Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T14:05:21.918Z Has data issue: false hasContentIssue false

Provenance and tectonic setting of the Upper Palaeozoic sandstones in western Inner Mongolia (the Shalazhashan and Solonker belts), China: insights from detrital zircon U–Pb ages and Hf isotopes

Published online by Cambridge University Press:  14 December 2017

GUANZHONG SHI
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
GUANGZENG SONG
Affiliation:
School of Resources and Environment, University of Ji'nan, Ji'nan 250022, China
HUA WANG*
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
CHUANYAN HUANG
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
BEN LI
Affiliation:
Institute of Petroleum Exploration and Development, PetroChina Huabei Oilfield Company, Cangzhou 062552, China
*
Author for correspondence: [email protected]

Abstract

The Solonker and Shalazhashan belts are hotly debated tectonic units of the Central Asian Orogenic Belt (CAOB), because they may either represent a Permian or Triassic suture zone of the CAOB, or a rifting zone overprinted on an Early Palaeozoic orogen. Provenance analysis of the Upper Palaeozoic sandstones in these belts may provide useful constraints on this issue. This study collected six sandstone samples from three study areas: the Mandula area of the Solonker Belt, the Quagan Qulu area of the Shalazhashan Belt but close to the Alxa block, and the Enger Us area of the Shalazhashan Belt, for framework petrography, zircon morphology, U–Pb and Lu–Hf isotopic analyses. Framework petrography reveals that the Mandula and Enger Us area samples contain high proportions of volcanic fragments, whereas the samples from the Quagan Qulu area include not only volcanic fragments but also significant amounts of biotite and muscovite. The detrital zircons of the Mandula area and the Enger Us area yield two main age groups: (i) 260–330 Ma, with dominant εHf(t) values of –5 to +12; and (ii) 420–550 Ma, with dominant εHf(t) values of –9 to +9, suggesting that Early Palaeozoic arc-related magmatic rocks and Late Palaeozoic syn-depositional volcanic rocks are the main source rocks. The detrital zircons of the Quagan Qulu area have one main age group of 420–500 Ma and some grains of 0.9–1.1 Ga, 1.4–1.5 Ga, 1.8–1.9 Ga and ~ 2.5 Ga, which derive from the northern margin of the Alxa block. The lithological and fossil assemblages of the Upper Palaeozoic sandstones suggest shallow-marine to deep-water depositional environments and a northward-deepening transition. Based on the zircon spectra, sedimentary environment analysis and previous studies, we argue that the Solonker Belt and the Shalazhashan Belt of the CAOB are in extensional basins of a fore-arc or rifting setting.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chemical Geology 216, 249–70.Google Scholar
Badarch, G., Cunningham, W. D. & Windley, B. F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of central Asia. Journal of Asian Earth Sciences 21, 87110.Google Scholar
Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602–22.Google Scholar
BGIM (Bureau of Geology of Inner Mongolia). 2004. Geological Map of 1/250 000 in Mandula Region. (in Chinese).Google Scholar
Blichert-Toft, J. & Albarede, F. 1997. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–58.Google Scholar
Bu, J. J., Niu, Z. J., Wu, J. & Duan, X. F. 2012. Sedimentary characteristics and age of Amushan Formation in Ejin Banner and its adjacent areas, western Inner Mongolia. Geological Bulletin of China 31, 1669–83.Google Scholar
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits. Amsterdam: Elsevier, 168 pp.Google Scholar
Charvet, J., Shu, L. S., Laurent-Charvet, S., Wang, B., Faure, M., Cluzel, D., Chen, Y. & De Jong, K. 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China: Earth Sciences 54, 166–84.Google Scholar
Chen, B., Jahn, B. M., Wilde, S. & Xu, B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics 328, 157–82.Google Scholar
Chen, C., Zhang, Z. C., Guo, Z. J., Li, J. F., Feng, Z. S. & Tang, W. H. 2012. Geochronology, geochemistry, and its geological significance of the Permian Mandula mafic rocks in Damaoqi, Inner Mongolia. Science China: Earth Sciences 55, 3952.Google Scholar
Chen, C., Zhang, Z. C., Li, K., Chen, Y., Tang, W. H. & Li, J. F. 2015. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China Block. Journal of Asian Earth Sciences 97, 307–19.Google Scholar
Chen, L., Zheng, Y. F. & Zhao, Z. F. 2016. Geochemical constraints on the origin of Late Mesozoic andesites from the Ningwu basin in the Middle–Lower Yangtze Valley, South China. Lithos 254–255, 94117.Google Scholar
Choulet, F., Chen, Y., Cogné, J. P., Rabillard, A., Wang, B., Lin, W., Faure, M. & Cluzel, D. 2013. First Triassic palaeomagnetic constraints from Junggar (NW China) and their implications for the Mesozoic tectonics in Central Asia. Journal of Asian Earth Sciences 78, 371–94.Google Scholar
Choulet, F., Cluzel, D., Faure, M., Lin, W., Wang, B., Chen, Y., Wu, F. Y. & Ji, W. B. 2012a. New constraints on the pre-Permian continental crust growth of Central Asia (West Junggar, China) by U–Pb and Hf isotopic data from detrital zircon. Terra Nova 24, 189–98.Google Scholar
Choulet, F., Faure, M., Cluzel, D., Lin, W., Wang, B. & Jahn, B. M. 2012b. Architecture and evolution of accretionary orogens in the Altaids collage: the early Paleozoic West Junggar (NW China). American Journal of Science 312, 1098–145.Google Scholar
Chu, H., Zhang, J. R., Wei, C. J., Wang, H. & Ren, Y. 2013. A new interpretation of the tectonic setting and age of meta-basic volcanics in the Ondor Sum Group, Inner Mongolia. China Science Bulletin 58, 3580–7.Google Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. & Kinny, P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469500.Google Scholar
Dan, W., Li, X.-H., Guo, J. H., Liu, Y. & Wang, X. C. 2012. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: evidence from in situ zircon U–Pb dating and Hf–O isotopes. Gondwana Research 21, 838–64.Google Scholar
Dan, W., Li, X. H., Wang, Q., Tang, G. J. & Liu, Y. 2014a. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China: a magmatic flare-up triggered by a mantle-plume? Lithos 204, 144–58.Google Scholar
Dan, W., Li, X. H., Wang, Q., Wang, X. C. & Liu, Y. 2014b. Neoproterozoic S-type granites in the Alxa block, westernmost north China and tectonic implications: in situ zircon U–Pb–Hf–O isotopic and geochemical constraints. American Journal of Science 314, 110–53.Google Scholar
Dan, W., Wang, Q., Wang, X. C., Liu, Y., Wyman, D. A. & Liu, Y.-S. 2015. Overlapping Sr–Nd–Hf–O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces. Lithos 230, 133–45.Google Scholar
Dickinson, W. R. 1985. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites (ed. Zuffa, G. G.), pp. 333–61. NATO Science Series 148.Google Scholar
Dodson, M. H., Compston, W., Williams, I. S. & Wilson, J. F. 1988. A search for ancient detrital zircons in Zimbabwean sediments. Journal of the Geological Society, London 145, 977–83.Google Scholar
Eizenhöfer, P. R., Zhao, G. C., Sun, M., Zhang, J., Han, Y. G. & Hou, W. Z. 2015a. Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolian arcs and tectonic implications. Geological Society of America Bulletin 127, 1422–36.Google Scholar
Eizenhöfer, P. R., Zhao, G. C., Zhang, J., Han, Y. G., Hou, W. Z., Liu, D. X. & Wang, B. 2015b. Geochemical characteristics of the Permian basins and their provenances across the Solonker Suture Zone: assessment of net crustal growth during the closure of the Palaeo-Asian Ocean. Lithos 224, 240–55.Google Scholar
Eizenhöfer, P. R., Zhao, G. C., Zhang, J. & Sun, M. 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 33, 441–63.Google Scholar
Fan, H. R., Hu, F. F., Yang, K. F., Pirajno, F., Liu, X. & Wang, K. Y. 2014. Integrated U–Pb and Sm–Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan Obo REE deposit, Northern China. Ore Geology Reviews 63, 510–9.Google Scholar
Fan, H. R., Yang, K. F., Hu, F. F., Wang, K. Y. & Zhai, M. G. 2010. Zircon geochronology of basement rocks from the Bayan Obo area, Inner Mongolia, and tectonic implications. Acta Petrologica Sinica 26, 1342–50 (in Chinese with English abstract).Google Scholar
Feng, J. Y., Xiao, W. J., Windley, B., Han, C. M., Wan, B., Zhang, J. E., Ao, S. J., Zhang, Z. Y. & Lin, L. N. 2013. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: implications for Late Permian accretionary tectonics in the southern Altaids. Journal of Asian Earth Sciences 78, 114–42.Google Scholar
Geng, Y. S., Wang, X. S., Shen, Q. H. & Wu, C. M. 2007. Chronology of the Precambrian metamorphic series in the Alxa area, Inner Mongolia. Geology in China 34, 251–61 (in Chinese with English abstract).Google Scholar
Geng, Y. S. & Zhou, X. W. 2010. Early Neoproterozoic granite events in Alxa area of Inner Mongolia and their geological significance: evidence from geochronology. Acta Petrologica et Mineralogica 29, 779–95 (in Chinese with English abstract).Google Scholar
Geng, Y. S. & Zhou, X. W. 2012. Early Permian magmatic events in the Alxa metamorphic basement: evidence from geochronology. Acta Petrologica Sinica 28, 2667–85.Google Scholar
Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O'Reilly, S. Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–82.Google Scholar
Han, W., Liu, X., Li, J. C. & Shi, J. Z. 2012. Sedimentary environment of Carboniferous–Permian Amushan Formation in Wulanaobao area of Urad Rear Banner, Inner Mongolia. Geological Bulletin of China 31, 1684–91.Google Scholar
Hoskin, P. & Black, L. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology 18, 423–39.Google Scholar
Hoskin, P. W. & Ireland, T. R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28, 627–30.Google Scholar
Hoskin, P. W. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53, 2762.Google Scholar
Hu, J. M., Gong, W. B., Wu, S. J., Liu, Y. & Liu, S. C. 2014. LA-ICP-MS zircon U–Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications. Precambrian Research 255, 756–70.Google Scholar
Hu, C. S., Li, W. B., Xu, C., Zhong, R. C. & Zhu, F. 2015. Geochemistry and zircon U–Pb–Hf isotopes of the granitoids of Baolidao and Halatu plutons in Sonidzuoqi area, Inner Mongolia: implications for petrogenesis and geodynamic setting. Journal of Asian Earth Sciences 97, 294306.Google Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Yang, L., Zhang, W., Tong, X. R., Lin, L., Zong, K. Q., Li, M., Chen, H. H., Zhou, L. & Yang, L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry 27, 1391–9.Google Scholar
Ingersoll, R. V., Bullard, T. F., Ford, R. L., Pickle, J. D. & Sares, S. W. 1984. The effect of grain size on detrital modes: a test of the Gazzi–Dickinson point-counting method. Journal of Sedimentary Research 54, 103–6.Google Scholar
Jahn, B. M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In Aspects of the Tectonic Evolution of China (eds Malpas, J., Fletcher, C. J. N., Ali, J. R. & Aitchison, J. C.), pp. 73100. Geological Society of London, Special Publication no. 226.Google Scholar
Jahn, B. M., Capdevila, R., Liu, D. Y., Vernon, A. & Badarch, G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences 23, 629–53.Google Scholar
Jian, P., Liu, D. Y., Kröner, A., Windley, B. F., Shi, Y. R., Zhang, F. Q., Shi, G. H., Miao, L. C., Zhang, W., Zhang, Q., Zhang, L. Q. & Ren, J. S. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: implications for continental growth. Lithos 101, 233–59.Google Scholar
Jian, P., Liu, D. Y., Kröner, A., Windley, B. F., Shi, Y. R., Zhang, W., Zhang, F. Q., Miao, L. C., Zhang, L. Q. & Tomurhuu, D., 2010. Evolution of a Permian intraoceanic arc–trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118, 169–90.Google Scholar
Jiang, G. Q., Xu, Y. K., Zhao, G. C., Luo, F., Xiao, R. G. & Luo, Z. H. 1995. Evolution of process-facies and environment-facies sequence of Permian Dashizhai Formation in Sonid Zuoqi area, Inner Mongolia. Geoscience 9, 170–8 (in Chinese with English abstract).Google Scholar
Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann, R., Alexeiev, D. V., Hoffmann, J. E., Wong, J., Sun, M., Cai, K., Wang, T., Tong, Y., Wilde, S. A., Degtyarev, K. E. & Rytsk, E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research 25, 103–25.Google Scholar
Li, J. J. 2006. Regional Metallogenic System of Alxa Block in Inner Mongolia Autonomous Region [D]. Beijing: China University of Geosciences.Google Scholar
Li, W., Bai, R., Niu, Y. Z. & Chen, G. C. 2012. Sedimentary environments of the Permian Haersuhai Formation in Yagan area, Ejin Banner, western Inner Mongolia. Geological Bulletin of China 31, 1703–14.Google Scholar
Li, Y.-L., Brouwer, F. M., Xiao, W.-J. & Zheng, J.-P. 2017a. Late Devonian to Early Carboniferous arc-related magmatism in the Baolidao arc, Inner Mongolia, China: significance for southward accretion of the eastern Central Asian orogenic belt. Geological Society of America Bulletin 129, 677–97.Google Scholar
Li, Y.-L., Brouwer, F. M., Xiao, W.-J. & Zheng, J.-P. 2017b. A Paleozoic fore-arc complex in the eastern Central Asian Orogenic Belt: petrology, geochemistry and zircon U–Pb–Hf isotopic composition of paragneisses from the Xilingol Complex in Inner Mongolia, China. Gondwana Research 47, 323–41.Google Scholar
Li, D. P., Chen, Y. L., Wang, Z., Hou, K. J. & Liu, C. Z. 2011. Detrital zircon U–Pb ages, Hf isotopes and tectonic implications for Paleozoic sedimentary rocks from the Xing-Meng Orogenic Belt, middle-east part of Inner Mongolia, China. Geological Journal 46, 6381.Google Scholar
Li, W., Lu, J. C. & Chen, G. C. 2011. Sedimentary environment of Carboniferous–Permian strata in Ejin Banner and its vicinities, western Inner Mongolia. Geological Bulletin of China 30, 983–92.Google Scholar
Li, Y. L., Zhou, H. W., Brouwer, F. M., Xiao, W. J., Wijbrans, J. R. & Zhong, Z. Q. 2014. Early Paleozoic to Middle Triassic bivergent accretion in the Central Asian Orogenic Belt: insights from zircon U–Pb dating of ductile shear zones in central Inner Mongolia, China. Lithos 205, 84111.Google Scholar
Lin, J., Liu, Y. S., Chen, H. H., Zhou, L., Hu, Z. C. & Gao, S. 2015. Review of high-precision Sr isotope analyses of low-Sr geological samples. Journal of Earth Science 26, 763–74.Google Scholar
Lin, L. N., Xiao, W. J., Wan, B., Windley, B. F., Ao, S. J., Han, C. M., Feng, J. Y., Zhang, J. E. & Zhang, Z. Y. 2014. Geochronology and geological evidence for persistence of south-dipping subduction to Late Permian time, Langshan area, Inner Mongolia (China): significance for termination of accretionary orogenesis in the southern Altaids. American Journal of Science 314, 679703.Google Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537–71.Google Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.Google Scholar
Liu, Y. J., Li, W. M., Feng, Z. Q., Wen, Q. B., Neubauer, F. & Liang, C. Y. 2017a. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research 43, 123–48.Google Scholar
Liu, J., Li, Y., Ling, M. X. & Sun, W. D. 2011. Chronology and geological significance of the basement rock of the giant Bayan Obo REE–Nb–Fe ore deposit. Geochimica 40, 209–22.Google Scholar
Liu, Q., Zhao, G. C., Han, Y. G., Eizenhöfer, P. R., Zhu, Y. L., Hou, W. Z. & Zhang, X. R. 2017b. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites. Lithos 274–275, 1930.Google Scholar
Liu, C. H., Zhao, G. C., Liu, F. L. & Shi, J. R. 2017c. Detrital zircon U–Pb and Hf isotopic and whole-rock geochemical study of the Bayan Obo Group, northern margin of the North China Craton: implications for Rodinia reconstruction. Precambrian Research, published online 28 April 2017. doi: 10.1016/j.precamres.2017.04.033.Google Scholar
Lowe, D. R. 1982. Sediment gravity flows; II, depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52, 279–97.Google Scholar
Lowey, G. W. 2007. Lithofacies analysis of the Dezadeash Formation (Jura–Cretaceous), Yukon, Canada: the depositional architecture of a mud/sand-rich turbidite system. Sedimentary Geology 198, 273–91.Google Scholar
Ludwig, K. R. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 5.Google Scholar
Luo, Z. W., Xu, B., Shi, G. Z., Zhao, P., Faure, M. & Chen, Y. 2016. Solonker ophiolite in Inner Mongolia, China: a late Permian continental margin-type ophiolite. Lithos 261, 7291.Google Scholar
Mossakovsky, A. A., Ruzhentsev, S. V., Samygin, S. G. & Kheraskova, T. N. 1993. The Central Asian fold belt: geodynamic evolution and formation history. Geotectonics 26, 455–73.Google Scholar
Mueller, J. F., Rogers, J. J. W., Jin, Y. G., Wang, H. Y., Li, W. G., ChronicJ., Mueller J., Mueller & Joseph, F. 1991. Late Carboniferous to Permian sedimentation in Inner Mongolia, China, and tectonic relationships between North China and Siberia. Journal of Geology 99, 251–63.Google Scholar
Mulder, T. & Alexander, J. 2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269–99.Google Scholar
NMBGMR (Nei Mongol Bureau of Geology and Mineral Resources). 1991. Regional Geology of Nei Mongol Autonomous Region. Beijing: Geological Publishing House.Google Scholar
Pang, C. J., Wang, X. C., Xu, B., Luo, Z. W. & Liu, Y. Z. 2017. Hydrous parental magmas of Early to Middle Permian gabbroic intrusions in western Inner Mongolia, North China: new constraints on deep-Earth fluid cycling in the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 144, 184204.Google Scholar
Pang, C. J., Wang, X. C., Xu, B., Zhao, J. X., Feng, Y. X., Wang, Y. Y., Luo, Z. W. & Liao, W. 2016. Late Carboniferous N-MORB-type basalts in central Inner Mongolia, China: products of hydrous melting in an intraplate setting? Lithos 261, 5571.Google Scholar
Peng, R. M., Zhai, Y. S., Li, C. S. & Ripley, E. M. 2013. The Erbutu Ni–Cu deposit in the Central Asian Orogenic Belt: a Permian magmatic sulfide deposit related to boninitic magmatism in an arc setting. Economic Geology 108, 1879–88.Google Scholar
Rojas-Agramonte, Y., Kröner, A., Alexeiev, D. V., Jeffreys, T., Khudoley, A. K., Wong, J., Geng, H., Shu, L., Semiletkin, S. A., Mikolaichuk, A. V., Kiselev, V. V., Yang, J. & Seltmann, R. 2014. Detrital and igneous zircon ages for supracrustal rocks of the Kyrgyz Tianshan and palaeogeographic implications. Gondwana Research 26, 957–74.Google Scholar
Rubatto, D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology 184, 123–38.Google Scholar
Sengör, A. M. C., Natal'in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299307.Google Scholar
Shang, Q. H. 2004. Occurrences of Permian radiolarians in central and Eastern Nei Mongol (Inner Mongolia) and their geological significance to the Northern China Orogen. Chinese Science Bulletin 49, 2613–9.Google Scholar
Shao, J. A. 1991. Crustal Evolution in the Middle Part of the Northern Margin of the Sino-Korean Plate. Beijing: Peking University Publishing House (in Chinese with English abstract).Google Scholar
Shao, J. A., Tang, K. D. & He, G. Q. 2014. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China. Acta Petrologica Sinica 30, 1858–66 (in Chinese with English abstract).Google Scholar
Shen, S. Z., Zhang, H., Shang, Q. H. & Li, W. Z. 2006. Permian stratigraphy and correlation of Northeast China: a review. Journal of Asian Earth Sciences 26, 304–26.Google Scholar
Shi, G. Z., Faure, M., Xu, B., Zhao, P., Chen, Y. 2013. Structural and kinematic analysis of the Early Paleozoic Ondor Sum-Hongqi mélange belt, eastern part of the Altaids (CAOB) in Inner Mongolia, China. Journal of Asian Earth Sciences 66, 123–39.Google Scholar
Shi, Y. R., Liu, D. Y., Kröner, A., Jian, P., Miao, L. C. & Zhang, F. Q. 2012a. Ca. 1318 Ma A-type granite on the northern margin of the North China Craton: implications for intraplate extension of the Columbia supercontinent. Lithos 148, 19.Google Scholar
Shi, G. Z., Song, G. Z., Wang, H., Huang, C. Y., Zhang, L. D. & Tang, J. R. 2016. Late Paleozoic tectonics of the Wuliji area in the Solonker Zone: insights from stratigraphic sequence, chronological, and sandstone geochemistry analysis. Journal of Asian Earth Sciences 127, 100–18.Google Scholar
Shi, X. J., Tong, Y., Wang, T., Zhang, J. J., Zhang, Z. C., Zhang, L., Guo, L., Zeng, T. & Geng, J. Z. 2012b. LA-ICP-MS zircon U–Pb age and geochemistry of the Early Permian Halinudeng granite in northern Alxa area, western Inner Mongolia. Geological Bulletin of China 31, 662–70 (in Chinese with English abstract).Google Scholar
Shi, X. J., Wang, T., Zhang, L., Castro, A., Xiao, X. C., Tong, Y., Zhang, J. J., Guo, L. & Yang, Q. D. 2014. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro–granodiorite–granite intrusions in the Shalazhashan of northern Alxa: constraints on the southernmost boundary of the Central Asian Orogenic Belt. Lithos 208–209, 158–77.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tang, K. 1990. Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean craton. Tectonics 9, 249–60.Google Scholar
Tong, Y., Hong, D. W., Wang, T., Shi, X. J., Zhang, J. J. & Zeng, T. 2010. Spatial and temporal distribution of granitoids in the middle segment of the Sino-Mongolian border and its tectonic and metallogenic implications. Acta Geoscientica Sinica 31, 395412 (in Chinese with English abstract).Google Scholar
Wang, Z. Z., Han, B. F., Feng, L. X. & Liu, B. 2015. Geochronology, geochemistry and origins of the Paleozoic–Triassic plutons in the Langshan area, western Inner Mongolia, China. Journal of Asian Earth Sciences 97, 337–51.Google Scholar
Wang, Q. & Liu, X. Y. 1986. Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China, Tectonics 5, 1073–88.Google Scholar
Wang, H., Wang, Y. J., Chen, Z. Y., Li, Y. X., Su, M. R. & Bai, L. B. 2005. Discovery of the Permian radiolarians from the Bayanaobao area, Inner Mongolia. Journal of Stratigraphy 29, 368–71.Google Scholar
Wang, T. Y., Wang, S. Z. & Wang, J. R. 1994. The Formation and Evolution of Paleozoic Continental Crust in Alxa Region. Lanzhou: Lanzhou University Press.Google Scholar
Wang, X. C., Wilde, S. A., Xu, B. & Pang, C. J. 2016. Origin of arc-like continental basalts: implications for deep-Earth fluid cycling and tectonic discrimination. Lithos 261, 545.Google Scholar
Wang, T., Zheng, Y. D., Gehrels, G. E. & Mu, Z. G. 2001. Geochronological evidence for existence of South Mongolian microcontinent—a zircon U–Pb age of granitoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex. Chinese Science Bulletin 46, 2005–7.Google Scholar
Whitehouse, M. J. & Platt, J. P. 2003. Dating high-grade metamorphism constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology 145, 6174.Google Scholar
Windley, B. F., Alexeiev, D. V., Xiao, W., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London 164, 3147.Google Scholar
Wu, T. R., He, G. Q. & Zhang, C. 1998. On Paleozoic tectonics in the Alxa region. Acta Geologica Sinica 72, 256–63.Google Scholar
Wu, S. J., Hu, J. M., Ren, M. H., Gong, W. B., Liu, Y. & Yan, J. Y. 2014. Petrography and zircon U–Pb isotopic study of the Bayanwulashan Complex: constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton. Journal of Asian Earth Sciences 94, 226–39.Google Scholar
Xiao, W. J., Huang, B. C., Han, C. M., Sun, S. & Li, J. L. 2010. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research 18, 253–73.Google Scholar
Xiao, W. J., Windley, B. F., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22, 1069.Google Scholar
Xiao, W. J., Windley, B. F., Huang, B. C., Han, C. M., Yuan, C., Chen, H. L., Sun, M., Sun, S. & Li, J. L. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences 98, 1189–217.Google Scholar
Xiao, W. J., Windley, B. F., Sun, S., Li, J. L., Huang, B. C., Han, C. M., Yuan, C., Sun, M. & Chen, H. L. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences 43, 477507.Google Scholar
Xie, L., Yin, H. Q., Zhou, H. R. & Zhang, W. J. 2014. Permian radiolarians from the Engeerwusu suture zone in Alxa area of Inner Mongolia and its geological significance. Geological Bulletin of China 33, 691–7.Google Scholar
Xu, B., Charvet, J., Chen, Y., Zhao, P., Shi, G. Z. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research 23, 1342–64.Google Scholar
Xu, B., Zhao, P., Bao, Q. Z., Zhou, Y. H., Wang, Y. Y. & Luo, Z. W. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica 30, 1841–57 (in Chinese with English abstract).Google Scholar
Yang, Z. Y., Liu, H., Zhang, D. J., Li, X. & Sun, Y. W. 2015. Detrital zircon U–Pb dating of Upper Carboniferous–Lower Permian Amushan Formation in Bayan Obo area, Inner Mongolia and its geological implications. Global Geology 34, 259–72.Google Scholar
Yang, J. H., Wu, F. Y., Shao, J. A., Wilde, S. A., Xie, L. W. & Liu, X. M. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters 246, 336–52.Google Scholar
Yuan, W. & Yang, Z. Y. 2015. The Alashan Terrane did not amalgamate with North China block by the Late Permian: evidence from Carboniferous and Permian paleomagnetic results. Journal of Asian Earth Sciences 104, 145–59.Google Scholar
Zhang, Z. C., Chen, Y., Li, K., Li, J. F., Yang, J. F. & Qian, X. Y. 2017. Geochronology and geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, China: implications for the late Palaeozoic tectonic evolution of the south-eastern Central Asian Orogenic Belt. Journal of Asian Earth Sciences 135, 370–89.Google Scholar
Zhang, S.-H., Li, Z. X., Evans, D. A. D., Wu, H. C., Li, H. Y. & Dong, J. 2012. Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters 353–354, 145–55.Google Scholar
Zhang, J., Li, J. Y., Xiao, W. X., Wang, Y. N. & Qi, W. H. 2013a. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China: new constraints on the relationship between the North China Plate and the Alxa block. Journal of Structural Geology 57, 3857.Google Scholar
Zhang, X. H., Mao, Q., Zhang, H. F., Zhai, M. G., Yang, Y. H. & Hu, Z. C. 2011. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: the Early Permian Guyang batholiths from the northern North China Craton. Lithos 125, 569–91.Google Scholar
Zhang, J. J., Wang, T., Zhang, L., Tong, Y., Zhang, Z. C., Shi, X. J., Guo, L., Huang, H., Yang, Q., Huang, W., Zhao, J. X., Ye, K. & Hou, J. Y. 2015. Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: constraints on the southern boundary of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 108, 150–69.Google Scholar
Zhang, W., Wu, T. R., Feng, J. C., Zheng, R. G. & He, Y. K. 2013b. Time constraints for the closing of the Paleo-Asian Ocean in the Northern Alxa Region: evidence from Wuliji granites. Science China Earth Sciences 56, 153–64.Google Scholar
Zhang, Y. Q. & Zhang, T. 2016. Amushan Formation in Inner Mongolia. Geology in China 43, 1000–15 (in Chinese with English abstract).Google Scholar
Zhang, Z., Zhang, H. F., Shao, J. A., Ying, J. F., Yang, Y. H. & Santosh, M. 2014 a. Mantle upwelling during Permian to Triassic in the northern margin of the North China Craton: constraints from southern Inner Mongolia. Journal of Asian Earth Sciences 79, 112–29.Google Scholar
Zhang, X. H., Zhang, H. F., Tang, Y. J., Wilde, S. A. & Hu, Z. C. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology 249, 262–81.Google Scholar
Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., Sun, M., Han, Y. G., Hou, W. Z., Liu, D. X., Wang, B., Liu, Q. & Xu, B. 2014b. Paleozoic magmatism and metamorphism in the Central Tianshan block revealed by U–Pb and Lu–Hf isotope studies of detrital zircons from the South Tianshan belt, NW China. Lithos 233, 193208.Google Scholar
Zhang, S.-H., Zhao, Y., Kröner, A., Liu, X.-M., Xie, L.-W. & Chen, F.-K. 2009a. Early Permian plutons from the northern North China Block: constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. International Journal of Earth Sciences 98, 1441–67.Google Scholar
Zhang, S.-H., Zhao, Y., Song, B., Hu, J.-M., Liu, S.-W., Yang, Y.-H., Chen, F.-K., Liu, X.-M. & Liu, J. 2009b. Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive belts from the northern margin of the North China block: geochronology, petrogenesis and tectonic implications. Geological Society of America Bulletin 120, 181200.Google Scholar
Zhang, S. H., Zhao, Y., Yang, Z. Y., He, Z. F. & Wu, H. 2009c. The 1.35 Ga diabase sills from the northern North China Craton: implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters 288, 588600.Google Scholar
Zhang, S. H., Zhao, Y., Ye, H., Liu, J. M. & Hu, C. Z. 2014c. Origin and evolution of the Bainaimiao arc belt: implications for crustal growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin 126, 1275–300.Google Scholar
Zheng, R. G., Wu, T. R., Zhang, W., Xu, C., Meng, Q. P. & Zhang, Z. Y. 2014. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites. Gondwana Research 25, 842–58.Google Scholar
Zhou, Y. Z., Han, B. F., Xu, Z., Ren, R. & Su, L. 2013. The age of the Proterozoic rocks in Yingba area in western Inner Mongolia: constraints on the distribution of the South Gobi micro-continent in the Central Asian orogenic belt. Geological Bulletin of China 32, 318–26.Google Scholar
Supplementary material: PDF

Shi et al supplementary material 1

Appendix

Download Shi et al supplementary material 1(PDF)
PDF 317 KB
Supplementary material: PDF

Shi et al supplementary material 2

Appendix

Download Shi et al supplementary material 2(PDF)
PDF 111.8 KB
Supplementary material: PDF

Shi et al supplementary material 3

Appendix

Download Shi et al supplementary material 3(PDF)
PDF 139.9 KB
Supplementary material: PDF

Shi et al supplementary material 4

Appendix

Download Shi et al supplementary material 4(PDF)
PDF 76.7 KB