Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T03:07:42.388Z Has data issue: false hasContentIssue false

Provenance of loess from the Spanish central region: chemometric interpretation

Published online by Cambridge University Press:  02 December 2010

R. GARCÍA*
Affiliation:
Departamento Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma, 28049 Madrid, Spain
M. D. PETIT-DOMÍNGUEZ
Affiliation:
Departamento Química Analítica, Facultad de Ciencias, Universidad Autónoma, 28049 Madrid, Spain
M. I. RUCANDIO
Affiliation:
Unidad de Espectroscopía, CIEMAT, 28040 Madrid, Spain
J. A. GONZÁLEZ
Affiliation:
Departamento Geografía, Facultad de Filosofía y Letras, Universidad Autónoma, 28049 Madrid, Spain
*
Author for correspondence: [email protected]

Abstract

In this work our purposes are (1) geochemical characterization of loess (‘primary loess’ or ‘true loess’ and ‘secondary loess’ or ‘loess-like deposits’) located in the centre of the Iberian Peninsula, (2) systematic study of element behaviour during pedogenesis and (3) evaluation of the suitability of using the geochemistry of loess to establish the average composition of these discontinuous aeolian sedimentary covers in central Spain. Several analyses were carried out on the bulk sample and on the sandy and clay fractions (mineralogical composition by X-ray diffraction, mineralogical studies of heavy minerals by petrographical microscopy and chemical composition by flame atomic absorption spectrometry). Loess from the Spanish central region has a local origin. The presence of gypsum in the ‘loess-like’ deposits reaches values two times higher than in ‘true loess’, and ‘true loess’ has a higher concentration of quartz, calcite and kaolinite. Regarding chemical composition, similar concentrations of Ca, K, Mg and Na were found, although it is important to note the higher concentration of Na in some of the samples.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biscaye, P. E., Grousset, F. E., Revel, M., Van Der Gaast, S., Zielinski, G. A., Vaars, A. & Kukla, G. 1997. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. Journal of Geophysical Research 102, 26765–81.CrossRefGoogle Scholar
Brunnacker, K. 1969 a. Observations en Espagne et en Grèce. Supplement au Bulletin de l'Association Française pour l'etude du Quaternaire, 67–9.Google Scholar
Brunnacker, K. 1969 b. Affleurements de loess dans les régions nord-méditerranées. Revue Géographie Physique et Geologie Dynamic 2 (11), 325–34.Google Scholar
Brunnacker, K. & Lözek, V. 1969. Lössorkanmen in Südostspanien. Zeitschrift für Geomorphologie NF 13, 297316.Google Scholar
Coudé-Gaussen, G. 1991. Les Poussières Sahariennes. Paris, France: John Libbey Eurotext, 167 pp.Google Scholar
Coudé-Gaussen, G. 1998. Les loess peridésertiques de Matmata (Sud-Tunisien). Géochronique 65, 1112.Google Scholar
Coudé-Gaussen, G., Hillaire-Marcel, C. & Rognon, P. 1982. Origine et évolution pédologique des fractions carbonatées dans les loess de Matmata (Sud-Tunisien) d'après leurs teneurs en 13 C et 18 O. Comptes Rendues Academie Sciences Françaises 295, 939–42.Google Scholar
Coudé-Gaussen, G., Le Coustumer, M. N. & Rognon, P. 1984. Paléosols d’âge Pléistocène supérieur dans les loess des Matmata (Sud – Tunisien). Sciences Géologiques de Strasbourg 37 (4), 359–86.CrossRefGoogle Scholar
Coudé-Gaussen, G., Rognon, P., Rapp, A. & Nihlen, T. 1987. Dating of peridesert loess in Matmata, south Tunisia, by radiocarbon and thermoluminiscence methods. Zeitschrift für Geomorphologie NF 31, 129–44.CrossRefGoogle Scholar
Coudé-Gaussen, G. & Rognon, P. 1988. The Upper Pleistocene loess of southern Tunisia: a statement. Earth Surface and Process Landforms 13, 137–52.CrossRefGoogle Scholar
Cremaschi, M. 1987. Loess deposits of the Plain of the Po and of the adjoining Adriatic Basin (Northern Italy). In Loess and Periglacial Phenomena (eds Pecsi, M. & French, H. M.), pp. 3540. Budapest: Akademia Kiadó.Google Scholar
Cuenca Payá, A. & Walter, M. J. 1976. Pleistoceno final y Holoceno en la cuenca del Vinalopó (Alicante). Estudios Geológicos 32, 95104.Google Scholar
Eberl, D. D. & Smith, D. B. 2009. Mineralogy of soils from two-continental scale transects across the United States and Canada and its relation to soil geochemistry and climate. Applied Geochemistry 24 (8), 1394–404.CrossRefGoogle Scholar
Frazee, C. J., Fehrenbacher, J. B. & Krumbein, W. C. 1970. Loess distribution from a source. Soil Science Society American Proceedings 34, 296301.CrossRefGoogle Scholar
García, R., Vigil, R. & González, J. A. 1998. Periglacial loess fields in the Tajo River Valley, Spain. Abstract. 17th General Meeting International Mineralogy Association, Toronto, Canada.Google Scholar
García Giménez, R. & González Martín, J. A. 2006. Los loess del Valle medio del río Tajo (Villarrubia de Santiago-Yepes, España). Boletín Real Sociedad Española de Historia Natural (Sección Geología) 101, 5178.Google Scholar
García, R., González, J. A., Petit, M. D. & Rucandio, M. I. 2010. Caracterización de las acumulaciones loéssicas en el Valle medio del Río Tajo, España. Estudios Geológicos 66, 115–21.CrossRefGoogle Scholar
Goudie, A. S. & Middleton, N. J. 2001. Saharan dust storms: nature and consequences. Earth Science Review 56, 179204.Google Scholar
Grunert, J. & Lehmkuhl, J. F. 2004. Aeolian sedimentation in arid and semiarid environments of Western Mongolia. In Paleoecology of Quaternary Drylands. Lecture Notes in Earth Sciences vol. 102 (eds Smykatz-Kloss, W. P. & Felix Henningsen, P.), pp. 195218. Berlin: Springer.Google Scholar
Günster, N., Eck, P., Skowronek, A. & Zöller, L. 2001. Late Pleistocene loess and their paleosols in the Granada Basin, Southern Spain. Quaternary International 76/77, 241–5.Google Scholar
Haase, D., Fink, J., Haase, G., Ruske, R., Pecsi, M., Richter, H., Altermann, M. & Jäger, K. D. 2007. Loess in Europe – its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quaternary Science Review 26, 1301–12.CrossRefGoogle Scholar
Hey, R. W. 1972. The Quaternary and Paleolithic of northern Libya. Quaternaria 6, 435–49.Google Scholar
Jin, Z., You, C. & Yu, J. 2009. Toward a geochemical mass balance of major elements in Lake Qinghai, NE Tiberan Plateau: a significant role of atmospheric depostition. Applied Geochemistry 24 (10), 1901–7.CrossRefGoogle Scholar
Kisch, H. 1990. Recommendations on Illite Crystallinity. IGCP Project 294, VIGM, pp. 19.Google Scholar
Moore, D. M. & Reynolds, D. C. Jr. 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. New York: Oxford University Press, 238 pp.Google Scholar
Ordoñez, S., López-Aguayo, F. & García Del Cura, M. A. 1977. Contribución al conocimiento de la mineralogía del yacimiento de sales de Villarrubia de Santiago (Toledo). Estudios Geológicos 33, 167–71.Google Scholar
Pecsi, M. 1990. Loess is not just the accumulation of dust. Quaternary International 7/8, 121.Google Scholar
Pérez González, A., Silva, P. G., Roquero, E. & Gallardo, J. 2004. Geomorfología fluvial y edafología del sector meridional de la cuenca de Madrid (Toledo-Madrid). In Itinerarios geomorfológicos por Castilla la Mancha (eds Benito, G. & Díez Herrero, A.), pp. 31–9. Madrid, Spain: Sociedad Española de Geomorfología.Google Scholar
Pye, K. 1995. The nature, origin and accumulation of loess. Quaternary Science Review 14 (7–8), 653–67.CrossRefGoogle Scholar
Rose, J., Meng, X. & Watson, C. 1999. Paleoclimate and paleoenvironmental responses in the western Mediterranean over the last 140 ka. Evidence from Mallorca, Spain. Journal Geological Society 156, 435–48.Google Scholar
Ruiz Zapata, M. B., Pérez González, A., Dorado, M., Valdeolmillos, A., Bustamante, I. & Gil, M. J. 2000. Caracterización climática de las etapas áridas del Pleistoceno superior en la región central peninsular. Geotemas 1 (4), 273–8.Google Scholar
Schultz, L. G. 1964. Quantitative Interpretation of the Mineralogical Composition from X-ray and Chemical Data for the Pierce Shale. United States Geological Survey Professional Paper, 391C, 131 pp.CrossRefGoogle Scholar
Smalley, I. 1995. Making the material: the formation of silt-sized primary mineral particles for loess deposits. Quaternary Science Review 14, 645–51.CrossRefGoogle Scholar
Taylor, S. R., McLennan, S. M. & McCulloch, M. T. 1983. Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica and Cosmochimica Acta 47, 1897–905.CrossRefGoogle Scholar
Whalley, W. B., Marshall, J. R. & Smith, B. J. 1982. Origin of desert loess from some experimental observations. Nature 300, 433–5.CrossRefGoogle Scholar
Xiubin, H., Keli, T. & Xiangyi, L. 1997. Heavy mineral record of the Holocene environment on the Loess Plateau in China and its pedogenetic significance. Catena 29, 323–32.Google Scholar
Supplementary material: Image

Garcia supplementary material

Table 1.tif

Download Garcia supplementary material(Image)
Image 3.4 MB
Supplementary material: File

Garcia supplementary material

Colour figures 2-9.zip

Download Garcia supplementary material(File)
File 17.8 MB