologica 5, 17.Google Scholar
Marino, A. de. 1980 a. Sandstones and phosphatized calcareous sediments of the Lower Cambrian Rispebjerg Sandstone, Bornholm, Denmark. Danmarks Geologiske Undersøgelse, II Række 113, 139.CrossRefGoogle Scholar
Marino, A. de. 1980 b. The upper Lower Cambrian strata south of Simrishamn Scania, Sweden: a transgressive-regressive shift through a limestone sequence. Sveriges Geologiska Undersökning C 771, 122.Google Scholar
Marshall-Neil, G. & Ruffell, A. 2004. Authigenic phosphate nodules (Late Cretaceous, northern Ireland) as condensed succession microarchives. Cretaceous Research 25, 439–52.CrossRefGoogle Scholar
Martinsson, A. 1974. The Cambrian of Norden. In Lower Palaeozoic Rocks of the World. Volume 2. Cambrian of the British Isles, Norden, and Spitsbergen (with an Introduction to the Lower Palaeozoic Systems and an essay on the Pre-Cambrian–Cambrian Boundary) (ed. Holland, C. H.), pp. 185283. London: John Wiley and Sons.Google Scholar
Moczydłowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland. Fossils and Strata 29, 1127.CrossRefGoogle Scholar
Moczydłowska, M., Jensen, S., Ebbestad, J. O. R., Budd, G. E. & Martí-Mus, M. 2001. Biochronology of the autochthonous Lower Cambrian in the Laisvall–Storuman area, Swedish Caledonides. Geological Magazine 138, 435–53.Google Scholar
Montañez, I. P., Osleger, D. A., Banner, J. L., Mack, L. E. & Musgrove, M. 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today 10 (5), 17.Google Scholar
Nielsen, A. T. & Schovsbo, N. H. 2007. Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia. Bulletin of the Geological Society of Denmark 53, 4792.Google Scholar
Nikolaisen, F. 1986. Olenellid trilobites from the uppermost Lower Cambrian Evjevik Limestone at Tømten in Ringsaker, Norway. Norsk Geologisk Tidsskrift 66, 305–9.Google Scholar
Notholt, A. J. G. & Brasier, M. D. 1986. Proterozoic and Cambrian phosphorites – regional review. Europe. In Phosphate Deposits of the World. Vol. 1. Proterozoic and Cambrian Phosphorites (eds Cook, P. J. & Shergold, J. H.), pp. 91100. Cambridge: Cambridge University Press.Google Scholar
Palmer, A. R. 1998 a. A proposed nomenclature for stages and series for the Cambrian of Laurentia. Canadian Journal of Earth Sciences 35, 323–8.CrossRefGoogle Scholar
Palmer, A. R. 1998 b. Terminal Early Cambrian extinction of the Olenellina: documentation from the Pioche Formation, Nevada. Journal of Paleontology 72, 650–72.CrossRefGoogle Scholar
Palmer, A. R. & James, N. P. 1980. The Hawke Bay event: a circum-Iapetus regression near the Lower–Middle Cambrian boundary. In The Caledonides in the U.S.A. (ed. Wones, D. R.), pp. 1518. Department of Geological Sciences, Virginia Polytechnic Institute and State University, Memoir no. 2.Google Scholar
Pedersen, G. K. 1989. The sedimentology of Lower Palaeozoic black shales from the shallow wells Skelbro 1 and Billegrav 1, Bornholm, Denmark. Bulletin of the Geological Society of Denmark 37, 151–73.Google Scholar
Peterhänsel, A. & Pratt, B. R. 2001. Nutrient-triggered bioerosion on a giant carbonate platform masking the postextinction Famennian benthic community. Geology 29, 1079–82.Google Scholar
Reid, P., Dupraz, C. D., Visscher, P. T. & Sumner, D. Y. 2003. Microbial processes forming marine stromatolites. In Fossil and Recent Biofilms: a Natural History of Life on Earth (eds Krumbein, W. E., Paterson, D. M. & Zavarzin, G. A.), pp. 103–18. Dordrecht: Kluwer Academic Publishers.Google Scholar
Robison, R. A., Rosova, A. V., Rowell, A. J. & Fletcher, T. P. 1977. Cambrian boundaries and divisions. Lethaia 10, 257–62.Google Scholar
Sagemann, J., Bale, S. J., Briggs, D. E. G. & Parkes, R. J. 1999. Controls on the formation of authigenic minerals in association with decaying organic matter: An experimental approach. Geochimica et Cosmochimica Acta 63, 1083–95.Google Scholar
Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., Lohmann, K. C., Robison, R. A., Chang, W. T., Peng, S., Ergaliev, E. K. & Runnegar, B. 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 211–23.Google Scholar
Sdzuy, K. 1972. Das Kambrium der acadobaltischen Faunenprovinz – Gegenwärtiger Kenntnisstand und Probleme. Zentralblatt für Geologie und Paläontologie II 1972, 191.Google Scholar
Shergold, J. H. 1995. Timescales 1. Cambrian. Australian Phanerozoic timescales, biostratigraphic charts and explanatory notes (2nd series). Australian Geological Survey Organization, Record 1995/30, 132.Google Scholar
Streng, M., Geyer, G. & Budd, G. E. 2006. A bone bed without bones: the Middle Cambrian ‘fragment limestone’ of Scania, Sweden. The Palaeontological Association Newsletter 63, 72.Google Scholar
Streng, M., Holmer, L. E., Popov, L. E. & Budd, G. E. 2007. Columnar shell structures in early linguloid brachiopods – new data from the Middle Cambrian of Sweden. Earth and Environmental Science, Transactions of the Royal Society of Edinburgh 98, 221–32.CrossRefGoogle Scholar
Torsvik, T. H. & Rehnström, E. F. 2001. Cambrian palaeomagnetic data from Baltica: Implications for true polar wander and Cambrian palaeogeography. Journal of the Geological Society, London 158, 321–30.CrossRefGoogle Scholar
Veizer, J., Ala, D., Azmy, P., Bruckschen, P., Buhl, D., Brhun, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. & Strauss, H. 1999. 87Sr/86Sr, δ13C, and δ18O evolution of Phanerozoic seawater. Chemical Geology 161, 5988.Google Scholar
Vogel, K., Gektidis, M., Golubic, S., Kienne, W. E. & Radtke, G. 2000. Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: Implications for paleoecological reconstructions. Lethaia 33, 190204.Google Scholar
Wadleigh, M. M. & Veizer, J. 1992. 18O/16O and 13C/12C in lower Paleozoic brachiopods: implications for the isotopic composition of sea water. Geochimica et Cosmochimica Acta 56, 431–43.Google Scholar
Wood, R. 1993. Nutrients, predation and the history of reef-building. Palaios 8, 526–43.Google Scholar
Wotte, T., Álvaro, J. J., Shields, G. A., Brown, B., Brasier, M. D. & Veizer, J. 2007. C-, O- and Sr-isotope stratigraphy across the Lower–Middle Cambrian transition of the Cantabrian Zone (Spain) and the Montagne Noire (France), West Gondwana. Palaeogeography, Palaeoecology, Palaeoclimatology 256, 4770.Google Scholar
Zhu, Mao-Yan, Zhang, Jun-Ming, Li, Guo-Xiang & Yang, Ai-Hua. 2004. Evolution of C isotopes in the Cambrian of China: implications for Cambrian subdivision and trilobite mass extinctions. Geobios 37, 287301.CrossRefGoogle Scholar
Zhu, Mao-Yan, Babcock, L. E. & Peng, Shan-Chi. 2006. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–22.Google Scholar
Zhuravlev, A. Yu. 1998. Outlines of the Siberian Platform sequence stratigraphy in the Lower and lower Middle Cambrian (Lena-Aldan area). Revista Española de Paleontología número extraordinario, 105–14.Google Scholar