Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T05:49:15.801Z Has data issue: false hasContentIssue false

Petrogenesis of the Harsin–Sahneh serpentinized peridotites along the Zagros suture zone, western Iran: new evidence for mantle metasomatism due to oceanic slab flux

Published online by Cambridge University Press:  12 April 2018

FATEMEH NOURI*
Affiliation:
Geology Department, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
YOSHIHIRO ASAHARA
Affiliation:
Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
HOSSEIN AZIZI
Affiliation:
Mining Department, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
MOTOHIRO TSUBOI
Affiliation:
Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
*
Author for correspondence: [email protected]

Abstract

The Harsin–Sahneh serpentinized peridotites are widely exposed along the Zagros suture zone in the western region of Iran and are considered to represent remnants of Neo-Tethys oceanic lithosphere at the junction of the Arabian and Iran Plates. These rocks are characterized by low contents of SiO2 (38.8–43.5 wt%), Al2O3 (0.1–3.8 wt%), CaO (0.2–8.2 wt%) and TiO2 (< 1 wt%) and high MgO contents (31.1–46.0 wt%). Their enrichments of large ion lithophile elements and light rare earth elements, with high 87Sr/86Sr(i) values (0.7036–0.7109) and relatively high variations in their εNd(t) (–7.5 to +7.8) values, indicate that the Harsin–Sahneh peridotites were metasomatized by flux released from the oceanic subducting slab in an active margin. The chemical compositions and isotopic ratios of these rocks suggest that they were formed as residue of mid-oceanic ridge basalt in the lithosphere that was then subsequently re-melted and metasomatized in a supra-subduction zone system. The occurrence of both mid-oceanic ridge and supra-subduction zone-type peridotites suggests that the heterogeneity of the upper mantle may have occurred due to the different ratios of partial melting and melt–rock reaction processes in different tectonic settings within the Neo-Tethys realm. The Harsin–Sahneh peridotites provide a good explanation of multistage melt extraction as well as melt–rock and metasomatic reactions in the mantle sequence of the Zagros ophiolite complex.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, J. & Green, T. 2006. Trace element partitioning between mica and amphibole bearing garnet harzburgite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contributions to Mineralogy and Petrology 152, 117.Google Scholar
Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences 94, 401–19.Google Scholar
Aghazadeh, M., Castro, A., Rashidnejad Omran, N., Emami, M. H., Moinevaziri, H. & Badrzadeh, Z. 2010. The gabbro (shoshonitic) monzonite granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran. Journal of Asian Earth Sciences 38, 199219.Google Scholar
Ahmed, A. H. & Habtoor, A. 2015. Heterogeneously depleted Precambrian lithosphere deduced from mantle peridotites and associated chromitite deposits of Al'Ays ophiolite, Northwestern Arabian Shield, Saudi Arabia. Ore Geology Reviews 67, 279–96.Google Scholar
Alard, O., Luguet, A., Pearson, N. J., Griffin, W. L., Lorand, J. P., Gannoun, A., Burton, K. W. & O'Reilly, S. Y. 2005. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature 436, 1005–8.Google Scholar
Alavi, M. 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science 304, 120.Google Scholar
Aldanmaz, E., Schmidt, M. W., Gourgaud, A. & Meisel, T. 2009. Mid-ocean ridge and supra-subduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos 113, 691708.Google Scholar
Allahyari, K., Pourmoafi, M. & Khalatbari-Jafari, M. 2012. Petrology and geochemistry of the extrusive sequence of Harsin ophiolite, W Iran. Geoscience Scientific Quarterly Journal 84, 189—98 (in Persian).Google Scholar
Allahyari, K., Saccani, E., Pourmoafi, M., Beccaluva, L. & Masoudi, F. 2010. Petrology of mantle peridotites and intrusive mafic rocks from the Kermanshah ophiolitic complex (Zagros belt, Iran): implications for the geodynamic evolution of the Neo-Tethyan oceanic branch between Arabia and Iran. Ofioliti 35, 7190.Google Scholar
Allahyari, K., Saccani, E., Rahimzadeh, B. & Zeda, O. 2014. Mineral chemistry and petrology of highly magnessian ultramfic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): new evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran. Journal of Asian Earth Sciences 79, 312–28.Google Scholar
Allen, D. E. & Seyfried, W. E. 2005. REE controls in ultramafic hosted mid-ocean ridge hydrothermal systems: an experimental study at elevated temperature and pressure. Geochimica Cosmochimica Acta 69, 675–83.Google Scholar
Ao, S., Xiao, W., Khalatbari-Jafari, M., Talebian, M., Chen, L., Wan, B. W. J. & Zhang, Z. 2016. U-Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): from continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo-Tethys. Gondwana Research 31, 305–18.Google Scholar
Arai, S. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine 56, 173–84.Google Scholar
Arai, S. 1994. Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretation. Chemical Geology 113, 191204.Google Scholar
Arai, S. & Yurimoto, H. 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Economic Geology 89, 1279–88.Google Scholar
Augustin, N., Paulick, H., Lackschewitz, K. S., Eisenhauer, A., Garbe Schonberg, D., Kuhn, T., Botz, R. & Schmidt, M. 2012. Alteration at the ultramafic-hosted Logatchev hydrothermal field: constraints from trace element and Sr–O isotope data. Geochemistry, Geophysics, Geosystems 13, Q0AE07. doi: 10.1029/2011GC003903.Google Scholar
Aziz, N. R., Elias, E. M. & Aswad, K. J. 2011. Rb–Sr and Sm–Nd isotope study of serpentinites and their impact on the tectonic setting of Zagros Suture Zone, NE-Iraq. Iraqi Bulletin of Geology and Mining 7, 6775.Google Scholar
Azizi, H., Asahara, Y., Mehrabi, B. & Chung, S. L. 2011a. Geochronological and geochemical constraints on the petrogenesis of high-K granite from the Suffi abad area, Sanandaj-Sirjan Zone, NW Iran. Chemie der Erde / Geochemistry 71, 363–76.Google Scholar
Azizi, H., Hadi, A., Asahara, Y. & Mohammad, Y. O. 2013. Geochemistry and geodynamics of the Mawat mafic complex in the Zagros suture zone, northeast Iraq. Central European Journal of Geosciences 5, 523–37.Google Scholar
Azizi, H., Kazemi, T. & Asahara, Y. 2017. A-type granitoid in Hasansalaran complex, northwestern Iran: evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic. Journal of Geodynamics 108, 5672.Google Scholar
Azizi, H., Najari, M., Asahara, Y., Catlos, E., Shimizu, M. & Yamamoto, K. 2015a. U–Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj–Sirjan Zone, Iran: evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic. Tectonophysics 660, 4764.Google Scholar
Azizi, H., Tanaka, T., Asahara, Y., Chung, S. L. & Zarrinkoub, M. H. 2011b. Discrimination of the age and tectonic setting for magmatic rocks along the Zagros thrust zone, northwest Iran, using the zircon U-Pb age and Sr-Nd isotopes. Journal of Geodynamics 52, 304–20.Google Scholar
Azizi, H., Zanjefili Beiranvand, M. & Asahara, Y. 2015b. Zircon U–Pb ages and petrogenesis of a tonalite–trondhjemite–granodiorite (TTG) complex in the northern Sanandaj–Sirjan Zone, northwest Iran: evidence for Late Jurassic arc–continent collision. Lithos 216, 178–95.Google Scholar
Baharifar, A., Moinevaziri, H., Bellon, H. & Pique, A. 2004. The crystalline complexes of Hamadan (Sanandaj–Sirjan zone, western Iran): metasedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. Comptes Rendus Geosciences 336, 1443–52.Google Scholar
Bau, M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation stage of europium. Chemical Geology 93, 219–30.Google Scholar
Bedini, R. M. & Bodinier, J. L. 1999. Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African Rift. Geochimica et Cosmochimica Acta 63, 3883–900.Google Scholar
Berberian, M. & King, G. C. P. 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Science 18, 210–65.Google Scholar
Besse, J., Torcq, F., Gallet, Y., Ricou, L. E., Krystyn, L. & Saidi, A. 1998. Late Permian to Late Triassic palaeomagnetic data from Iran: constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangaea. Geophysical Journal International 135, 7792.Google Scholar
Braud, J. 1978. Geology Map of Kermanshah, Scale 1:250000. No. C6. Tehran: Geology Survey of Iran.Google Scholar
Chen, Z. Q., Zhou, H. Y., Liu, Y., Yang, Q. H., Li, J. W. & Dick, H. J. 2013. Influence of igneous processes and serpentinization on geochemistry of the Logatchev Massif harzburgites (14 45″ N, Mid-Atlantic Ridge), and comparison with global abyssal peridotites. International Geology Review 55, 115–30.Google Scholar
Choi, S. H., Shervais, J. W. & Mukasa, S. B. 2008. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contributions to Mineralogy and Petrology 156, 551–76.Google Scholar
Davoudian, A., Genser, J., Dachs, E. & Shabanian, N. 2008. Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran. Mineralogy and Petrology 92, 393413.Google Scholar
Davoudian, A. R., Genser, J., Neubauer, F. & Shabanian, N. 2016. 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: implications for the tectonic evolution of Zagros orogen. Gondwana Research, 37, 216–40.Google Scholar
Davoudzadeh, M. & Schmidt, K. 1984. A review of the Mesozoic paleogeography and paleotectonic evolution of Iran. Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen 168, 182207.Google Scholar
Deer, W., Howie, R. & Zussman, J. 1992. An Introduction to the Rock Forming Minerals. Harlow: Longman Scientific and Technical, 696 pp.Google Scholar
Delacour, A., Früh Green, G. L., Frank, M., Gutjahr, M. & Kelley, D. S. 2008. Sr and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): implications for fluid fluxes and lithospheric heterogeneity. Chemical Geology 254, 1935.Google Scholar
Delaloye, M. & Desmons, J. 1980. Ophiolites and mélange terranes in Iran: a geochronological study and its paleotectonic implications. Tectonophysics 68, 83111.Google Scholar
DePaolo, D. J. & Wasserburg, G. J. 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters 3, 249–52.Google Scholar
Deschamps, F., Godard, M., Guillot, S., Chauvel, C., Andreani, M., Hattori, K., Wunder, B. & France, L. 2012. Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: examples from Cuba and Dominican Republic. Chemical Geology 312, 93117.Google Scholar
Deschamps, F., Godard, M., Guillot, S. & Hattori, K. 2013. Geochemistry of subduction zone serpentinites: a review. Lithos 178, 96127.Google Scholar
Deschamps, F., Guillot, S., Godard, M., Andreani, M. & Hattori, K. 2011. Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova 23, 171–8.Google Scholar
Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M. & Hattori, K. 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology 269, 262–77.Google Scholar
Desmons, J. & Beccaluva, L. 1983. Mid-oceanic ridge and island arc affinities in ophiolites from Iran: paleogeographic implication. Chemical Geology 39, 3963.Google Scholar
Dias, A. S. & Barriga, F. J. A. S. 2006. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34ʹN; 33°26ʹW) at MAR. Marine Geology 225, 157–75.Google Scholar
Dick, H. J. & Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 5476.Google Scholar
Dick, H. J. B. & Natland, J. H. 1996. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. Proceedings of the Ocean Drilling Program, Scientific Results 147, 103–34.Google Scholar
Dilek, Y. & Ahmed, Z. 2003. Proterozoic ophiolites of the Arabian Shield and their significance in Precambrian tectonics. In Ophiolites in Earth History (eds Dilek, Y. & Robinson, P. T.), pp. 685700. Geological Societyof London, Special Publication no. 218.Google Scholar
Dilek, Y., Furnes, H. & Shallo, M. 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research 11, 453–75.Google Scholar
Donnelly, K. E., Goldstein, S. L., Langmuir, C. H. & Spiegelman, M. 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters 226, 347–66.Google Scholar
Douville, E., Charlou, J. L., Oelkers, E. H., Bienvenu, P., Jove Colon, C. F., Donval, J. P., Fouquet, Y., Pricur, D. & Appriou, P. 2002. The Rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace element content in mid-Atlantic ridge hydrothermal fluids. Chemical Geology 184, 3748.Google Scholar
Edwards, S. J. & Malpas, J. 1996. Melt-peridotite interactions in shallow mantle at the East Pacific Rise: evidence from ODP Site 895 (Hess Deep). Mineralogical Magazine 60, 191206.Google Scholar
Eshraghi, S. A., Jafarian, M. B. & Eshraghi, B. 1996. Geological Map of Sonqor. Quadrangle 5559. Tehran: Geological Survey of Iran.Google Scholar
Esmaeily, D., Nedelec, A., Valizadeh, M. V., Moore, F. & Cotton, J. 2005. Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences 25, 961–80.Google Scholar
Eyuboglu, Y., Santosh, M. & Chung, S. L. 2011. Crystal fractionation of adakitic magmas in the crust–mantle transition zone: petrology, geochemistry and U–Pb zircon chronology of the Seme adakites, Eastern Pontides, NE Turkey. Lithos 121, 151–66.Google Scholar
Ghazi, A. M. & Hassanipak, A. A. 1999. Geochemistry of subalkaline and alkaline extrusive from of the Kermanshah ophiolite, Zagros Suture Zone, Western Iran: implications for Tethyan plate tectonics. Journal of Asian Earth Sciences 17, 319–32.Google Scholar
Ghorbani, M. R. & Bezenjani, R. N. 2011. Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran. Island Arc 20, 188202.Google Scholar
Ghorbani, M. R., Graham, I. T. & Ghaderi, M. 2014. Oligocene–Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. International Geology Review 56, 1039–50.Google Scholar
Gillis, K. M., Coogan, L. A. & Pedersen, R. 2005. Strontium isotope constraints on fluid flow in the upper oceanic crust at the East Pacific Rise. Earth and Planetary Science Letters 232, 8394.Google Scholar
Gillis, K. M., Ludden, J. N. & Smith, A. D. 1992. Mobilization of the REE during crustal aging in the Troodos ophiolite, Cyprus. Chemical Geology 98, 7186.Google Scholar
Godard, M., Bodinier, J. L. & Vasseur, G. 1995. Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: a chromatographic approach. Earth and Planetary Science Letters 133, 449–61.Google Scholar
Godard, M., Lagabrielle, Y., Alard, O. & Harvey, J. 2008. Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen–Twenty Fracture Zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge. Earth and Planetary Science Letters 267, 410–25.Google Scholar
Green, T., Blundy, J. D., Adam, J. & Yaxley, G. M. 2000. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos 53, 165–87.Google Scholar
Hart, S. R., Erlank, A. J. & Kable, E. J. D. 1974. Sea floor basalt alteration: some chemical and Sr isotopic effects. Contributions to Mineralogy and Petrology 44, 219–30.Google Scholar
Hart, S. R. & Zindler, A. 1986. In search of a bulk-earth composition. Chemical Geology 57, 247–67.Google Scholar
Hawkins, J. W. & Allan, J. F. 1994. Petrologic evolution of Lau Basin sites 834 through 839. Proceedings of the Ocean Drilling Program, Scientific Results 135, 427–70.Google Scholar
Herbert, R. 1982. Petrography and mineralogy of oceanic peridotites and gabbros: some comparisons with ophiolite examples. Ofioliti 7, 299324.Google Scholar
Hess, J., Bender, M. & Schilling, J. G. 1991. Assessing seawater/basalt exchange of strontium isotopes in hydrothermal processes on the flanks of mid-ocean ridges. Earth and Planetary Science Letters 103, 133–42.Google Scholar
Hou, Z. H. 2003. Zirconium geochemistry, trace elemental characters of zircons and its chronological applications of high-grade metamorphic rocks in the Dabie–Sulu orogen. Ph.D. thesis, University of Science and Technology of China, Hefei, China. Published thesis.Google Scholar
Hout, F., Hébert, R., Varfalvy, V., Beaudoin, G., Wang, C. S., Liu, Z. F., Cotten, J. & Dostal, J. 2002. The Beimarang Melange (Southern Tibet) brings additional constraints in assessing the origin, metamorphic evolution and obduction processes of the Yarlung Zangbo Ophiolite. Journal of Asian Earth Sciences 21, 307–22.Google Scholar
Jacobsen, S. B. & Wasserburg, G. J. 1979. Nd and Sr isotopic study of the Bay of Islands ophiolitic complex and the evolution of the source of the mid ocean ridge basalts. Journal of Geophysical Research 84, 7429–45.Google Scholar
Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Wänke, H. & Lorenz, V. 1979. The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. In Lunar and Planetary Science Conference Proceedings 10, 2031–50.Google Scholar
Jahn, B., Wu, F., Lo, C. H. & Tsai, C. H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex. Chemical Geology 157, 119–46.Google Scholar
Jan, M. & Windley, B. 1990. Chromian spinel silicate chemistry in ultramafic rocks of the Jijal complex, northwest Pakistan. Journal of Petrology 31, 667715.Google Scholar
Jaques, A. L. & Green, D. H. 1980. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology 73, 287310.Google Scholar
Jassim, S. Z. & Goff, J. 2006. Geology of Iraq. Brno: Dolin, Prague and Moravian Museum, 337 pp.Google Scholar
Jean, M. M., Shervais, J. W., Choi, S. H. & Mukasa, S. B. 2010. Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: an LA–ICP–MS study. Contributions to Mineralogy and Petrology 159, 113–36.Google Scholar
Johnson, K. T. M. & Dick, H. J. B. 1992. Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. Journal of Geophysical Research 97, 9219–41.Google Scholar
Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research 95, 2661–78.Google Scholar
Kapsiotis, A. N. 2014. Compositional signatures of SSZ-type peridotites from the northern Vourinos ultra-depleted upper mantle suite, NW Greece. Chemie der Erde / Geochemistry 74, 783801.Google Scholar
Karimi Bavandpur, A. & Hajihoseini, A. 1999. Geological Map of Kermanshah. Quadrangle 5458. Tehran: Geological Survey of Iran.Google Scholar
Karipi, S., Tsikouras, B. & Hatzipanagiotou, K. 2006. The petrogenesis and tectonic setting of ultramafic rocks from Iti and Kallidromon Mountains, continental Central Greece: vestiges of the Pindos Ocean. Canadian Mineralogist 44, 267–87.Google Scholar
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. B. 1997. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London, Series 355, 283318.Google Scholar
Kelemen, P. B., Kikawa, E. & Miller, D. J. 2007. Leg 209 summary: Processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°–16°N. Proceedings of the Ocean Drilling Program, Scientific Results 209, 133.Google Scholar
Kelemen, P. B., Shimizu, N. & Salters, V. J. M. 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747–53.Google Scholar
Kempton, P. D., Hawkesworth, C. J. & Fowler, M., 1991. Geochemistry and isotopic composition of gabbros from layer 3 of the Indian Ocean crust, Hole 735B. Proceedings of the Ocean Drilling Program, Scientific Results 118, 127–43.Google Scholar
Kempton, P. D. & Hunter, A.G. 1997. A Sr, Nd, Pb, O isotope study of plutonic rocks from MARK, leg 153: implications for mantle heterogeneity and magma Proceedings of the Ocean Drilling Program, Scientific Results 153, 305–19.Google Scholar
Kinzler, R. J. 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research 102, 853–74.Google Scholar
Klinkhammer, G. P., Elderfield, H., Edmond, J. M. & Mitra, A. 1994. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica Cosmochimica Acta 58, 5105–113.Google Scholar
Kodolányi, J., Pettke, T., Spandler, C., Kamber, B. S. & Gméling, K. 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. Journal of Petrology 53, 235–70.Google Scholar
Koga, K. T., Kelemen, P. B. & Shimizu, N. 2001. Petrogenesis of the crust–mantle transition zone and the origin of lower crustal wehrlite in the Oman ophiolite. Geochemistry, Geophysics, Geosystems 2. doi: 10.1029/2000GC000132.Google Scholar
Kubo, K. 2002. Dunite formation processes in highly depleted peridotite: case study of the Iwanaidake peridotite, Hokkaido, Japan. Journal of Petrology 43, 423–48.Google Scholar
Li, X. P., Chen, H. K., Wang, Z. L., Wang, L. J., Yang, J. S. & Robinson, P. 2015. Spinel peridotite, olivine websterite and the textural evolution of the Purang ophiolite complex, western Tibet. Journal of Asian Earth Sciences 110, 5571.Google Scholar
Li, X. P., Zhang, L. F., Wilde, S. A., Song, B. & Liu, X. M. 2010. Zircons from rodingite in the Western Tianshan serpentinite complex: mineral chemistry and U–Pb ages define nature and timing of rodingitization. Lithos 118, 1734.Google Scholar
Liu, C. Z., Wu, F. Y., Wilde, S. A., Yu, L. J. & Li, J. L. 2010. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos 114, 413–22.Google Scholar
Luguet, A., Alard, O., Lorand, J. P., Pearson, N. J., Ryan, C. & O'Reilly, S. Y. 2001. Laser ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth and Planetary Science Letters 189, 285–94.Google Scholar
Mahmoudi, S., Corfu, F., Masoudi, F., Mehrabi, B. & Mohajjel, M. 2011. U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran. Journal of Asian Earth Sciences 41, 238–49.Google Scholar
Manuella, F. C., Ottolini, L., Carbone, S. & Scavo, L. 2016. Metasomatizing effects of serpentinization-related hydrothermal fluids in abyssal peridotites: new contributions from Hyblean peridotite xenoliths (southeastern Sicily). Lithos 264, 405–21.Google Scholar
Marchesi, C., Garrido, C. J., Bosch, D., Bodinier, J. L., Gervilla, F. & Hidas, K. 2013. Mantle refertilization by melts of crustal-derived garnet pyroxenite: evidence from the Ronda peridotite massif, southern Spain. Earth and Planetary Science Letters 362, 6675.Google Scholar
Marchesi, C., Garrido, C. J., Godard, M., Belley, F. & Ferré, E. 2009. Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia). Chemical Geology 266, 171–86.Google Scholar
Marchesi, C., Garrido, C. J., Godard, M., Proenza, J. A., Gervilla, F. & Blanco-Moreno, J. 2006. Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contributions to Mineralogy and Petrology 151, 717–36.Google Scholar
Marchesi, C., Garrido, C. J., Proenza, J. A., Hidas, K., Varas-Reus, M. I., Butjosa, L. & Lewis, J. F. 2016. Geochemical record of subduction initiation in the sub-arc mantle: insights from the Loma Caribe peridotite (Dominican Republic). Lithos 252–253, 115.Google Scholar
Marchesi, C., Jolly, W. T., Lewis, J. F., Garrido, C. J., Proenza, J. A. & Lidiak, E. G. 2011. Petrogenesis of fertile mantle peridotites from the Monte del Estado massif (Southwest Puerto Rico): a preserved section of Proto-Caribbean lithospheric mantle? Geologica Acta 9, 289306.Google Scholar
McCulloch, M. T. & Chappel, B. W. 1982. Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters 58, 5164.Google Scholar
McCulloch, M. T. & Wasserburg, G. J. 1978. Barium and neodymium isotopic anomalies in the Allende meteorite. Astrophysical Journal 220, 1519.Google Scholar
Melcher, F., Meisel, T., Puhl, J. & Koller, F. 2002. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos 65, 69112.Google Scholar
Miller, C., Thöni, M., Frank, W., Schuster, R., Melcher, F., Meisel, T. & Zanetti, A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos 66, 155–72.Google Scholar
Mohajjel, M., Fergusson, C. & Sahandi, M. 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences 21, 397412.Google Scholar
Morgan, Z., Liang, Y. & Kelemen, P. 2008. Significance of the concentration gradients associated with dunite bodies in the Josephine and Trinity ophiolites. Geochemistry, Geophysics, Geosystems 9, Q07025. doi: 10.1029/2008GC001954.Google Scholar
Morimoto, N. 1988. The nomenclature of pyroxenes. Mineralogical Magazine 52, 350535.Google Scholar
Morishita, T., Maeda, J., Miyashita, S., Kumagai, H., Matsumoto, T. & Dick, H. J. B. 2007. Petrology of local concentration of chromian spinel in dunite from the slow-spreading South West Indian Ridge. European Journal Mineralogy 19, 871–82.Google Scholar
Moseley, D. 1984. Symplectic exsolution in olivine. American Mineralogist 69, 139–53.Google Scholar
Mysen, B. O. & Kushiro, I. 1977. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. American Mineralogist 62, 843–56.Google Scholar
Nicolas, A. & Prinzhofer, A. 1983. Cumulative or residual origin for the transition zone in ophiolites: structural evidence. Journal of Petrology 24, 188206.Google Scholar
Niu, Y. 1997. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. Journal of Petrology 38, 1047–74.Google Scholar
Niu, Y. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid ocean ridges. Journal of Petrology 45, 2423–58.Google Scholar
Niu, Y., Langmuir, C. H. & Kinzler, R. J. 1997. The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters 152, 251–65.Google Scholar
Niu, Y. & O'Hara, M. J. 2003. Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research 108, 2209. doi: 10.1029/2002JB002048.Google Scholar
Niu, X., Yang, J., Dilek, Y., Xu, J., Li, J., Chen, S., Feng, G., Liu, F., Xiong, F. & Liu, Z. 2015. Petrological and Os isotopic constraints on the origin of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, Western Tibet. Journal of Asian Earth Sciences 110, 7284.Google Scholar
Nouri, F. 2016. Geochemistry and geodynamics of intrusive and volcanic bodies in Harsin area (West of Iran). Ph.D. thesis, Tarbait Modares University, Tehran, Iran. Published thesis.Google Scholar
Nouri, F., Asahara, Y., Azizi, H., Yamamoto, K. & Tsuboi, M. 2017. Geochemistry and petrogensis of the Eocene back arc mafic rocks in the Zagros suture zone, northern Noorabad, western Iran. Chemie der Erde / Geochemistry 22, 517–33.Google Scholar
Nouri, F. & Azizi, H. 2015. The rodingitization of gabbroic bodies in the southeast of Sahneh (west of Iran) with emphasis on mineral reaction and isotope geochemistry. Iranian Journal of Science Kharazmi University 16, 107—24 (in Persian).Google Scholar
Nouri, F., Azizi, H., Golonka, J., Asahara, Y., Orihashi, Y., Yamamoto, K., Tsuboi, M. & Anma, R. 2016. Age and petrogenesis of Na-rich felsic rocks in western Iran: evidence for closure of the southern branch of the Neo-Tethys in the Late Cretaceous. Tectonophysics 671, 151–72.Google Scholar
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. & Jolivet, L. 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106, 380–98.Google Scholar
Pagé, P., Bédard, J. H. & Tremblay, A. 2009. Geochemical variations in a depleted fore-arc mantle: the Ordovician Thetford Mines Ophiolite. Lithos 113, 2147.Google Scholar
Palme, H. & O'Neill, H. St C. 2004. Cosmochemical estimates of mantle composition. In Treatise on Geochemistry, 2nd edn (eds Holland, H.D. & Turrekian, K.K.), pp. 138. Amsterdam: Elsevier.Google Scholar
Palmer, M. R. & Edmond, J. M. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters 92, 1126.Google Scholar
Parkinson, I. J. & Pearce, J. A. 1998. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology 39, 1577–618.Google Scholar
Parkinson, I., Pearce, J. A., Thirlwall, M. E. A., Johnson, K. T. M. & Ingram, G. 1992. Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. Proceedings of the Ocean Drilling Program, Scientific Results 125, 487506.Google Scholar
Parlak, O., Höck, V. & Delaloye, M. 2002. The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65, 205–24.Google Scholar
Paulick, H., Bach, W., Godard, M., De Hoog, J. C. M., Suhr, G. & Harvey, J. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20ʹ N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology 234, 179210.Google Scholar
Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J. & Leat, P. T. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contributions to Mineralogy and Petrology 139, 3653.Google Scholar
Pearce, J. A. & Robinson, P. T. 2010. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research 18, 6081.Google Scholar
Piccardo, G. B., Müntener, O., Zanetti, A. & Pettke, T. 2003. Ophiolitic pridotites of the Alpine-Apennine system: mantle processes and geodynamic relevance. International Geology Review 40, 1119–59.Google Scholar
Piepgras, D. J. & Wasserburg, G. J. 1987. Rare-earth element transport in the western North Atlantic inferred from Nd isotopic observations. Geochimica et Cosmochimica Acta 51, 1257–71.Google Scholar
Rafia, R. & Shahidi, A. 2006. Geological Map of Miyanrahan. Quadrangle 5459. Tehran: Geological Survey of Iran.Google Scholar
Ricou, L. E. 1994. Tethys reconstructed plate's continental fragments and their boundaries since 260 Ma from Central America to South-eastern Asia. Geodinamica Acta 7, 169218.Google Scholar
Roeder, P. L., Poustovetov, A. & Oskarsson, N. 2001. Growth forms and composition of chromian spinel in MORB magma: diffusion-controlled crystallization of chromian spinel. Canadian Mineralogist 39, 397416.Google Scholar
Saccani, E., Allahyari, K., Beccaluva, L. & Bianchini, G. 2013. Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research 24, 392411.Google Scholar
Sadeghian, M. & Delvar, S. T. 2006. Geological Map of Kamyaran. Quadrangle 5359. Tehran: Geological Survey of Iran.Google Scholar
Saka, S., Uysal, I., Akmaz, R. M., Kaliwoda, M. & Hochleitner, R. 2014. The effects of partial melting, melt–mantle interaction and fractionation on ophiolite generation: constraints from the late Cretaceous Pozantı-Karsantı ophiolite, southern Turkey. Lithos 202, 300–16.Google Scholar
Salters, V. J. M. & Stracke, A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5, Q05004. doi: 10.1029/2003GC000597.Google Scholar
Savov, I. P., Ryan, J. G., D'Antonio, M. & Fryer, P. 2007. Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research 112, B09205. doi: 10.1029/2006JB004749.Google Scholar
Savov, I. P., Ryan, J. G., D'Antonio, M., Kelley, K. & Mattie, P. 2005. Geochemistry of serpentinized peridotites from the Mariana fore arc conical seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems 6, Q04J15. doi: 10.1029/2004GC000777.Google Scholar
Seifert, K. & Brunotte, D. 1996. Geochemistry of serpentinized mantle peridotite from site 897 in the Iberia Abyssal Plain. Proceedings of the Ocean Drilling Program, Scientific Results 149, 413–24.Google Scholar
Seyler, M. & Bonatti, E. 1997. Regional scale melt–rock interaction in lherzolitic mantle in the Romanche Fracture Zone (Atlantic Ocean). Earth and Planetary Science Letters 146, 273–87.Google Scholar
Seyler, M., Lorand, J. P., Dick, H. J. B. & Drouin, M. 2007. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15200N: ODP Hole 1274A. Contributions to Mineralogy and Petrology 153, 303–19.Google Scholar
Seyler, M., Toplis, M. J., Lorand, J. P., Luguet, A. & Cannat, M. 2001. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology 29, 155–8.Google Scholar
Shafaii Moghadam, H. & Stern, R. 2015. Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites. Journal of Asian Earth Sciences 100, 3156.Google Scholar
Shafaii Moghadam, H., Stern, R. J., Chiaradia, M. & Rahgoshay, M. 2013. Geochemistry and tectonic evolution of the Late Cretaceous Gugher-Baft ophiolite, central Iran. Lithos 168, 3347.Google Scholar
Shafaii Moghadam, H., Zaki Khedr, M., Chiaradia, M., Stern, R. J., Bakhshizad, F., Arai, S., Ottley, C. J. & Tamura, A. 2014. Supra-subduction zone magmatism of the Neyriz ophiolite, Iran: constraints from geochemistry and Sr-Nd-Pb isotopes. International Geology Review 56, 1395–412.Google Scholar
Shahabpour, J. 2007. Island arc affinity of the central Iranian volcanic belt. Journal of Asian Earth Sciences 30, 652–65.Google Scholar
Shahidi, A. & Nazari, H. 1997. Geological Map of Harsin. Quadrangle 5558. Tehran: Geological Survey of Iran.Google Scholar
Siena, F. & Coltorti, M. 1993. Thermo barometric evolution and metasomatic processes of upper mantle in different tectonic settings: evidence from spinel peridotite xenoliths. European Journal of Mineralogy 5, 1073–90.Google Scholar
Stakes, D. S. & Franklin, J. M. 1994. Petrology of igneous rocks at Middle Valley, Juan de Fuca Ridge. In Proceedings of the Ocean Drilling Program, Scientific Results 139, 79102.Google Scholar
Stöcklin, J. 1968. Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists 52, 1229–58.Google Scholar
Stracke, A., Bizimis, M. & Salters, V. J. 2003. Recycling oceanic crust: quantitative constraints. Geochemistry, Geophysics, Geosystems 4, 8003. doi: 10.1029/2001GC000223.Google Scholar
Su, Y. & Langmuir, C. H. 2003. Global MORB chemistry compilation at the segment scale. Ph.D. thesis, Columbia University, New York. Published thesis.Google Scholar
Suhr, G. 1999. Melt migration under oceanic ridges: inferences from reactive transport modelling of upper mantle hosted dunites. Journal of Petrology 40, 575–99.Google Scholar
Suhr, G., Hellebrand, E., Snow, J. E., Seck, H. A. & Hofmann, A. W. 2003. Significance of large, refractory dunite bodies in the upper mantle of the Bay of Islands Ophiolite. Geochemistry, Geophysics, Geosystems 4, 8605.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematic of oceanic basalts: implication for mantle composition and processes. In Magmatism in the Oceanic Basins (eds Sunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tachikawa, K., Jeandel, C. & Roy Barman, M. 1999. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs. Earth and Planetary Science Letters 170, 433–46.Google Scholar
Tamura, A. & Arai, S. 2005. Unmixed spinel in chromitite from the Iwanai-dake peridotite complex, Hokkaido, Japan: a reaction between peridotite and highly oxidized magma in the mantle wedge. American Mineralogist 90, 473–80.Google Scholar
Tamura, A., Arai, A., Ishimaru, S. & Andal, E. S. 2008. Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30_N: micro and macroscale melt penetrations into peridotites. Contributions to Mineralogy and Petrology 155, 491509.Google Scholar
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M. et al. 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology 168, 279–81.Google Scholar
Turekian, K. K. 1968. Oceans. Englewood Cliffs, New Jersey: Prentice-Hall, 120 pp.Google Scholar
Ulrich, M., Picard, C., Guillot, S., Chauvel, C., Cluzel, D. & Meffre, S. 2010. Multiple melting stages and refertilization as indicators for ridge to subduction formation: the New Caledonia ophiolite. Lithos 115, 223–36.Google Scholar
Uysal, I., Ersoy, E. Y., Dilek, Y., Escayola, M., Sarıfakıoğlu, E., Saka, S. & Hirata, T. 2015. Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia – Turkey. Gondwana Research 27, 594611.Google Scholar
Uysal, I., Ersoy, E. Y., Dilek, Y., Kapsiotis, A. & Sarıfakıoğlu, E. 2016. Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithos 246, 228–45.Google Scholar
Uysal, İ., Ersoy, E. Y., Karslı, O., Dilek, Y., Sadıklar, M. B., Ottley, C. J., Tiepolo, M. & Meisel, T. 2012. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo Tethyan Ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos 132, 5069.Google Scholar
Van der Laan, S. R., Arculus, R. J., Pearce, J. A. & Murton, B. J. 1992. Petrography, mineral chemistry, and phase relations of the basement boninite series of site 786, Izu-Bonin forearc. Proceedings of the Ocean Drilling Program, Scientific Results 125, 171201.Google Scholar
Verdel, C., Wernicke, B. P., Hassanzadeh, J. & Guest, B. 2011. A Paleogene extensional arc flare up in Iran. Tectonics 30, 120.Google Scholar
Whattam, S. A., Cho, M. & Smith, I. E. 2011. Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: geochemical evidence for supra-subduction zone formation and extensive melt–rock interaction. Lithos 127, 599618.Google Scholar
White, W. M. & Hofmann, A.W. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–25.Google Scholar
Whitechurch, H., Omrani, J., Agard, P., Humbert, F., Montigny, R. & Jolivet, L. 2013. Evidence for Paleocene–Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran) from back-arc to arc: implications for regional geodynamics and obduction. Lithos 182–183, 1132.Google Scholar
Whitney, D. L. & Evans, B. W. 2010. Abbreviations for names of rock forming minerals. American Mineralogist 95, 185–7.Google Scholar
Workman, R. K. & Hart, S. R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 5372.Google Scholar
Wrobel Daveau, J. C., Ringenbach, J. C., Tavakoli, S., Ruiz, G., Masse, P. & Frizonde Lamotte, D. 2010. Evidence for mantle exhumation along the Arabian margin in the Zagros (Kermanshah area, Iran). Arabian Journal of Geosciences 3, 499513.Google Scholar
Xu, Y., Ma, J. L., Huang, X. L., Lizuka, Y., Chung, S., Wang, Y. B. & Wu, X. 2004. Early Cretaceous gabbroic complex from Yinan, Shandong Province, petrogenesis and mantle domains beneath the North China Craton. International Journal of Earth Sciences 93, 1025–41.Google Scholar
Zhou, M. & Kerrich, R. 1992. Morphology and composition of chromite in komatiites from the Belingwe Greenstone Belt, Zimbabwe. Canadian Mineralogist 30, 303–17.Google Scholar
Zhou, M. F., Robinson, P. T., Malpas, J., Edwards, S. J. & Qi, L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Journal of Petrology 46, 615–39.Google Scholar