Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T03:29:49.737Z Has data issue: false hasContentIssue false

Reconstructing the Avalonia palaeocontinent in the Cambrian: A 519 Ma caliche in South Wales and transcontinental middle Terreneuvian sandstones

Published online by Cambridge University Press:  20 May 2013

ED LANDING*
Affiliation:
New York State Museum, 222 Madison Avenue, Albany, New York 12230, USA
STEPHEN R. WESTROP
Affiliation:
Oklahoma Museum of Natural History and School of Geology and Geophysics, University of Oklahoma, Norman, Oklahoma 73072, USA
SAMUEL A. BOWRING
Affiliation:
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
*
Author for correspondence: [email protected]

Abstract

An Early Cambrian caliche on the St Non's Formation (emended) is the base of the Caerfai Bay Formation (unit-term changed) at Caerfai Bay, South Wales. Subaerial exposure and the caliche mean the two formations were not genetically related units. The St Non's is an older sand sheet (likely tidalitic, not delta-related) referred to Avalonian depositional sequence (ADS) 2, and the Caerfai Bay is a shallow mud basin unit refered to ADS 4A. The similar Random Formation (upper ADS 2) in North American Avalonia has a basal age of c. 528 Ma and is unconformably overlain by red mudstones or sandstones in fault-bounded basins on the Avalonian inner platform. Coeval British sandstones (lower Hartshill, Wrekin, St Non's, Brand Hills?) are unconformably overlain by latest Terreneuvian (ADS 3) or Epoch 2 (ADS 4A) units. Dates of 519 Ma on Caerfai Bay ashes give an upper bracket on the late appearance of Avalonian trilobites and suggest an ADS 2–4A hiatus of several million years. Post-St Non's and post-Random basin reorganization led to abundant Caerfai Bay Formation volcanic ashes and sparse Brigus Formation ashes in Newfoundland. The broad extent of erosional sequence boundaries that bracket lithologically similar to identical units emphasize that ‘east’ and ‘west’ Avalonia formed one palaeocontinent. The inner platform in southern Britain was larger than the Midlands craton, a tectonically defined later Palaeozoic area unrelated to terminal Ediacaran – Early Palaeozoic depositional belts. The cool-water successions of Early Palaeozoic Avalonia were distant from coeval West Gondwanan carbonate platforms.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1986. Pedogenic calcretes in the Old Red Sandstone facies (Late Silurian–Early Carboniferous) of the Anglo-Welsh area, southern Britain. In Paleosols. Their Recognition and Interpretation (ed Wright, V. P.), pp. 5886. Princeton University Press.Google Scholar
Anderson, M. M. 1981. The Random Formation of southeastern Newfoundland: a discussion aimed at establishing its age and relationship to bounding formations. American Journal of Science 291, 807–30.CrossRefGoogle Scholar
Bainóczi, B., Z. Horváth, Z., A. Demény, A. & A. Mindszenty, A. 2006. Stable isotope geochemistry of calcrete nodules and septarian concretions in a Quaternary red clay vertisol from Hungary. Isotopes and Environmental Health Studies 43, 335–50.CrossRefGoogle Scholar
Bengtson, S. 1968. The problematic genus Mobergella from the Lower Cambrian of the Baltic region. Lethaia 1, 325–51.CrossRefGoogle Scholar
Bengtson, S. 1970. The Lower Cambrian fossil Tommotia . Lethaia 3, 363–92.CrossRefGoogle Scholar
Bergström, J. 1973. Classification of olenellid trilobites and some Balto-Scandian species. Norsk Geologisk Tidsskrift 53, 283314.Google Scholar
Bland, B. & Goldring, R. 1995. Teichichnus Seilacher 1955 and other trace fossils (Cambrian?) from the Charnian of central England. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 195, 523.CrossRefGoogle Scholar
Brasier, M. D. 1986. The succession of small shelly fossils (especially conoidal microfossils) from English Precambrian–Cambrian boundary beds. Geological Magazine 123, 237256.CrossRefGoogle Scholar
Brasier, M. D. 1989 a. Sections in England and their correlation. In The Precambrian–Cambrian Boundary (eds Cowie, J. W. & Brasier, M. D.), pp. 82102. University of Oxford Monographs in Geology and Geophysics 12, 213 p.Google Scholar
Brasier, M. D. 1989 b. Towards a biostratigraphy of the earliest skeletal fossils. In The Precambrian–Cambrian Boundary (eds Cowie, J. W. & Brasier, M. D.), pp. 118–65. University of Oxford Monographs in Geology and Geophysics 12.Google Scholar
Brasier, M. D., Anderson, M. M., Corfield, R. M. 1992. Oxygen and carbon isotope stratigraphy of Early Cambrian carbonates in southeastern Newfoundland and England. Geological Magazine 129, 265–79.CrossRefGoogle Scholar
Brasier, M. B. & Hewitt, R. A. 1978. Environmental setting of fossiliferous rocks from the uppermost Proterozoic–Lower Cambrian of central England. Palaeogeography, Palaeoclimatology, Palaeoecology 27, 3557.CrossRefGoogle Scholar
Brasier, M. D., Hewitt, R. A. & Brasier, C. J. 1978. On the Late Precambrian–Early Cambrian Hartshill Formation of Warwickshire. Geological Magazine 115, 2136.CrossRefGoogle Scholar
Brasier, M. D. & McIlroy, D. 1998. Neonereites uniserialis from 600 Ma year old rocks in western Scotland and the emergence of animals. Journal of the Geological Society, London 155, 512.CrossRefGoogle Scholar
Brasier, M. D., Rozanov, A. Yu., Zhuravlev, A. Yu., Corfield, R. M. & Derry, L. A. 1994. A carbon isotope reference scale for the Lower Cambrian succession in Siberia: report of IGCP Project 303. Geological Magazine 131, 767–83.CrossRefGoogle Scholar
Brasier, M. D., Shields, G., Kuleshov, V. N. & Zhegallo, E. A. 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–Early Cambrian of southeast Mongolia. Geological Magazine 133, 445–89.CrossRefGoogle Scholar
Brenchley, P. J., Rushton, A. W. A., Howells, M. & Cave, R. 2006. Cambrian and Ordovician: the Early Palaeozoic tectonostratigraphic evolution of the Welsh Basin, Midland and Monian terranes of eastern Avalonia. In The Geology of Wales and England (eds Brenchley, P. J. & Rawson, P. F.), pp. 2574. The Geological Society of London, Special Paper 25.CrossRefGoogle Scholar
Brewer, R. 1964. Fabric and Mineral Analysis of Soils. Wiley & Sons, New York, 470 p.Google Scholar
Buatois, L. A. & Mángano, M. G. 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge University Press, New York, 366 pp.CrossRefGoogle Scholar
Capeder, G. 1904. Sulla Paronipora penicillata, nuovo genere dicorallario fossile, appartenente alla famiglia delle Favositisi. Rivue di Italia Paleontologica 10, 5961.Google Scholar
Cobbold, E. S. 1910. On some small trilobites from the Cambrian rocks of Comley (Shropshire). Quarterly Journal of the Geological Society, London 66, 1950.CrossRefGoogle Scholar
Cobbold, E. S. 1931. Additional fossils from the Cambrian of Comley, Shropshire. Quarterly Journal of the Geological Society, London 87, 459512.CrossRefGoogle Scholar
Cobbold, E. S. & Pocock, R. W. 1934. The Cambrian area of Rushton (Shropshire). Philosophical Transactions of the Royal Society B223, 304409.Google Scholar
Cocks, L. M. R. & Fortey, R. M. 2009. Avalonia—a long-lived terrane in the Lower Palaeozoic? In Early Palaeozoic Peri-Gondwanan Terranes: New Insights From Tectonics and Biogeography (ed. Bassett, M. G.), pp. 141–55. Geological Society of London Special Publications 325.Google Scholar
Compston, W., Zhang, Z., Cooper, J. A., Ma, G. & Jenkyns, R. J. F. 2008. Further SHRIMP geochronology on the Early Cambrian of China. American Journal of Science 308, 399420.CrossRefGoogle Scholar
Cowie, J. W. 1971. The Cambrian of the North American Arctic regions. In Lower Palaeozoic Rocks of the World. Volume 1. Cambrian of the New World (ed Holland, C. H.), pp. 325–83. Wiley–Interscience, London and New York.Google Scholar
Cowie, J. W., Rushton, A. W. A. & Stubblefield, C. J. 1972. A correlation of Cambrian rocks in the British Isles. Geological Society of London, Special Report 2, 42 p.Google Scholar
Crimes, T. P. 1969. Trace fossils from the Cambro-Ordovician rocks of North Wales and their depositional significance. Geological Magazine 6, 333–7.Google Scholar
Crimes, T. P. 1970 a. A facies analysis of the Cambrian of Wales. Palaeogeography, Palaeoclimatology, Palaeoecology 7, 113–70.CrossRefGoogle Scholar
Crimes, T. P. 1970 b. The significance of trace fossils in sedimentology, stratigraphy and palaeoecology with examples from Lower Palaeozoic strata. In Trace Fossils (eds Crimes, T. P. & Harper, J. C.), pp. 101126. Geological Journal Special Issue 3.Google Scholar
Crimes, T. P. & Fedonkin, M. A. 1994. Evolution and dispersal of deep sea traces. Palaios 9, 7483.CrossRefGoogle Scholar
Dalziel, I. W. D. 1997. Overview: Neoproterozoic–Paleozoic geography and and tectonics: review, hypotheses, environmental speculations. Geological Society of America Bulletin 106, 1642.2.3.CO;2>CrossRefGoogle Scholar
Esteban, M. & Klappa, C. F. 1983. Subaerial exposure environment. In Carbonate Depositional Environments (eds Scholle, P. A., Bebout, D. G. & Moore, C. H.), pp. 254. American Association of Petroleum Geologists, Memoir 33, 708 p.Google Scholar
Fletcher, T. P. 2003. Ovatoryctocara granulata, the key to a global Cambrian stage boundary and the correlation of the olenellid, redlichiid, and paradoxidid realms. Special Papers in Palaeontology 70, 73102.Google Scholar
Fletcher, T. P. 2006. Bedrock geology of the Cape St. Mary's Peninsula, southwest Avalon Peninsula (includes parts of 1 M/1, 1N/4, 1L/16 and 1K/14). Newfoundland and Labrador Department of Natural Resources, Geological Survey Report, 116 p.Google Scholar
Fletcher, T. P. & Theokritoff, G. 2008. The Early Cambrian of eastern Massachusetts. Northeastern Geology and Environmental Science 30, 301–29.Google Scholar
Fortey, R. A. & Cocks, L.R. 2004. Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions. Earth-Science Reviews 61, 245307.CrossRefGoogle Scholar
Gaucher, C., Boggiani, P. C., Sprechmann, P., Sial, A. N. & Fairchild, T. 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Sodado and Corumbá groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiogeographic implications. Precambrian Research 120, 241–78.CrossRefGoogle Scholar
Gaucher, C., Sial, A. N., Ferreira, V. P., Pimental, M. M., Chiglino, L. & Sprechmann, P. 2007. Chemostratigraphy of the Cerro Victoria Formation (Lower Cambrian, Uruguay): evidence for climate stabilization across the Precambrian–Cambrian boundary. Chemical Geology 237, 4664.CrossRefGoogle Scholar
Geyer, G. 1996. The Moroccan fallotaspidid trilobites revisited. Beringeria 18, 89199.Google Scholar
Geyer, G., Elicki, O., Fatka, O. & Żylinska, A. 2008. Cambrian. In The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic (ed McCann, T.), pp 155202. The Geological Society, London.CrossRefGoogle Scholar
Geyer, G. & Landing, E. 1995. The Cambrian of the Moroccan Atlas regions. In Morocco ‘95—The Lower–Middle Cambrian standard of western Gondwana (eds Geyer, G. & Landing, E.), pp. 746. Beringeria Special Issue 2.Google Scholar
Geyer, G. & Landing, E. 2004. A unified Lower–Middle Cambrian chronostratigraphy for West Gondwana. Acta Geologica Polonica 54, 179218.Google Scholar
Geyer, G. & Landing, E. 2006. Latest Ediacaran and Cambrian of the Moroccan Atlas regions. In Morocco 2006. Ediacaran–Cambrian Depositional Environments and Stratigraphy of the Western Atlas Regions. Explanatory Description and Field Excursion Guide (eds Geyer, G. & Landing, E.), pp. 975. Beringeria Special Issue 6.Google Scholar
Gibbons, W., Tietzsch-Tyler, B., Horák, J. M. & Murphy, F. C. 1994. Precambrian rocks in Anglesey, southwest Llŷn and southeast Ireland. In A Revised Correlation of Precambrian Rocks in the British Isles (eds Gibbons, W. & Harris, A. L.), pp. 7584. Geological Society, London, Special Report 22.CrossRefGoogle Scholar
Glück, H. 1912. Eine neue gesteinsbildene Siphonce (Codiace) aus den marine Tertiar von Süddeutschland. Mitteilungen der gros Badischen Geologische Landesanstalt 7, 124.Google Scholar
Gould, H. R. 1970. The Mississippi delta complex. In Deltaic Sedimentation: Modern and Ancient (ed Morgan, J. P.), p. 347. Society of Economic Paleontologists and Mineralogists, Special Publication 15.Google Scholar
Green, J. F. N. 1908. The geological structure of the St. David's area (Pembrokshire). Quarterly Journal of the Geological Society, London 64, 363–83.CrossRefGoogle Scholar
Green, J. F. N. 1911. The geology of the district around St. David's, Pembrokshire. Proceedings of the Geological Association 22, 121–41.CrossRefGoogle Scholar
Haldeman, S. S. 1840. Supplement to number one of “A monograph of the Limniades or fresh water univalve shells in North America”, containing descriptions of apparently new animals in different classes, and the names and characters of the subgenra in Paludina and Anculosa. J. Dobson, Philadelphia, 3 p.CrossRefGoogle Scholar
Hall, J. 1847. Palaeontology of New York. Vol. 1. Containing descriptions of the organic remains of the Lower Division of the New York System (Equivalent to the Lower Silurian rocks of Europe). C. van Benthuysen, Albany, 338 p.Google Scholar
Hamdi, B. 1995. Precambrian–Cambrian Deposits in Iran. Treatise on the Geology of Iran 20, 304 p. (In Pharsi with English summary.)Google Scholar
Harkness, R. & Hicks, H. 1871. On the ancient rocks of the St. David's Promontory, South Wales, and their fossil contents. Quarterly Journal of the Geological Society, London 27, 384404.CrossRefGoogle Scholar
Harvey, T. H. P., Williams, M., Condon, D. J., Wilby, P. R., Siveter, D. J., Rushton, A. W. A., Leng, M. J. & Gabbott, S. E. 2011. A refined chronology for the Cambrian succession of southern Britain. Journal of the Geological Society, London 168, 705–16.CrossRefGoogle Scholar
Hay, R. L. & Kyser, T. K. 2001. Chemical sedimentology and paleoenvironmental history of Lake Oldovai, a Pliocene lake in northeastern Tanzania. Geological Society of America Bulletin 113, 1505–21.2.0.CO;2>CrossRefGoogle Scholar
Hayes, A. O. & Howell, B. F. 1937. Geology of the Saint John, New Brunswick. Geological Society of America, Special Paper 5, 146 p.Google Scholar
Hicks, H. 1877. On the Precambrian (Dimentian and Pebidian) rocks of St. David's. Quarterly Journal of the Geological Society, London 33, 229–41.CrossRefGoogle Scholar
Hiscott, R. N. 1982. Tidal deposits of the Lower Cambrian Random Formation, eastern Newfoundland: facies and paleoenvironments. Canadian Journal of Earth Sciences 19, 2028–42.CrossRefGoogle Scholar
Hupé, P. 1952. Contribution a l'étude du Cambrien Inférieur et du Précambrien III de l'Anti-Atlas Marocain. Notes et Mémoires du Service Géologique du Maroc 103, 403 p.Google Scholar
Hutchinson, R. D. 1952. The stratigraphy and trilobite faunas of the Cambrian sedimentary rocks of Cape Breton Island, Nova Scotia. Geological Survey of Canada, Memoir 263, 124 p.Google Scholar
Hutchinson, R. D. 1962. Cambrian stratigraphy and trilobite faunas in southeastern Newfoundland. Geological Survey of Canada, Bulletin 88, 156 p.Google Scholar
Isachsen, C. E., Bowring, S. A., Landing, E. & Samson, S. D. 1994. New constraint on the division of Cambrian time. Geology 22, 496–8.2.3.CO;2>CrossRefGoogle Scholar
Judice, P. C., Mazzullo, S. J. 1982. The Gray Sandstone (Jurassic) in Terryville Field, Louisiana: basinal deposition and exploration model. Gulf Coast Association of Geological Societies Transactions 32, 2343.Google Scholar
Kabanov, P., Anádon, P. & Krumbein, E. W. 2008. Microcodion: an extensive review and a proposed non-rhizogenic biologically induced origin for its formation. Sedimentary Geology 205, 7999.CrossRefGoogle Scholar
Kaufman, A. J., Knoll, A. H., Semikhatov, M. A., Grotzinger, J. P., Jacobsen, S. B. & Adams, W. 1996. Integrated chronostratigraphy of Proterozoic–Cambrian boundary beds in the western Anabar region, northern Siberia. Geological Magazine 133, 509–33.CrossRefGoogle ScholarPubMed
Keppie, J. D., Nance, R. D., Murphy, J. B. & Dostal, J. 2003. Tethyan, Mediterranean, and Pacific analogues for the Neoproterozoic–Paleozoic birth and development of peri-Gondwana terranes and their transfer to Laurentia and Laurussia. Tectonophysics 365, 195219.CrossRefGoogle Scholar
Keppie, J. D. & Ramos, V. A. 1999. Odessey of terranes in the Iapetus and Rheic oceans during the Paleozoic. In Laurentia–Gondwana Connections Before Pangaea (eds Ramos, V. A. & Keppie, J. D.), pp. 267–76. Geological Society of America Special Paper 336.Google Scholar
Kiaer, J. 1917. The Lower Cambrian Holmia fauna at Tømten in Norway. Videns kapsselskapets Strifter. 1. Matematisk-naturvidenskapelig Klasse 10, 140 p.Google Scholar
Kiryanov, V. V. 1974. Novye akritarki iz kembriyskikh otlozhenyi Volyni. Paleontologicheskiy Zhurnal 1974, 117–30.Google Scholar
Lake, P. 1932. A monograph of the British Cambrian trilobites, part VIII.Palaeontographical Society, London 9, 173–96 (published in 1934).Google Scholar
Lake, P. 1936. A monograph of the British trilobites, part XII. Palaeontographical Society, London 13, 249–72 (published in 1937).Google Scholar
Landing, E. 1988. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of Paleontology 62, 661–95.Google Scholar
Landing, E. 1991. Upper Precambrian through Lower Cambrian of Cape Breton Island: faunas, paleoenvironments, and stratigraphic revision. Journal of Paleontology 65, 570–95.CrossRefGoogle Scholar
Landing, E. 1992. Lower Cambrian of southeastern Newfoundland: epeirogeny and Lazarus faunas, lithofacies-biofacies linkages, and the myth of a global chronostratigraphy. In Origins and Early Evolution of Metazoa (eds Lipps, J. & Signor, P. W.), p. 283309. Plenum Press, New York.CrossRefGoogle Scholar
Landing, E. 1994. Precambrian–Cambrian global stratotype ratified and a new perspective of Cambrian time. Geology 22,179–82.2.3.CO;2>CrossRefGoogle Scholar
Landing, E. 1996 a. Avalon—insular continent by the latest Precambrian. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M.), pp. 2764. Geological Society of America, Special Paper 304.Google Scholar
Landing, E. 1996 b. Reconstructing the Avalon continent: marginal-to-inner platform transition in the Cambrian of Avalonian New Brunswick. Canadian Journal of Earth Sciences 33, 623–32.CrossRefGoogle Scholar
Landing, E. 2004. Precambrian–Cambrian boundary interval deposition and the marginal platform of the Avalon microcontinent. Journal of Geodynamics 37, 411–35.CrossRefGoogle Scholar
Landing, E. 2005. Early Paleozoic Avalon–Gondwana unity: an obituary. Response to “Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions” by R. A. Fortey and L. R. M. Cocks. Earth-Science Reviews 69, 169–75.CrossRefGoogle Scholar
Landing, E. 2007. East Laurentia 2007: A pre-meeting statement. In Ediacaran–Ordovician of East Laurentia: S. W. Ford Memorial Volume (ed Landing, E.), pp. 34. New York State Museum Bulletin 510.Google Scholar
Landing, E. 2011. No Late Cambrian ice in Laurentia. GSA Today 21, doi:10.1130 /G113C.1, p. e19.CrossRefGoogle Scholar
Landing, E. 2012. Time-specific black mudstones and global hyperwarming on the Cambrian–Ordovician slope and shelf of the Laurentia palaeocontinent. Palaeogeography, Palaeoclimatology, Palaeoecology 367–8, 256–72.CrossRefGoogle Scholar
Landing, E. & Benus, A. P. 1988. Stratigraphy of the Bonavista Group, southeastern Newfoundland: growth faults and the distribution of the sub-trilobitic Lower Cambrian. In Trace Fossils, Small Shelly Fossils, and the Precambrian–Cambrian Boundary (eds Landing, E., Narbonne, G. M. & Myrow, P.), pp. 5971. New York State Museum Bulletin 463.Google Scholar
Landing, E., Bowring, S. A., Davidek, K., Westrop, S. R., Geyer, G. & Heldmaier, W. 1998. Duration of the Early Cambrian: U–Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences 35, 329–38.CrossRefGoogle Scholar
Landing, E. & Brett, C. E. 1987. Trace fossils and regional significance of a Middle Devonian (Givetian) disconformity in southwestern Ontario. Journal of Paleontology 61, 205–30.CrossRefGoogle Scholar
Landing, E. & Fortey, R.A. 2011. Tremadocian (Lower Ordovician) biotas and sea-level changes on the Avalon microcontinent. Journal of Paleontology 85, 680–96.CrossRefGoogle Scholar
Landing, E., Johnson, S. C. & Geyer, G. 2008. Faunas and Cambrian volcanism on the Avalonian marginal platform, southern New Brunswick. Journal of Paleontology 82, 884905.CrossRefGoogle Scholar
Landing, E. & MacGabhann, . 2010. First evidence for Cambrian glaciation provided by sections in Avalonian New Brunswick and Ireland: additional data for Avalon–Gondwana separation by the earliest Palaeozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 285,174–85.CrossRefGoogle Scholar
Landing, E., Myrow, P., Benus, A. P. & Narbonne, . 1989. The Placentian Series: appearance off the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology 63, 739–69.CrossRefGoogle Scholar
Landing, E., Peng, S. C., Babcock, L. E. & Moczydłowska-Vidal, M. 2007. Global standard names for the lowermost Cambrian series and stage. Episodes 30, 283–9.CrossRefGoogle Scholar
Landing, E. & Westrop, S. R. 1998 a. Cambrian faunal sequence and depositional history of Avalonian Newfoundland and New Brunswick: Field workshop. In Avalon 1997: The Cambrian standard. Third International Field Conference of the Cambrian Chronostratigraphy Working Group and I.G.C.P. Project 366 (Ecological Aspects of the Cambrian Radiation) (eds Landing, E. & Westrop, S. R.), pp. 575. New York State Museum Bulletin 492.Google Scholar
Landing, E. & Westrop, S. R. 1998 b. Revisions in stratigraphic nomenclature of the Cambrian of Avalonian North America and comparisons with Avalonian Britain. In Avalon 1997: The Cambrian standard. Third International Field Conference of the Cambrian Chronostratigraphy Working Group and I.G.C.P. Project 366 (Ecological Aspects of the Cambrian Radiation) (eds Landing, E. & Westrop, S. R.), pp. 7687. New York State Museum Bulletin 492.Google Scholar
Landing, E. & Westrop, S. R. 2004. Environmental patterns in the origin and evolution and diversification loci of Early Cambrian skeletalized Metazoa: evidence from the Avalon microcontinent. In Neoproterozoic–Cambrian Biological Revolutions (eds. Lipps, J. H. & Wagoner, B.), pp. 93105. Paleontological Society Papers 10.Google Scholar
Lewis, K. B. 1971. Slumping on a continental slope at 1°–4°. Sedimentology 16, 97110.CrossRefGoogle Scholar
Lieberman, B. S. 2001. Phylogenetic analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian). Journal of Paleontology 75, 96115.2.0.CO;2>CrossRefGoogle Scholar
Liñán, E., Gámez Vintaned, J. A., Gozalo, R., Dies, M. E. & Mayoral, E. 2006. Events and biostratigraphy in the Lower Cambrian of Iberia. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 157, 597609.CrossRefGoogle Scholar
Liñán, E., Perejón, A. & Sdzuy, K. 1993. The Lower–Middle Cambrian stages and stratotypes from the Iberian Peninsula: a revision. Geological Magazine 130, 817–33.CrossRefGoogle Scholar
Loughlin, N. J. D. & Hillier, R. D. 2010. Early Cambrian Teichichnus-dominated ichnofacies and palaeoenvironmental analysis of the Caerfai Group, southwest Wales, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 239–51.CrossRefGoogle Scholar
Maloof, A. C., Porter, S. H., More, J. L., Dudás, F. Ö., Bowring, S. A., Higgins, J. A., Fike, D. A. & Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.CrossRefGoogle Scholar
Maloof, A. C., Schrag, D. P., Crowley, J. L. & Bowring, S. A. 2005. An expanded record of Early Cambrian carbon recycling from the Anti-Atlas margin. Canadian Journal of Earth Sciences 42, 2195–216.CrossRefGoogle Scholar
Mamet, B. L. & Roux, A. 1983. Algues dévonocarboniféres de l'Australie. Revue de Micropaléontologie 26, 63131.Google Scholar
Margaritz, M., Holser, W. T. & Kirschvink, J. L. 1986. Carbon-isotope events across the Precambrian–Cambrian boundary on the Siberian Platform. Nature 320, 258–9.CrossRefGoogle Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16, 110.CrossRefGoogle Scholar
Martinsson, A. 1974. The Cambrian of Norden. In Cambrian of the British Isles Norden, and Spitsbergen (ed Holland, C. H.), pp. 185283. Lower Palaeozoic Rocks of the World. Volume 2, John Wiley & Sons, New York.Google Scholar
Matthew, G. F. 1890. On Cambrian organisms in Acadia. Proceedings and Transactions of the Royal Society of Canada 7 (4), 135–62.Google Scholar
Matthew, G. F. 1899. Preliminary notice of the Etchminian fauna of Cape Breton. Bulletin of the Natural History Society of New Brunswick 4, 198208.Google Scholar
Matthew, G. F. 1902. Ostracoda of the basal Cambrian rocks in Cape Breton. Canadian Record of Science 8, 437–70.Google Scholar
McIlroy, D., Brasier, M. D. & Moseley, J. B. 1998. The Proterozoic–Cambrian transition within the ‘Charnian Supergroup’ of central England and the antiquity of the Ediacara fauna. Journal of the Geological Society, London 155, 401–11.CrossRefGoogle Scholar
McKerrow, W.S., Scotese, C.R. & Brasier, M.D. 1992. Early Cambrian continental reconstructions. Journal of the Geological Society, London 149, 599606.CrossRefGoogle Scholar
Mens, K. & Pirrius, E. 1986. Stratigraphical characteristics and development of Vendian–Cambrian boundary beds on the East European Platform. Geological Magazine 123, 357–60.CrossRefGoogle Scholar
Missarzhensky, V. V. 1969. Description of hyolithids, gastropods, hyolithelminths, camenides, and forms of an obscure taxomonic position. In The Tommotian Stage and the Cambrian Lower Boundary Problem (ed Raaben, M. E.), pp. 127204. Nauka Publishers, Moscow (in Russian).Google Scholar
Missarzhevsky, V. V. & Mambetov, A. M. 1981. Stratigrafiya i fauna pogranichnykh sloev kembriya dokembriya Malogo Karatau. Akademiya Nauk SSSR, Trudy institut geologii 326, Nauka, Moscow, 90 p.Google Scholar
Moberg, J. C. 1892. Om en nyupptäckt fauna i block af kambrisk sandsten, insamlade af Dr. N. O. Holst. Geologiska Föreningens i Stockholm Förhandlingar 14, 103–20.CrossRefGoogle Scholar
Moczydłowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian–Cambrian boundary in southeastern Poland. Fossils and Strata 29, 127 p.Google Scholar
Moczydłowska, M. & Yin, L. 2012. Phytoplanktic microfossils record in the Lower Cambrian and their contribution to stage chronostratigraphy. In Cryogenian–Ediacaran to Cambrian stratigraphy and paleontology of Guizou, China. The 17th field conference of the Cambrian Stage Subdivision Working Group, International Subcommission on Cambrian Stratigraphy and celebration of the 30th anniversary of the discovery of the Kaili biota (eds Zhao, Y., Zhu, M., Peng, J., Gaines, R. R. & Parsley, R. L.), pp. 4958. Journal of Guizou University (Natural Sciences) 29.Google Scholar
Mount, J. F. & Signor, P. W. 1992. Faunas and facies—fact and artifact. Paleoenvironmental controls on the distribution of Early Cambrian faunas. In Origins and Early Evolution of Metazoa (eds Lipps, J. & Signor, P. W.), pp. 2751. Plenum Press, New York.CrossRefGoogle Scholar
Myrow, P. M. & Landing, E. 1992. Mixed siliciclastic-carbonate deposition in a Lower Cambrian oxygen-stratified basin, Chapel Island Formation, southeastern Newfoundland. Journal of Sedimentary Petrology 62, 455–73.Google Scholar
Myrow, P. M., Narbonne, G. M. & Hiscott, R. N. 1988. Trip B6. Storm-shelf and tidal deposits of the Chapel Island and Random formations, Burin Peninsula: facies and trace fossils. Newfoundland Section, St. John's, Geological Association of Canada, 108 p.Google Scholar
Nance, R. D. & Thompson, M. D. 1996. Avalonian and related peri-Gondwanan terranes of the circum-North Atlantic: an introduction. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M.), pp. 167. Geological Society of America, Special Paper 304.CrossRefGoogle Scholar
Narbonne, G. M., Myrow, P., Landing, E. & Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.CrossRefGoogle Scholar
Nash, D. J. & Smith, R. F. 2003. Properties and development of channel calcretes in a mountain catchment, Tabernas Basin, southeast Spain. Geomorphology 50, 227–50.CrossRefGoogle Scholar
Nielsen, A. T. & Schovsbo, N. H. 2011. The Lower Cambrian of Scandinavia: depositional environment, sequence stratigraphy and palaeogeography. Earth-Science Reviews 107, 207310.CrossRefGoogle Scholar
North American Commission on Stratigraphic Nomenclature. 1983. North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin 67, 841–75.Google Scholar
Palacios, T., Jensen, S., Barr, S.M., White, C. E. & Miller, R. F. 2011. New biostratigraphical constraints on the Lower Cambrian Ratcliffe Brook Formation, southern New Brunswick, Canada, from organic-walled microfossils. Stratigraphy 8, 4560.CrossRefGoogle Scholar
Palmer, A. R. & Repina, L. N. 1993. Through a glass darkly: taxonomy, phylogeny, and biostratigraphy of the Olenellina. University of Kansas Paleontological Contributions, New Series 3, 35 p.Google Scholar
Patchett, J. P. & Jocelyn, J. 1979. U-Pb zircon ages for late Precambrian igneous rocks in South Wales. Journal of the Geological Society, London 136, 1319.CrossRefGoogle Scholar
Peng, S. C. & Babcock, L. E. 2005. Towards a new global subdivision of the Cambrian System. Journal of Stratigraphy 29, 171–78, 204.Google Scholar
Pillola, G. L. 1993. The Lower Cambrian trilobite Bigotina and allied genera. Palaeontology 36, 855881.Google Scholar
Prigmore, J. K. & Rushton, A. W. A. 1999. Chapter 4. Cambrian of South Wales: St. David's area. In British Cambrian to Ordovician Stratigraphy (eds Rushton, A. W. A., Owen, A. W., Owens, R. M. & Prigmore, J. K.), pp. 52–7. Joint Nature Conservation Commission.Google Scholar
Rast, N., O'Brien, B. H. & Wardle, R. J. 1976. Relationships between Precambrian and Lower Palaeozoic rocks of the ‘Avalon Platform’ in New Brunswick, the northeast Appalachians and the British Isles. Tectonophysics 30, 315–38.CrossRefGoogle Scholar
Rawson, P. F., Allen, P. M., Brenchley, P. J., Cope, J. C. W., Gale, A. S., Evans, J. A., Gibbard, P. L., Gregory, F. J., Hailwood, E. A., Hesselbro, S. P., Knox, R. W. O., Marshall, J. E. A., Oates, M., Riley, J. J., Smith, A. G., Trewin, N., Zalasiewicz, J. A. 2002. Stratigraphical Procedure. London: Geological Society, Professional Handbook.Google Scholar
Read, J. F. 1976. Calcretes and their distinction from stromatolites. In Stromatolites (ed Walter, M. R.), pp. 5572. Elsevier Scientific Publishing Company, Amsterdam.CrossRefGoogle Scholar
Rozanov, A. Yu. & Zhuravlev, A. Yu. 1996. The Lower Cambrian fossil record of the Soviet Union. In Origin and Early Evolution of the Metazoa (eds Lipps, J. & Signor, P. W.), pp. 206–82. Topics in Geobiology 10, Plenun Press, New York and London.Google Scholar
Rushton, A. W. A. 1966. The Cambrian trilobites from the Purley Shales of Warwickshire. Palaeontographical Society Monographs 120 (511), 55 p.CrossRefGoogle Scholar
Rushton, A. W. A. 1972. Annual Report for the Institute of Geological Sciences for 1971, p. 93.Google Scholar
Rushton, A. W. A. 1974. The Cambrian of Wales and England. In Cambrian of the British Isles Norden, and Spitsbergen (ed. Holland, C. H.), pp. 43121. Lower Palaeozoic Rocks of the World. Volume 2, John Wiley & Sons, New York.Google Scholar
Rushton, A. W. A., Brück, P. M., Molyneux, S. G., Williams, M. & Woodcock, N. H. (eds.). 2011. A Revised Correlation of the Cambrian Rocks in the British Isles.Geological Society of London, Special Report 25.CrossRefGoogle Scholar
Rushton, A. W. A. & Molyneux, S. G. 2011. 7. Welsh Basin . In A Revised Correlation of the Cambrian rocks in the British Isles (eds. Rushton, A. W. A., Brück, P. M., Molyneux, S. G., Williams, M. & Woodcock, N. H.), pp. 21–7. Geological Society of London, Special Report 25.Google Scholar
Sadler, P. M. 1981. Sediment acculumation rates and the completeness of stratigraphic sections. Journal of Geology 89, 569–84.CrossRefGoogle Scholar
Salvador, A. (ed). 1994. International Stratigraphic Guide. A Guide to Stratigraphic Classification, Terminology, and Procedure. Second Edition. International Union of Geological Sciences and the Geological Society of America, Denver, 214 pp.Google Scholar
Sánchez-Zavala, J. L., Centenero-García, E. & Ortega-Gutiérrez, F. 1999. Review of Paleozoic stratigraphy of México and its role in the Gondwana–Laurentia connections. In Laurentia–Gondwana connections before Pangaea (eds Ramos, V. A. & Keppie, J. D.), pp. 211–26. Geological Society of America, Special Paper 336.Google Scholar
Schmidt, F. 1888. Über eine neu entdeckte unterkambrische Fauna in Estland. Memoirs de l'Académie Impériale des Sciences, St-Pétersbourg 7 (36), 127.Google Scholar
Schröder, S., Grotzinger, J. P., Amthor, J. E. & Matter, A. 2005. Carbonate deposition and hydrocarbon reservoir development at the Precambrian–Cambrian boundary in the Ara Group in South Oman. Sedimentary Geology 180, 128.CrossRefGoogle Scholar
Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R. & Ziegler, A. M. 1979. Palaeozoic base maps. Journal of Geology 87, 217–77.CrossRefGoogle Scholar
Sedov, S., Solleiro-Rebolledo, E., Fedick, S. D., Pi pulg, T. P., Vallejo-Gómez, E., de Lourdes Flores-Delgadillo, M. 2008. Micromorphology of a soil catena in Yucatán: pedogenesis and geomorphological processes in a tropical and karst landscape. In New Trends in Soil Micromorphology (ed Kapur, S.), pp. 1937. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Seilacher, A. 1955. Spuren und Lebensweise der Trilobiten: Spuren und Fazies im UnterKambrium. In Beiträge zur Kenntnis des Kambriens im Salt Range (Pakistan) (eds Schindewolf, O. H. & Seilacher, A), pp. 86143. Akademie der Wissenschaft und Literatur des Mainz, Matematisch-naturwissenschafte Klasse, Abhandlungen 10.Google Scholar
Seilacher, A. 1964. Biogenic sedimentary structures. In Approaches to Paleoecology (eds Imbrie, J. & Newall, N. D.), pp. 296316. John Wiley & Son, New York.Google Scholar
Selleck, B. W. 1978. Syndepositional brecciation in the Potsdam Sandstone of northern New York State. Journal of Sedimentary Petrology 48, 1177–83.Google Scholar
Shaler, N. S. & Foerste, A. F. 1888. Preliminary description of North Attleboro fossils. Bulletin of the Museum of Comparative Zoology, Harvard University, Second Series 16, 2741.Google Scholar
Siveter, D. J. & Williams, M. 1995. An Early Cambrian assignment for the Caerfai Group of South Wales. Journal of the Geological Society, London 152, 221–4.CrossRefGoogle Scholar
Siveter, D. J. & Williams, M. 1997. Cambrian bradoriid and phpsphatocopinid arthropods of North America. Special Papers in Palaeontology 57, 69 p.Google Scholar
Skjeseth, S. 1963. Contributions to the geology of the Mjøsa District and the classical sparagmite area in southern Norway. Norges Geologiska Undersøkelse 220, 237 p.Google Scholar
Smith, A. G. 2001. Paleomagnetically and tectonically based global maps for Vendian to Mid-Ordovician time. In The Ecology of the Cambrian Radiation (eds Zhuravlev, A. Yu. & Riding, R.), pp. 1146. Columbia University Press, New York.Google Scholar
Smith, A. G., Hurley, A. M. & Briden, J. C. 1981. Phanerozoic Paleocontinental World Maps. Cambridge Earth Science Series, Cambridge University Press, 83 p.Google Scholar
Stead, J. T. G. & Williams, B. P. J. 1971. The Cambrian rocks of north Pembrokeshire. In Geological Excursions in South Wales and the Forest of Dean (eds Bassett, D. A. & Bassett, M. G.), pp. 180–98. Geological Association, South Wales Group, Cardiff.Google Scholar
Steiner, M., Li, G. X., Qian, Y. & Zhu, M. Y. 2004. Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic significance. Géobios 37, 259–75.CrossRefGoogle Scholar
Steiner, M., Li, G. X., Qian, Y., Zhu, M. Y. & Erdtmann, B.-D. 2007. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology 254, 6799.CrossRefGoogle Scholar
Thomas, H. H. & Jones, O. T. 1912. On the Pre-Cambrian and Cambrian rocks of Brawdy, Haycastle, and Brimaston (Pembrokeshire). Quarterly Journal of the Geological Society, London 68, 374401.CrossRefGoogle Scholar
Tucker, R. D. & Pharoah, T. C. 1991. U-Pb zircon dates from late Precambrian igneous rocks in southern Britain. Journal of the Geological Society, London 148, 435–43.CrossRefGoogle Scholar
Turner, P. 1979. Diagenetic origin of Cambrian marine beds: Caerfai Bay Shales, Dyfed, Wales. Sedimentary Geology 24, 269–81.CrossRefGoogle Scholar
Vanguestaine, M. & Léonard, R. 2005. New biostratigraphic and chronostratigraphic data from the Sautou Formation and adjacent strata (Cambrian, Givonne inlier, Revin Group, northern France), and some lithostratigraphic and tectonic implications. Geologica Belgica 8, 131–44.Google Scholar
Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Louitt, T. S. & Hardenbol, J. 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In Sea-level Changes: An Integrated Approach (eds Wilgus, C. K., Posamentier, H., Ross, C. A. & Kendall, C. G. St. C.), pp. 3945. Society of Economic Paleontologists and Mineralogists, Special Publication No. 42.CrossRefGoogle Scholar
Vidal, G. 1981. Micropaleontology and biostratigraphy of the Lower Cambrian sequence in Scabdinavia. In Short Papers for the Second International Symposium on the Cambrian System 1981 (ed. Taylor, M. E.), pp. 232–5. US Geological Survey Open-File Report 81-743.Google Scholar
Vidal, G., Rudavskaya, V. R. & Moczydłowska, M. 1995. Constraints on the Early Cambrian radiation and correlation of the Tommotian and Nemakit-Daldynian stages of eastern Siberia. Journal of the Geological Society 152, 499510.CrossRefGoogle Scholar
Volkova, N. A., Kiryanov, V. V., Piskun, L. V., Paskeviciene, L. T. & Yankaukas, T. V. 1979. Paleontologiya Verkhnedokembriiskikh i Kembriiskikh Otlozhenii Vostochno-Evropeiskoi Platformy. Akademiya Nauk SSSR, Ordena Trusovogo Krasnogo Znameni Geologicheskii Institut, Izdatel'stvo Nauka, Moscow.Google Scholar
Walcott, C. D. 1889. Descriptive notes of new genera and species from from the Lower Cambrian of Olenellus Zone of North America. US National Museum Proceedings 12, 3346.CrossRefGoogle Scholar
Walcott, C. D. 1890. The fauna of the Lower Cambrian or Olenellus Zone. US Geological Survey, 10th Annual Report, 509–710.Google Scholar
Walcott, C. D. 1900. Lower Cambrian terrane in the Atlantic Province. Proceedings of the Washington Academy of Sciences 1, 301–99.Google Scholar
Watts, N. L. 1978. Displacive calcite: evidence from Recent and ancient calcretes. Geology 6, 699703.2.0.CO;2>CrossRefGoogle Scholar
Watts, W. W. 1947. Geology of the Ancient Rocks of Charnwood Forest. Leicestershire Literary & Philosophical Society, Leicester.Google Scholar
Westrop, S. R. & Landing, E. 2000. Lower Cambrian (Branchian) trilobites and biostratigraphy of the Hanford Brook Formation, southern New Brunswick. Journal of Paleontology 74, 858–78.2.0.CO;2>CrossRefGoogle Scholar
Westrop, S. R. & Landing, E. 2012. Lower Cambrian (Branchian) eodiscoid trilobites from the lower Brigus Formation, Avalon Peninsula, Newfoundland, Canada. Memoirs of the Association of Australasian Palaeontologists 42, 209–62.Google Scholar
Westrop, S. R., Trembley, J. V. & Landing, E. 1995. Declining importance of trilobites in Ordovician nearshore communities: dilution or displacement? Palaios 10, 75–9.CrossRefGoogle Scholar
Williams, B. P. J. & Stead, J. T. G. 1982. The Cambrian rocks of the Newgale–St David's area, In Geological Excursions in Dyfed, South-west Wales (ed Bassett, M. G.), pp. 2749. Geological Association, South Wales Group, Cardiff.Google Scholar
Williams, H. 1964. The Appalachians in northeastern Newfoundland—a two sided symmetrical system. American Journal of Science 262, 1137–58.CrossRefGoogle Scholar
Williams, H. 1978. Geological development of the northern Appalachians: its bearing on the evolution of the British Isles. In Crustal Evolution in Northwestern Britain and Adjacent Regions (eds Bose, D. R. & Leake, B. E.), pp. 122. Seal House Press, Liverpool.Google Scholar
Williams, H. & Hatcher, R. D., Jr. 1982. Suspect terranes and accretionary history of the Appalachian orogen. Geology 10, 530–36.2.0.CO;2>CrossRefGoogle Scholar
Williams, M. & Siveter, D. J. 1998. British Cambrian and Tremadocian bradoriid and phosphatocopinid arthropods. Monograph of the Palaeontological Society, London 152 (607), 49 p.Google Scholar
Williams, T. G. 1934. The Pre-Cambrian and Lower Palaeozoic rocks of the eastern end of the St. David's Pre-Cambrian area, Pembrokeshire. Quarterly Journal of the Geological Society, London 90, 3275.CrossRefGoogle Scholar
Winkler, C. D. & Edwards, M. B. 1983. Unstable progradational clastic shelf margins. In The Shelfbreak: Critical Interface on Continental Margins (eds Stanley, D. J. & Moore, G. T.), pp. 139–57. Society of Economic Paleontologists and Mineralogists, Special Publication 33.CrossRefGoogle Scholar
Woodcock, N. H. 1984. Early Palaeozoic sedimentation and tectonics in Wales. Proceedings of the Geologists’ Association 95, 323–35.CrossRefGoogle Scholar
Woodcock, N. H. 1990. Sequence stratigraphy of the Palaeozoic Welsh Basin. Journal of the Geological Society, London 147, 537–47.CrossRefGoogle Scholar
Wright, A. E., Fairchild, I. J., Moseley, F. & Downie, C. 1993. The Lower Cambrian Wrekin Quartzite and the age of its unconformity on the Ercall Granophyre. Geological Magazine 130, 257–64.CrossRefGoogle Scholar
Zenker, J. C. 1836. Historisch-topographische Taschenbuch von Jena und seiner Umgebung besonders in naturwissenschaftlicher und medicinischer Bezeihung. Wachenhoder, Jena, 338 p.Google Scholar