Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T11:36:34.390Z Has data issue: false hasContentIssue false

Prolonged magma emplacement as a mechanism for the origin of the marginal reversal of the Fongen–Hyllingen layered intrusion, Norway

Published online by Cambridge University Press:  04 April 2012

VERA EGOROVA
Affiliation:
Department of Geosciences, University of Oulu, Oulu, Finland Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia
RAIS LATYPOV*
Affiliation:
Department of Geosciences, University of Oulu, Oulu, Finland
*
Author for correspondence: [email protected]

Abstract

The ~100 m thick marginal zone of the Fongen–Hyllingen Intrusion (FHI) consists of non-layered, highly iron-enriched ferrodiorites that are overlain by a ~ 6 km thick layered sequence of gabbroic to dioritic rocks of the Layered Series. From the base upwards the marginal zone becomes more primitive as exemplified by a significant increase in whole-rock MgO, Mg-number and normative An. The reverse trends are also evident from an upward increase in An-content of plagioclase (from ~ 30 to ~ 43 at.%) and Mg-number of amphibole (from ~ 9 to ~ 23 at.%) and clinopyroxene (from ~ 23 to ~ 33 at.%). The marginal zone is abruptly terminated at the contact with the overlying Layered Series as is evident from a step-like increase in Mg-number of mafic minerals and An-content of plagioclase, as well as a sharp increase in whole-rock MgO and Mg-number in overlying olivine gabbronorites of the Layered Series. Based on these features the marginal zone of the FHI can be interpreted as an aborted marginal reversal. Reverse trends in whole-rock and mineral compositions, as well as a sharp break in these parameters are indicative of its formation in an open system with the involvement of the prolonged emplacement of magma that became increasingly more primitive. Such development of the marginal reversal was interrupted by the emplacement of a major influx of more primitive magma that produced the Layered Series. The open system evolution of a basaltic magma chamber may represent a general mechanism for the origin of marginal reversals in mafic sills and layered intrusions.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarnes, I., Podladchikov, Yu. Y., Neumann, E.-R. 2008. Post-emplacement melts flow induced by thermal stresses: Implications for differentiation in sills. Earth and Planetary Science Letters 276, 152–66.CrossRefGoogle Scholar
Abu El-Rus, M. A. A., Wilson, J. R & Sørensen, H. S. 2007. Magma evolution in the upper part (Stage IV) of the Fongen-Hyllingen Layered Intrusion, central Norway. Journal of Mineralogical and Petrological Sciences 102, 93114.CrossRefGoogle Scholar
Alapieti, T. T. 1982. The Koillismaa layered igneous complex, Finland – its structure, mineralogy and geochemistry, with emphasis on the distribution of chromium. Geology Survey of Finland, Bulletin 319, 116 pp.Google Scholar
Ariskin, A. A. & Yaroshevsky, A. A. 2006. Crystallization differentiation of intrusive magmatic melt: Development of a convection-accumulation model. Geochemistry International 44, 7293.CrossRefGoogle Scholar
Bédard, J. H. J. 1987. The development of compositional and textural layering in Archaean komatiites and in Phanerozoic komatiitic basalts from Cape Smith, Quebec, Canada. In Origin of Igneous Layering (ed. Parson, I.), pp. 399418. Dordrecht: D. Reidel Publishing Co.CrossRefGoogle Scholar
Bhattacharji, S. 1967. Scale model experiments on flowage differentiation on sills. In Ultramafic and Related Rocks (ed. Wyllie, P. J.), 6970. New York: Wiley.Google Scholar
Bhattacharji, S. & Smith, C. H. 1964. Flowage differentiation. Science 14, 150–3.CrossRefGoogle Scholar
Campbell, I. H. 1987. Distribution of orthocumulate textures in the Jimberlana Intrusion. The Journal of Geology 95, 3554.CrossRefGoogle Scholar
Cherepanov, A. N., Sharapov, V. N. & Krivenko, A. P. 1982. A possible mechanism for antidromic differentiation in basic plutons. Dokladi Academii Nauk USSR 267, 1204–7 (in Russian).Google Scholar
Cherepanov, A. N., Sharapov, V. N. & Krivenko, A. P. 1983. The dynamic model of disequilibrium crystallization differentiation of magmas in basic plutons. Russian Geologiya i Geofizica 3, 2836.Google Scholar
Chistyakova, S. Yu. & Latypov, R. M. 2009. Two independent processes responsible for compositional zonation in mafic dykes of the Åland-Åboland Dyke Swarm, Kestiö Island, SW Finland. Lithos 112, 382–96.CrossRefGoogle Scholar
Chistyakova, S. Yu. & Latypov, R. M. 2010. On the development of internal chemical zonation in small mafic dykes. Geological Magazine 147, 112.CrossRefGoogle Scholar
Czamanske, G. K. & Mihálik, P. 1972. Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway: Part I, the opaque oxides. Journal of Petrology 13, 493509.CrossRefGoogle Scholar
Egorova, V. & Latypov, R. 2012. Processes operating during the initial stage of magma chamber evolution: Insights from marginal reversal of the Imandra layered intrusion, Russia. Journal of Petrology 53, 326.CrossRefGoogle Scholar
Foland, K. A., Gibb, F. G. F. & Henderson, C. M. B. 2000. Patterns of Nd and Sr isotopic ratios produced by magmatic and post-magmatic processes in the Shiant Isles Main Sill, Scotland. Contribution to Mineralogy and Petrology 139, 655–71.CrossRefGoogle Scholar
Frenkel', M. Ya, Yaroshevsky, A. A., Ariskin, A. A., Barmina, G. S., Koptev-Dvornikov, E. V. & Kireev, B. S. 1989. Convective–cumulative model simulating the formation process of stratified intrusions. In Magma–Crust Interactions and Evolution (eds Bonin, N., Didier, J., Le Fort, P., Propach, G., Puga, E. & Vistelius, A. B.), pp. 388. Athens, Greece: Theophrastus Publication.Google Scholar
Frenkel', M. A., Yaroshevsky, A. A., Barmina, G. S., Koptev-Dvornikov, E. V. & Kireev, B. S. 1988. Dynamics In Situ Differentiation of Mafic Magmas. Moscow: Nauka, 216 pp. (in Russian).Google Scholar
Fujii, T. 1974. Crystal settling in sills. Lithos 7, 133–7.CrossRefGoogle Scholar
Galerne, C. Y., Neumann, E.-R., Aarnes, I. & Planke, S. 2010. Magmatic differentiation processes in saucer-shaped sills: Evidence from the Golden Valley Sill in the Karoo Basin, South Africa. Geosphere 6, 163–88.CrossRefGoogle Scholar
Gibb, F. G. F. & Henderson, C. M. B. 2005. Chemistry of the Shiant Isles Main Sill, NW Scotland, and wider application for petrogenesis of mafic sills. Journal of Petrology 47, 191230.CrossRefGoogle Scholar
Gisselo, P. G. 2001. Fractionation of three sills: Evidence for redistribution of both phenocrysts and fractionated melts. Ph.D. thesis, University of Aarhus, Denmark. Published thesis. Aarhus Geoscience 10.Google Scholar
Gorring, M. L. & Naslund, H. R. 1995. Geochemical reversals within the lower 100 m of the Palisades sill, New Jersey. Contributions to Mineralogy and Petrology 119, 263–76.CrossRefGoogle Scholar
Helz, R. T., Kirschenbaum, H. & Marinenko, J. W. 1989. Diapiric transfer of melt in Kilauea Iki lava lake, Hawaii: A quick, efficient process of igneous differentiation. Geological Society of America Bulletin 101, 578–94.2.3.CO;2>CrossRefGoogle Scholar
Holness, M. B., Stripp, G., Humphreys, M. C. S., Veksler, I. V., Nielsen, T. F. D. & Tegner, C. 2011. Silicate liquid immiscibility within the crystal mush: Late-stage magmatic microstructures in the Skaergaard Intrusion, East Greenland. Journal of Petrology 52, 175222.CrossRefGoogle Scholar
Huang, F., Lundstrom, C. C., Glessner, J., Ianno, A., Boudreau, A., Li, J., Ferré, E. C., Marshak, S. & Defrates, J. 2009. Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica et Cosmochimica Acta 73, 729–49.CrossRefGoogle Scholar
Irvine, T. N. 1980. Magmatic infiltration metasomatism, double diffusive fractional crystallization and adcumulus growth in the Muskox Intrusion and other layered intrusions. In Physics of Magmatic Processes (ed. Hargraves, R. B.), pp 325–83. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Jakobsen, J. K., Veksler, I. V., Tegner, C. & Brooks, C. K. 2011. Crystallization of the Skaergaard Intrusion from an emulsion of immiscible iron- and silica-rich liquids: Evidence from melt inclusions in plagioclase. Journal of Petrology 52, 345–73.CrossRefGoogle Scholar
Jaupart, C. & Tait, S. 1995. Dynamic of differentiation in magma reservoirs. Journal of Geophysical Research 100, 17617–36.CrossRefGoogle Scholar
Krivenko, A. P., Balikin, P. A. & Polyakov, G. V. 1980. Distribution of alkalis in basic plutons. Russian Geologiya i Geofizica 243, 144–9.Google Scholar
Latypov, R. M. 2003 a. The origin of marginal compositional reversals in basic-ultrabasic sills and layered intrusions by Soret fractionation. Journal of Petrology 44, 1579–618.CrossRefGoogle Scholar
Latypov, R. M. 2003 b. The origin of basic-ultrabasic sills with S-, D- and I-shaped compositional profiles by in situ crystallization of a single input of phenocryst-poor parental magma. Journal of Petrology 44, 1619–56.CrossRefGoogle Scholar
Latypov, R. M., Chistyakova, S. Yu & Alapieti, T. T. 2007. Revisiting problem of chilled margins associated with marginal reversals in mafic-ultramafic intrusive bodies. Lithos 99, 178206.CrossRefGoogle Scholar
Latypov, R. M., Hanski, E., Lavrenchuk, A., Huhma, H. & Havela, T. 2011. A “three-increase model” for origin of marginal reversal in the Koitelainen layered intrusion, Finland. Journal of Petrology 52, 733–64.CrossRefGoogle Scholar
Leake, B. E. 1978. Nomenclature of amphiboles. American Mineralogist 63, 1023–52.Google Scholar
Lightfoot, P. C. & Naldrett, A. J. 1984. Chemical variation in the Insizwa complex, Transkei, and the nature of the parent magma. Canadian Mineralogist 22, 111–23.Google Scholar
Lundstrom, C. C., Boudreau, A., Huang, F. & Ianno, A. J. 2007. Magma differentiation in T gradient: Thermal migration and Soret effects are not dead! Goldschmidt Conference Abstracts, Geochimica et Cosmochimica Acta, A602.Google Scholar
Marsh, B. D. 1989. On convective style and vigor in sheet-like magma chambers. Journal of Petrology 30, 479530.CrossRefGoogle Scholar
Marsh, B. D. 1996. Solidification fronts and magmatic evolution. Mineralogical Magazine 60, 540.CrossRefGoogle Scholar
Meyer, G. B. & Wilson, J. R. 1999. Olivine-rich units in the Fongen-Hyllingen Intrusion, Norway: Implications for magma chamber processes. Lithos 47, 157–79.CrossRefGoogle Scholar
Miller, J. D. & Ripley, E. M. 1996. Layered intrusions of the Duluth Complex, Minnesota, USA. In Layered Intrusions (ed. Cawthorn, R. G.), pp. 257301. Developments in Petrology 15. Amsterdam: Elsevier Science.CrossRefGoogle Scholar
Moore, J. & Evans, B. 1967. The role of olivine in the crystallization of the prehistoric Makaopuhi tholeiitic lava lake, Hawaii. Contributions to Mineralogy and Petrology 15, 202–23.CrossRefGoogle Scholar
Morimoto, N. 1988. Nomenclature of pyroxenes (International Mineralogical Association). American Mineralogist 73, 1123–33.Google Scholar
Morse, S. A. 1981. Kiglapit geochemistry IV: The major elements. Geochimica and Cosmochimica Acta 45, 461–79.CrossRefGoogle Scholar
Morse, S. A. 1984. Cation diffusion in plagioclase feldspar. Science 225, 504–5.CrossRefGoogle ScholarPubMed
Neumann, E.-R. 1974. The distribution of Mn+2 and Fe2+ between ilmenites and magnetites in igneous rocks. American Journal of Science 274, 1074–88.CrossRefGoogle Scholar
Petersen, J. S. 1986. Solidification contraction: another approach to cumulus processes and the origin of igneous layering. In Origins of Igneous Layering (ed. Parson, I.), pp. 505–26. Dordrecht: D. Reidel Publishing Co.Google Scholar
Philpotts, A. R. 1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology 62, 303–15.CrossRefGoogle Scholar
Raedeke, L. D. & Mccallum, I. S. 1984. Investigations in the Stillwater complex: Part II. Petrology and petrogenesis of the ultramafic series. Journal of Petrology 25, 395420.CrossRefGoogle Scholar
Simkin, T. 1967. Flow differentiation in the picritic sills of north Skye. In Ultramafic and Related Rocks (ed. Willie, P. J.), pp. 64–9. New York: Wiley.Google Scholar
Sørensen, H. S. & Wilson, J. R. 1995. A strontium and neodymium isotopic investigation of the Fongen–Hyllingen Layered Intrusion, Norway. Journal of Petrology 36, 161–87.CrossRefGoogle Scholar
Tait, S. & Jaupart, C. 1996. The producing of chemically stratified and adcumulate plutonic igneous rocks. Mineralogical Magazine 60, 99114.CrossRefGoogle Scholar
Thy, P., Jakobsen, N. N. & Wilson, J. R. 1988. Fine-scale graded layers in the Fongen-Hyllingen gabbroic complex, Norway. The Canadian Mineralogist 26, 235–43.Google Scholar
Thy, P. & Wilson, J. R. 1980. Primary igneous load-cast deformation structures in the Fongen-Hyllingen Complex, Trondheim region, Norway. Geological Magazine 117, 363–71.CrossRefGoogle Scholar
Tyson, R. M. & Chang, L. L. Y. 1984. The petrology and sulfide mineralization of the Partridge River troctolite, Duluth Complex, Minnesota. Canadian Mineralogist 22, 2338.Google Scholar
Veksler, I. V., Dorfman, A. M., Borisov, A. A., Wirth, R. & Dingwell, D. B. 2007. Liquid immiscibility and the evolution of basaltic magma. Journal of Petrology 48, 2187–10.CrossRefGoogle Scholar
Wager, L. R. & Brown, G. M. 1968. Layered Igneous Rocks. Edinburgh: Oliver & Boyd, 587 pp.Google Scholar
Wilson, J. R. 2010. The Fongen-Hyllingen Layered Intrusion, Trondheim Region, Norway: An Excursion Guide. NGU Report 2010.015. Trondheim, Norway: Geological Survey of Norway, 146 pp.Google Scholar
Wilson, J. R. & Engell-Sørensen, O. 1986. Basal reversals in layered intrusions: Evidence for emplacement of compositionally stratified magma. Nature 326, 616–18.CrossRefGoogle Scholar
Wilson, J. R., Esbensen, K. H & Thy, P. 1981. Igneous petrology of the synorogenic Fongen-Hyllingen layered basic complex, south-central Scandinavian Caledonides. Journal of Petrology 22, 584627.CrossRefGoogle Scholar
Wilson, J. R., Hansen, B. & Pedersen, S. 1983. Zircon U-Pb evidence for the age of the Fongen-Hyllingen Complex, Trondheim region, Norway. Geologiska Foreningens i Stockholm Forhandlingar 105, 6870.CrossRefGoogle Scholar
Wilson, J. R. & Larsen, S. B. 1982. Discordant layering relations in the Fongen-Hyllingen basic intrusion. Nature 299, 625–6.CrossRefGoogle Scholar
Wilson, J. R. & Larsen, S. B. 1985. Two dimensional study of a layered intrusion: the Hyllingen Series, Norway. Geological Magazine 122, 97121.CrossRefGoogle Scholar
Wilson, J. R., Menuge, J. F., Pedersen, S. & Engell-Sørensen, O. 1987. The southern part of the Fongen-Hyllingen layered mafic complex, Norway: Emplacement and crystallisation of compositionally stratified magma. In Origins of Igneous Layering (ed. Parsons, I.), pp. 145–85. Dordrecht: D. Reidel Publishing Co.CrossRefGoogle Scholar
Wilson, J. R. & Sørensen, H. S. 1996. The Fongen-Hyllingen layered intrusive complex, Norway. In Layered Intrusions (ed. Cawthorn, R. G.), pp. 303–29. Developments in Petrology 15. Amsterdam: Elsevier Science.CrossRefGoogle Scholar
Supplementary material: File

Egorova Supplementary Material

Table 1.xls

Download Egorova Supplementary Material(File)
File 132.6 KB
Supplementary material: File

Egorova Supplementary Material

Table 2.xls

Download Egorova Supplementary Material(File)
File 118.8 KB