Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T12:24:34.692Z Has data issue: false hasContentIssue false

Record of climatic fluctuations and high pH weathering conditions in a thick Ordovician palaeosol developed in rhyolite of the Dunn Point Formation, Arisaig, Nova Scotia, Canada

Published online by Cambridge University Press:  27 May 2014

P. JUTRAS*
Affiliation:
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
M. J. LEFORTE
Affiliation:
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
J. J. HANLEY
Affiliation:
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
*
Author for correspondence: [email protected]

Abstract

A thick Ordovician intra-rhyolitic palaeosol was studied to investigate the peculiarities of early Palaeozoic continental environments, shortly before the development of vascular plants, and to compare its pedogenic patterns with those of previously studied intra-basaltic profiles from the same succession. Well-defined K-eluviation from the top of the palaeosol is proportionally met by K-illuviation at the base of the profile, a pedogenic behaviour that was masked in the underlying intra-basaltic profiles due to subsequent eodiagenetic K-enrichment associated with rhyolite emplacement. Greater stability of K (and eventually Mg) than Si in the intra-rhyolitic profile suggests high pH soil water at the time of pedogenesis despite the low base contents of the acidic host rock, and despite evidence for humid weathering conditions. We also observe that, at the base and at the top of the profile, Al2O3/Zr ratios are substantially lower than those of the host rock, suggesting Al-leaching and therefore extreme weathering conditions, whereas the middle portion of the profile shows Al2O3/Zr ratios that are similar to those of the host rock, suggesting Al stability and therefore less extreme conditions. We interpret these variations in Al2O3/Zr ratios as signatures of a cyclic change from sub-humid periods during which Al was stable throughout the profile, to more humid periods with a well-defined seasonality, during which only the juvenile zone of weathering at the base of the profile could have developed sufficiently high pH during dry seasons for Al to be leached, leaving the Al2O3/Zr signatures from previous stages untouched higher in the profile.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anda, M., Shamsuddin, J., Che Fauziah, I. & Syed Omar, S. R. 2008. Mineralogy and factors controlling charge development of three Oxisols developed from different parent materials. Geoderma 143, 153–67.CrossRefGoogle Scholar
Anderson, S. P., Dietrich, W. E. & Brimhall, G. H. Jr. 2002. Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geological Society of America Bulletin 114, 1143–58.Google Scholar
Basu, A. 1981. Weathering before the advent of land plants; evidence from unaltered detrital K-feldspars in Cambrian-Ordovician arenites. Geology 9, 132–3.Google Scholar
Beukes, N. J., Dorland, H., Gutzmer, J., Nedachi, M. & Ohmoto, H. 2002. Tropical laterites, life on land, and the history of atmospheric oxygen in the Palaeoproterozoic. Geology 30, 491–94.Google Scholar
Blatt, H., Middleton, G. & Murray, R. 1980. Origin of Sedimentary Rocks, 2nd ed. Englewood Cliffs: Prentice-Hall, 782 pp.Google Scholar
Brimhall, G. H. Jr., Chadwick, O. A., Lewis, C. J., Compston, W., Williams, I. S., Danti, K. J., Dietrich, W. E., Power, M. E., Hendricks, D. & Bratt, J. 1992. Deformational mass transport and invasive processes in soil evolution. Science 255, 695702.Google Scholar
Boucot, A. J., Dewey, J. F., Dineley, D. L., Fletcher, R., Fyson, W. K., Griffin, J. G., Hickox, C. F., Mckerrow, W. S. & Ziegler, A. M. 1974. Geology of the Arisaig area, Antigonish County, Nova Scotia. Geological Society of America, Special Paper no. 139.CrossRefGoogle Scholar
Büdel, J. 1982 (translated by Fischer, L. & Busche, D.). Climatic Geomorphology. Princeton University Press, 443 pp.Google Scholar
Buggle, B., Hambach, U., Gerasimenko, N., Glaser, B., Marković, S. B. & Zöller, L. 2009. Stratigraphy and spatial and temporal paleoclimatic trends in East European loess paleosol sequences. Quaternary International 196, 86106.CrossRefGoogle Scholar
Buggle, B., Hambach, U., Kehl, M., Zöller, L., Marković, S. B. & Glaser, B. 2013. The progressive evolution of a continental climate in SE-Central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences. Geology 41, 771–4.Google Scholar
Buggle, B., Hambach, U., Müller, K., Zöller, L., Marković, S. B. & Glaser, B. 2014. Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena 117, 422.Google Scholar
Buxton, B. P. 1968. Measure of the degree of chemical weathering of rocks. Journal of Geology 76, 518–27.Google Scholar
Chapuis-Lardy, L., Brossard, M. & Quiquampoix, H. 2001. Assessing organic phosphorus status of Cerrado oxisols (Brazil) using 31P-NMR spectroscopy and phosphomonoesterase activity measurement. Canadian Journal of Soil Science 81, 591601.Google Scholar
Feakes, C. R., Holland, H. D. & Zbinden, E. A. 1989. Ordovician palaeosols at Arisaig, Nova Scotia, and the evolution of the atmosphere. Catena Supplement 16, 207–32.Google Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and palaeosols, with implications for palaeoweathering conditions and provenance. Geology 23, 921–4.Google Scholar
Gay, A. L. & Grandstaff, D. E. 1980. Chemistry and mineralogy of Precambrian palaeosols at Elliot Lake, Ontario, Canada. Precambrian Research 12, 349–73.Google Scholar
Gutierrez Elorza, M. 2006. Climatic Geomorphology. Developments in Earth Surface Processes, Vol. 8. Elsevier Science, 774 pp.Google Scholar
Hamilton, M. A. & Murphy, J. B. 2004. Tectonic significance of a Llanvirn age for the Dunn Point volcanic rocks, Avalon terranes, Nova Scotia, Canada: implications for the evolution of the Iapetus and Rheic oceans. Tectonophysics 379, 199209.Google Scholar
Hill, I. G., Worden, R. H. & Meighan, I. G. 2000. Yttrium; the immobility-mobility transition during basaltic weathering. Geology 28, 923–6.Google Scholar
Hodson, M. E. 2002. Experimental evidence for mobility of Zr and other trace elements in soils. Geochimica et Cosmochimica Acta 66, 819–28.Google Scholar
Ismail, H., Shamshuddin, J. & Syed Omar, S. R. 1993. Alleviation of soil acidity in Ultisol and Oxisol for corn growth. Plant and Soil 151, 5565.CrossRefGoogle Scholar
Jutras, P., Hanley, J. J., Quillan, R. S. & LeForte, M. J. 2012. Intra-basaltic soil formation, sedimentary reworking and eodiagenetic K-enrichment in the Middle to Upper Ordovician Dunn Point Formation of eastern Canada: a rare window into early Paleozoic surface and near-surface conditions. Geological Magazine 149, 798818.Google Scholar
Jutras, P., Quillan, R. S. & LeForte, M. J. 2009. Evidence from Middle Ordovician palaeosols for the predominance of alkaline groundwater at the dawn of land plant radiation. Geology 37, 91–4.Google Scholar
Kasting, J. F. 1993. Earth's early atmosphere. Science 259, 920–6.Google Scholar
Keller, W. D. 1962. The Principles of Chemical Weathering. Lucas Bros. Publishers, 111 pp.Google Scholar
Kimberley, M. M. & Grandstaff, D. E. 1986. Profiles of elemental concentrations in the Precambrian atmosphere. Precambrian Research 34, 205–29.Google Scholar
Kleinert, K. & Strecker, M. R. 2001. Climate change in response to orographic barrier uplift: paleosol and stable isotope evidence from the late Neogene Santa María basin, northwestern Argentina. Geological Society of America Bulletin 113, 728–42.Google Scholar
Kraus, M. J. 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews 47, 4170.Google Scholar
Krois, P., Stingl, V. & Purtscheller, F. 1990. Metamorphosed weathering horizon from the Oetztal-Stubai crystalline complex (Eastern Alps, Austria). Geology 18, 1095–8.2.3.CO;2>CrossRefGoogle Scholar
Krug, E. C. & Frink, C. R. 1983. Acid rain on acid soil; a new perspective. Science 217, 520–5.Google Scholar
Lawson, R. T., Comarmond, M.-C. J., Rajaratnam, G. & Brown, P. L. 2005. The kinetics of the dissolution of chlorite as a function of pH and at 25°C. Geochimica et Cosmochimica Acta 69, 1687–99.Google Scholar
Macfarlane, A. W. & Holland, H. D. 1991. The timing of alkali metasomatism in palaeosols. Canadian Mineralogist 29, 1043–50.Google Scholar
Maynard, J. B., Sutton, S. J., Robb, L. J., Ferraz, M. F. & Meyer, F. M. 1995. A Palaeosol developed on hydrothermally altered granite from the hinterland of the Witwatersrand Basin; characteristics of a source of basin fill. Journal of Geology 103, 357–77.Google Scholar
Mclennan, S. M., Simonetti, A. & Goldstein, S. L. 2000. Nb and Pb isotopic evidence for provenance and post depositional alteration of the Palaeoproterozoic Huronian Supergroup, Canada. Precambrian Research 102, 263–78.Google Scholar
Metzgera, C. A. & Retallack, G. J. 2010. Paleosol record of Neogene climate change in the Australian outback. Australian Journal of Earth Sciences 57, 871–85.CrossRefGoogle Scholar
Murphy, J. B., Dostal, J. & Keppie, J. D. 2008. Neoproterozoic–Early Devonian magmatism in the Antigonish Highlands, Avalon terrane, Nova Scotia: tracking the evolution of the mantle and crustal sources during the evolution of the Rheic Ocean. Tectonophysics 461, 181201.Google Scholar
Murphy, J. B., Hamilton, M. A. & Leblanc, B. 2012. Tectonic significance of Late Ordovician silicic magmatism, Avalon terrane, northern Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences 49, 346–58.Google Scholar
Murphy, J. B., Keppie, J. D. & Hynes, A. J. 1991. Geology of the Antigonish Highlands. Geological Survey of Canada Paper 89–10, 114 pp.Google Scholar
Nesbitt, H. W. & Young, G. M. 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97, 129–47.Google Scholar
Okulitch, A. V. 2004. Geological Time Chart, 2004. Geological Survey of Canada Open-File 3040 (National Earth Science Series, Geological Atlas)–Revision.Google Scholar
Oliveira, F. H. T., Novaisa, R. F., Smythb, T. J. & Nevesa, J. C. L. 2000. Aluminum diffusion in Oxisols as influenced by soil water matric potential, pH, lime, gypsum, potassium chloride, and calcium phosphate. Communications in Soil Science and Plant Analysis 31, 2523–33.CrossRefGoogle Scholar
Palmer, J. A., Philips, G. N., & Mccarthy, T. S. 1989. Palaeosols and their relevance to Precambrian atmospheric composition. Journal of Geology, 97, 7792.Google Scholar
Panahi, A., Young, G. M. & Rainbird, R. H. 2000. Behavior of major and trace elements (including REE) during Palaeoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada. Geochimica et Cosmochimica Acta 64, 2199–20.Google Scholar
Peryam, T. C., Dorsey, R. J. & Bindeman, I. 2011. Plio-Pleistocene climate change and timing of Peninsular Ranges uplift in southern California: evidence from paleosols and stable isotopes in the Fish Creek–Vallecito basin. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 6574.Google Scholar
Petit, M. 1990. Géographie Physique Tropicale; Approches aux Études de Milieu, Morphogénèse, Paysage. Karthala-ACCT, 351 pp.Google Scholar
Rainbird, R. H., Nesbitt, H. W. & Donaldson, J. A. 1990. Formation and diagenesis of a sub-Huronian saprolith: comparison with a modern weathering profile. Journal of Geology 98, 801–22.Google Scholar
Rye, R. & Holland, H. D. 2000. Geology and geochemistry of palaeosols developed on the Hekpoort basalt, Pretoria Group, South Africa. American Journal of Science 300, 85141.Google Scholar
Saltzman, M. R. & Young, S. A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33, 109–12.CrossRefGoogle Scholar
Schaefer, C. E. G. R., Fabris, J. D. & Ker, J. C. 2008. Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Minerals 43, 137–54.Google Scholar
Schatz, A. 1963. Soil microorganisms and soil chelation: the pedogenic action of lichens and lichen acids. Agricultural Food Chemistry 11, 112–8.Google Scholar
Shamshuddin, J. & Anda, M. 2012. Enhancing the productivity of Ultisols and Oxisols in Malaysia using basalt and/or compost. Pedologist 55, 382–91.Google Scholar
Soil Survey Staff. 2010. Keys to Soil Taxonomy, 11th ed. Washington, D.C.: USDA–Natural Resources Conservation Service, 338 pp.Google Scholar
Utsunomiya, S., Murakami, T., Nakada, M. L. & Kasama, T. 2003. Iron oxidation state of a 2.45-Byr-old palaeosol developed on mafic volcanics. Geochimica et Cosmochimica Acta 67, 213–21.Google Scholar
Van der Voo, R. & Johnson, R. J. E. 1985. Palaeomagnetism of the Dunn Point Formation (Nova Scotia): high palaeolatitudes for the Avalon terrane in the Late Ordovician. Geophysical Research Letters 12, 337–40.CrossRefGoogle Scholar
Walker, J. D. & Geissman, J. W. (compilers) 2009. Geologic Time Scale. The Geological Society of America.Google Scholar
Weaver, C. E. 1989. Clays, Muds, and Shales. Developments in Sedimentology Vol. 44. Burlington: Elsevier, 819 pp.Google Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–3.Google Scholar
Yang, W., Holland, H. D. & Rye, B. 2002. Evidence for low or no oxygen in the late Archean atmosphere from the ~2.76 Ga Mt. Roe #2 palaeosol, Western Australia: Part 3. Geochimica et Cosmochimica Acta 66, 3707–81.Google Scholar
Zbinden, E. A., Holland, H. D., Feakes, C. R. & Dobos, S. K. 1988. The Sturgeon Falls palaeosol and the composition of the atmosphere 1.1 Ga BP. Precambrian Research 42, 141–63.Google Scholar