Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T15:50:59.742Z Has data issue: false hasContentIssue false

Silicification of Permian calcareous algae from Nanjing, China

Published online by Cambridge University Press:  01 May 2009

Xinan Mu
Affiliation:
Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing, China
Robert Riding
Affiliation:
Department of Geology, University College, Cardiff CF1 1XL, U.K.

Abstract

Calcareous algae in limestones of the Permian Chihsia Formation near Nanjing, China, are preferentially replaced by quartz. Replacement postdates both cementation by sparry calcite and also neomorphic alteration of the original skeletons to sparry calcite. It is thus diagenetically relatively late. The original replacement silica could have been massive opal CT, opal CT lepispheres, or quartz. Lepisphere-like bodies occur in a few specimens. Megaquartz rims represent later overgrowths on the silicified skeletons. Although the original ultrastructure of the algal skeletons is not preserved, the preferential silicification allows fine details of the skeletal morphology of the algae to be observed and the distribution of silica indicates the style of replacement which has probably occurred. In some specimens it is possible that dissolution of the skeleton was followed by void-filling by silica, including the possibility of lepisphere formation. But in other cases in situ replacement, probably by massive opal CT or quartz, is reflected by the replacement of the outer parts of calcite crystals by silica. This process produces a network of silica, and as it proceeds the calcite centres of the grains become progressively smaller until silica replacement is complete. Sponge spicules may have provided the most important silica source for replacement. It is proposed that water-insoluble organic films surrounding matrix grains, and now preserved as bituminous material, protected the matrix from replacement thus promoting selective late diagenetic silicification of these fossils.

Type
Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, W. G. & Tarlo, L. B. H. 1966. Amino acid components in fossil calcified tissues. Nature 210, 481–2.CrossRefGoogle ScholarPubMed
Bathurst, R. G. C. 1975. Carbonate Sediments and their Diagenesis, 2nd ed. Developments in Sedimentology 12. New York: Elsevier. 658. pp.Google Scholar
Boyd, D. W. & Newell, N. D. 1972. Taphonomy and diagenesis of a Permian fossil assemblage from Wyoming. Journal of Paleontology 46, 114.Google Scholar
Brooks, J., Muir, M. D. & Shaw, G. 1973. Chemistry and morphology of Precambrian micro-organisms. Nature 244, 215217.CrossRefGoogle Scholar
Buurman, P., Van Breeman, N. & Henstra, S. 1973. Recent silicification of plant remains in acid sulphate soils. Neues Jahrbuch für Mineralogie und Paläontologie. Monatshefte 3, 117124.CrossRefGoogle Scholar
Calvert, S. E. 1974. Deposition and diagenesis of silica in marine sediments. In: Pelagic Sediments: On Land and Under the Sea (ed. Hsü, K. J. Jenkyns, H. C.). Special Publication, International Association Sedimentologists 1, 273299. Oxford: Blackwell Scientific Publications.Google Scholar
Carver, R. E. 1980. Petrology of Paleocene-Eocene and Miocene opaline sediments, southeastern Atlantic Coastal plain. Journal of Sedimentary Petrology 50, 569–82.Google Scholar
Chave, K. E. 1965. Carbonates: association with organic matter in surface seawater. Science 148, 1723–24.CrossRefGoogle ScholarPubMed
Church, A. H. 1862. Observations on silica. Journal of the Chemical Society 15, 107–10.CrossRefGoogle Scholar
Cys, J. M. & Mazzullo, S. J. 1978. Lithofacies and sedimentation of Lower Permian carbonates of the Leonard Mountain area, Glass Mountains, western Texas. A discussion. Journal of Sedimentary Petrology 48, 1363–68.CrossRefGoogle Scholar
Degens, E. T. 1967. Diagenesis of organic matter. In: Diagenesis in Sediments. (ed. Larsen, G. Chilingar, G. V.) pp. 343–90. Amsterdam: Elsevier.CrossRefGoogle Scholar
Ernst, W. G. & Calvert, S. E. 1969. An experimental study of the recrystallization of porcelanite and its bearing on the origin of some bedded cherts. American Journal of Science 267A, 114–33.Google Scholar
Flörke, O. W., Hollman, R., Von Rad, U. & Rösch, H. 1976. Intergrowth and twinning in opal-CT lepispheres. Contributions to Mineralogy and Petrology 58, 235–42.CrossRefGoogle Scholar
Folk, R. L. 1975. Third-party reply to Hatfield: Discussion of Jacka A. D. (1974). Replacement of fossils by length-slow chalcedony and associated dolomitization. Journal of Sedimentary Petrology 44, 421–27. Journal of Sedimentary Petrology 45, 952.Google Scholar
Füchtbauer, H. & Goldschmidt, H. 1964. Aragonitische Lamachellen in bituminösen Wealden des Ems-landes. Beiträge zur Mineralogie und Petrographie 10, 184–97.Google Scholar
Gehman, H. M. Jr 1962. Organic matter in limestone. Geochimica et Cosmochimica Acta 26, 885–97.CrossRefGoogle Scholar
Harder, H. & Fleming, W. 1970. Quartz synthese bei Tiefen Temperaturen. Geochimica et Cosmochimica Acta. 34, 295305.CrossRefGoogle Scholar
Hein, J. R., Scholl, D. W., Barron, J. A., Jones, M. G. & Miller, J. 1978. Diagenesis of Late Cenozoic diato-maceous deposits and formation of the bottom simulating reflector in the Southern Bering Sea. Sedimentology 25, 155–81.CrossRefGoogle Scholar
Hein, J. R., Vallier, T. L. & Allan, M. A. 1981. Chert petrology and geochemistry, Mid-Pacific Mountains and Hess Rise, Deep Sea Drilling Project Leg 62. Initial Reports of the Deep Sea Drilling Project 62(ed. Stout, L. N.).Google Scholar
Hudson, J. D. 1967. The elemental composition of the organic fraction and the water content of some recent and fossil mollusc shells. Geochimica et Cosmochimica Acta. 31, 2361–78.CrossRefGoogle Scholar
Hunt, J. M. 1961. Distribution of hydrocarbons in sedimentary rocks. Geochimica et Cosmochimica Acta. 22, 2749.CrossRefGoogle Scholar
Jacka, A. D. 1974. Replacement of fossils by length slow chalcedony and associated dolomitization. Journal of Sedimentary Petrology 44, 421–27.Google Scholar
Kastner, M., Keene, J. B. & Gieskes, J. M. 1977. Diagenesis of siliceous oozes – I. Geochimica et Cosmochimica Acta. 41, 1041–59.CrossRefGoogle Scholar
Knauth, L. P. 1979. A model for the origin of chert in limestone. Geology 7, 274–77.2.0.CO;2>CrossRefGoogle Scholar
Knoll, A. H. 1985. Exceptional preservation of photosyn- thetic organisms in silicified carbonates and silicified peats. Philosophical Transactions of the Royal Society of London B 311, 111–22.Google Scholar
Mackenzie, F. T. & Gees, R. 1971. Quartz: synthesis at Earth-surface conditions. Science 173, 533–34.CrossRefGoogle ScholarPubMed
Meyers, W. J. 1977. Chertification in the Mississippian Lake Valley Formation, Sacramento Mountains, New Mexico. Sedimentology, 24, 75105.CrossRefGoogle Scholar
Mizutani, S. 1977. Progressive ordering of cristobalitic silica in the early stage of diagenesis. Contributions to Mineralogy and Petrology 61, 129–40.CrossRefGoogle Scholar
Mu, X. & Riding, R. 1983. Silicified gymnocodiacean algae from the Permian of Nanjing, China. Palaeontology 26, 261–76.Google Scholar
Müller, K. J. 1964. Über die Verkieselung von Fossilien. Zeitschrift der Deutschen geologischen Gesellschaft 114, 647–56.CrossRefGoogle Scholar
Murata, K. J. & Nakata, J. K. 1974. Cristobalitic silica in the early stage of diagenesis of diatomaceous shale. Science 184, 567–68.CrossRefGoogle Scholar
Newell, N. D., Rigby, J. K., Fischer, A. G., Whiteman, A. J., Hickox, J. E. & Bradley, J. S. 1953. The Permian reef complex of the Guadalupe Mountains region, Texas and New Mexico. San Francisco: Freeman 236. pp.Google Scholar
Pisciotto, K. A. 1981. Diagenetic trends in the siliceous facies of the Monterey Shale in the Santa Maria region, California. Sedimentology 28, 547–71.CrossRefGoogle Scholar
Robertson, A. H. F. 1977. The origin and diagenesis of cherts from Cyprus. Sedimentology 24, 1130.CrossRefGoogle Scholar
Robinson, G. D. Jr 1980. Possible quartz synthesis during weathering of quartz-free mafic rocks, Jasper County, Georgia. Journal of Sedimentary Petrology 50, 193203.Google Scholar
Schmitt, J. G. & Boyd, D. W. 1981. Patterns of silicification in Permian pelecypods and brachiopods from Wyoming. Journal of Sedimentary Petrology 51, 1297–308.Google Scholar
Siever, R. 1962. Silica solubility, 0–200 °C, and the diagenesis of siliceous sediments. Journal of Geology 70, 127–50.CrossRefGoogle Scholar
Von Rad, U., Riech, V. & Rösch, H. 1978. Silica diagenesis on continental margin sediments off north-west Africa. In: Initial Reports of the Deep Sea Drilling Project, 41 (ed. Gardner, J. Herring, J.), pp. 879897. Washington: U.S. Government Printing Office.Google Scholar
Von Rad, U. 1979. SiO2-Diagenese im Tief See Sedimenten. Geologische Rundschau 1025–36.CrossRefGoogle Scholar
Waugh, B. 1970. Formation of quartz overgrowth in the Penrith Sandstone (Lower Permian) of north-west England as revealed by scanning electron microscopy. Sedimentology 14, 309–20.CrossRefGoogle Scholar
Wardlaw, N. C. 1976. Pore geometry of carbonate rocks as revealed by pore casts and capillary pressure. Bulletin of the American Association of Petroleum Geologists 60, 245–57.Google Scholar
Wetzel, W. 1957. Selektive Verkieselung. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen 105, 110.Google Scholar
Williams, L. A. & Crerar, D. A. 1985. Silica diagenesis, II. General mechanisms. Journal of Sedimentary Petrology 55, 312–21.Google Scholar
Williams, L. A., Parks, G. A. & Crerar, D. A. 1985. Silica diagenesis, I. Solubility controls. Journal of Sedimentary Petrology 55, 301–11.Google Scholar
Wilson, R. C. L. 1966. Silica diagenesis in Upper Jurassic limestones of southern England. Journal of Sedimentary Petrology 36, 1036–49.Google Scholar