Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T13:09:17.799Z Has data issue: false hasContentIssue false

Permo-Carboniferous conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula: sedimentology, geochronology and isotope evidence for provenance and tectonic setting in Gondwana

Published online by Cambridge University Press:  24 October 2011

JOHN D. BRADSHAW*
Affiliation:
Department of Geological Sciences, University of Canterbury, P.B. 4800, Christchurch 8140, New Zealand
ALAN P. M. VAUGHAN
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
IAN L. MILLAR
Affiliation:
NIGL, British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK
MICHAEL J. FLOWERDEW
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
RUDOLPH A. J. TROUW
Affiliation:
Universidade Federal de Rio de Janeiro, Depto. de Geologia, Av. Athos da Silveira Ramos 274, 21.946-916 Rio de Janeiro, Brazil
C. MARK FANNING
Affiliation:
PRISE, Research School of Earth Sciences, The Australian National University, Mills Road, Canberra ACT 0201, Australia
MARTIN J. WHITEHOUSE
Affiliation:
Swedish Museum of Natural History, Box 50007, S-104 05 Stockholm, Sweden
*
Author for correspondence: [email protected]

Abstract

Field observations from the Trinity Peninsula Group at View Point on the Antarctic Peninsula indicate that thick, southward-younging and overturned clastic sedimentary rocks, comprising unusually coarse conglomeratic lenses within a succession of fine-grained sandstone–mudstone couplets, are the deposits of debris and turbidity flows on or at the foot of a submarine slope. Three detrital zircons from the sandstone–mudstone couplets date deposition at 302 ± 3 Ma, at or shortly after the Carboniferous–Permian boundary. Conglomerates predominantly consist of quartzite and granite and contain boulders exceeding 500 mm in diameter. Zircons from granitoid clasts and a silicic volcanic clast yield U–Pb ages of 466 ± 3 Ma, 373 ± 5 Ma and 487 ± 4 Ma, respectively and have corresponding average εHft values between +0.3 and +7.6. A quartzite clast, conglomerate matrix and sandstone interbedded with the conglomerate units have broadly similar detrital zircon age distributions and Hf isotope compositions. The clast and detrital zircon ages match well with sources within Patagonia; however, the age of one granite clast and the εHf characteristics of some detrital zircons point to a lesser South Africa or Ellsworth Mountain-like contribution, and the quartzite and granite-dominated composition of the conglomerates is similar to upper Palaeozoic diamictites in the Ellsworth Mountains. Unlike detrital zircons, large conglomerate clasts limit possible transport distance, and suggest sedimentation took place on or near the edge of continental crust. Comparison with other upper Palaeozoic to Mesozoic sediments in the Antarctic Peninsula and Patagonia, including detrital zircon composition and the style of deformation, suggests deposition of the Trinity Peninsula Group in an upper plate basin on an active margin, rather than a subduction-related accretionary setting, with slow extension and rifting punctuated by short periods of compression.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitkenhead, N. 1965. The geology of the Duse Bay-Larsen Inlet area, north-east Graham Land (with particular reference to the Trinity Peninsula Series). British Antarctic Survey Scientific Reports 51, 162.Google Scholar
Aldiss, D. T. & Edwards, E. J. 1999. The geology of the Falkland Islands. In British Geological Survey Technical Report, pp. ix, 136. Keyworth, Nottingham: British Geological Survey.Google Scholar
Andreis, R. R., Ribeiro, A. & Trouw, R. A. J. 1997. Remarks on the petrofacies of Permo-Triassic turbidites from the Antarctic Peninsula, South Shetland and South Orkney Islands. In The Antarctic Region: Geological Evolution and Processes (ed. Ricci, C. A.), pp. 401–7. Siena: Tipografia Senese.Google Scholar
Augustsson, C., Münker, C., Bahlburg, H. & Fanning, C. M. 2006. Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U-Pb and Hf-isotope study of single detrital zircons. Journal of the Geological Society, London 163, 983–95.CrossRefGoogle Scholar
Bahlburg, H., Vervoort, J. D., Du Frane, S. A., Bock, B., Augustsson, C. & Reimann, C. 2009. Timing of crust formation and recycling in accretionary orogens: insights learned from the western margin of South America. Earth-Science Reviews 97, 215–41.CrossRefGoogle Scholar
Barbeau, D. L., Davis, J. T., Murray, K. E., Valencia, V., Gehrels, G. E., Zahid, K. M. & Gombosi, D. J. 2010. Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land. Antarctic Science 22, 6578.CrossRefGoogle Scholar
Birch, W. D. (ed.) 2003. Geology of Victoria. Melbourne: Geological Society of Australia.Google Scholar
Black, L. P., McClenaghan, M. P., Korsch, R. J., Everard, J. L. & Foudoulis, C. 2005. Significance of Devonian-Carboniferous igneous activity in Tasmania as derived from U-Pb SHRIMP dating of zircon. Australian Journal of Earth Sciences 52, 807–29.CrossRefGoogle Scholar
Bradshaw, J. D. 2007. The Ross Orogen and Lachlan Fold Belt in Marie Byrd Land, Northern Victoria Land and New Zealand: implication for the tectonic setting of the Lachlan Fold Belt in Antarctica. In Antarctica: A Keystone in a Changing World - Online Proceedings of the 10th ISAES (eds Cooper, A. K. & Raymond, C. R.). USGS Open-File Report 2007-1047, Short Research Paper 059, doi:10.3133/of2007-1047.srp059, 4 pp.CrossRefGoogle Scholar
Cantrill, D. J. 2000. A new macroflora from the South Orkney Islands, Antarctica: evidence of an Early to Middle Jurassic age for the Powell Island Conglomerate. Antarctic Science 12, 185–95.CrossRefGoogle Scholar
Chernicoff, C. J. & Zappettini, E. O. 2003. Delimitation of tectonostratigraphic terranes of the southern-central region of Argentina: aeromagnetic evidences. Revista Geologica De Chile 30, 299316.Google Scholar
Chernicoff, C. J., Zappettini, E. O., Santos, J. O. S., Allchurch, S. & McNaughton, N. J. 2010. The southern segment of the Famatinian magmatic arc, La Pampa Province, Argentina. Gondwana Research 17, 662–75.CrossRefGoogle Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. D. 2003. Atlas of zircon textures. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 468–500. Reviews in Mineralogy and Geochemistry no. 53.Google Scholar
Curtis, M. L. 2001. Tectonic history of the Ellsworth Mountains, West Antarctica: reconciling a Gondwana enigma. Geological Society of America Bulletin 113, 939–58.2.0.CO;2>CrossRefGoogle Scholar
Dahlquist, J. A., Pankhurst, R. J., Rapela, C. W., Galindo, C., Alasino, P., Fanning, C. M., Saavedra, J. & Baldo, E. 2008. New SHRIMP U-Pb data from the Famatina Complex: constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geologica Acta 6, 319–33.Google Scholar
Dalziel, I. W. D. 1984. Tectonic evolution of a forearc terrane, Southern Scotia Ridge, Antarctica. Geological Society of America Special Paper 200, 132.CrossRefGoogle Scholar
Dalziel, I. W. D., Elliot, D. H., Jones, D. L., Thomson, J. W., Thomson, M. R. A., Wells, N. A. & Zinsmeister, W. J. 1981. The geological significance of some Triassic microfossils from the South Orkney Islands. Geological Magazine 118, 1525.CrossRefGoogle Scholar
Dalziel, I. W. D. & Lawver, L. A. 2001. The lithospheric setting of the West Antarctic Ice Sheet. In The West Antarctic Ice Sheet: Behavior and environment (eds Alley, R. B. & Bindschadler, R. A.), pp. 29–44. Antarctic Research Series no. 77.Google Scholar
Doktor, M., Swierczewsku, A. & Tokarski, A. K. 1994. Lithostratigraphy and tectonics of the Miers Bluff Formation at Hurd Peninsula, Livingstone Island (West Antarctica). Studia Geologica Polonica 104, 41104.Google Scholar
Eagles, G. & Vaughan, A. P. M. 2009. Gondwana breakup and plate kinematics: business as usual. Geophysical Research Letters 36, L10302, doi: 10.1029/2009gl037552, 4 pp.CrossRefGoogle Scholar
Eyles, C. H. & Lagoe, M. B. 1998. Slump-generated megachannels in the Pliocene-Pleistocene glaciomarine Yakataga Formation, Gulf of Alaska. Geological Society of America Bulletin 110, 395408.2.3.CO;2>CrossRefGoogle Scholar
Faundez, V., Herve, F. & Lacassie, J. P. 2002. Provenance and depositional setting of pre-late Jurassic turbidite complexes in Patagonia, Chile. New Zealand Journal of Geology and Geophysics 45, 411–25.CrossRefGoogle Scholar
Flowerdew, M. J., Daly, J. S. & Riley, T. R. 2007. New Rb-Sr mineral ages temporally link plume events with accretion at the margin of Gondwana. In Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES (eds Cooper, A. K. & Raymond, C. R.). USGS Open-File Report 2007-1047, Short Research Paper 012, doi:10.3133/of2007-1047.srp012, 4 pp.CrossRefGoogle Scholar
Flowerdew, M. J., Millar, I. L., Curtis, M. L., Vaughan, A. P. M., Horstwood, M. S. A., Whitehouse, M. J. & Fanning, C. M. 2007. Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geological Society of America Bulletin 119, 275–88.CrossRefGoogle Scholar
Flowerdew, M. J., Millar, I. L. & Vaughan, A. P. M. 2006. A combined U-Pb zircon geochronology and Hf isotope geochemistry study of detrital zircons: sedimentary provenance from West Antarctica. Terra Antarctica Reports 12, 5764.Google Scholar
Flowerdew, M. J., Millar, I. L., Vaughan, A. P. M., Horstwood, M. S. A. & Fanning, C. M. 2006. The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contributions to Mineralogy and Petrology 151, 751–68.CrossRefGoogle Scholar
Foden, J., Elburg, M. A., Dougherty-Page, J. & Burtt, A. 2006. The timing and duration of the Delamerian orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. Journal of Geology 114, 189210.CrossRefGoogle Scholar
Foster, D. A., Gray, D. R. & Spaggiari, C. 2005. Timing of subduction and exhumation along the Cambrian East Gondwana margin, and the formation of Paleozoic backarc basins. Geological Society of America Bulletin 117, 105–16.CrossRefGoogle Scholar
Gray, D. R. & Foster, D. A. 2004. Tectonic evolution of the Lachlan Orogen, southeast Australia: historical review, data synthesis and modern perspectives. Australian Journal of Earth Sciences 51, 773817.CrossRefGoogle Scholar
Halpin, J. A., Gerakiteys, C. L., Clarke, G. L., Belousova, E. A. & Griffin, W. L. 2005. In-situ U-Pb geochronology and Hf isotope analyses of the Rayner Complex, East Antarctica. Contributions to Mineralogy and Petrology 148, 689706.CrossRefGoogle Scholar
Harrison, S. M. & Piercy, B. A. 1991. Basement gneisses in northwest Palmer Land: further evidence for pre-Mesozoic rocks in Lesser Antarctica. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.), pp. 341–44. Cambridge: Cambridge University Press.Google Scholar
Hervé, F., Calderon, M. & Faundez, V. 2008. The metamorphic complexes of the Patagonian and Fuegian Andes. Geologica Acta 6, 4353.Google Scholar
Hervé, F., Fanning, C. M. & Pankhurst, R. J. 2003. Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. Journal of South American Earth Sciences 16, 107–23.CrossRefGoogle Scholar
Hervé, F., Fanning, C. M., Pankhurst, R. J., Mpodozis, C., Klepeis, K., Calderon, M. & Thomson, S. N. 2010. Detrital zircon SHRIMP U-Pb age study of the Cordillera Darwin Metamorphic Complex of Tierra del Fuego: sedimentary sources and implications for the evolution of the Pacific margin of Gondwana. Journal of the Geological Society, London 167, 555–68.CrossRefGoogle Scholar
Hervé, F., Faundez, V., Brix, M. & Fanning, M. 2006. Jurassic sedimentation of the Miers Bluff Formation, Livingston Island, Antarctica: evidence from SHRIMP U-Pb ages of detrital and plutonic zircons. Antarctic Science 18, 229–38.CrossRefGoogle Scholar
Hervé, F., Lobato, J., Ugalde, I. & Pankhurst, R. J. 1996. The geology of Cape Dubouzet, northern Antarctic Peninsula: continental basement to the Trinity Peninsula Group? Antarctic Science 8, 407–14.CrossRefGoogle Scholar
Hunter, M. A., Cantrill, D. J., Flowerdew, M. J. & Millar, I. L. 2005. Mid-Jurassic age for the Botany Bay Group: implications for Weddell Sea Basin creation and southern hemisphere biostratigraphy. Journal of the Geological Society, London 162, 745–48.CrossRefGoogle Scholar
Ireland, T. R., Flottmann, T., Fanning, C. M., Gibson, G. M. & Preiss, W. V. 1998. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology 26, 243–46.2.3.CO;2>CrossRefGoogle Scholar
König, M. & Jokat, W. 2006. The Mesozoic breakup of the Weddell Sea. Journal of Geophysical Research-Solid Earth 111, B12102, doi:10.1029/2005jb004035, 28 pp.CrossRefGoogle Scholar
Mackinnon, T. C. 1983. Origin of the Torlesse Terrane and coeval rocks, South Island, New Zealand. Geological Society of America Bulletin 94, 967–85.2.0.CO;2>CrossRefGoogle Scholar
Matsch, C. L. & Okangas, R. W. 1992. Stratigraphy and sedimentology of the Whiteout Conglomerate: an upper Paleozoic glaciogenic unit, Ellsworth Mountains, West Antarctica. In Geology of the Ellsworth Mountains, Antarctica (eds Webers, G. F., Craddock, C. & Splettstoesser, J. F.), pp. 37–62. Geological Society of America Memoirs no. 170.CrossRefGoogle Scholar
Millar, I. L., Pankhurst, R. J. & Fanning, C. M. 2002. Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana margin. Journal of the Geological Society, London 159, 145–57.CrossRefGoogle Scholar
Millar, I. L., Vaughan, A. P. M., Flowerdew, M. J., Fanning, C. M., Trouw, R. A. J. & Bradshaw, J. D. 2003. Provenance of the Trinity Peninsula Group, northern Antarctic Peninsula. In 9th International symposium on Antarctic Earth Sciences (ed. Futterer, D. K.), p. 232. Potsdam: Alfred Wegener Institute.Google Scholar
Milne, A. J. & Millar, I. L. 1991. Mid Palaeozoic basement in eastern Graham Land and its relation to the Pacific margin of Gondwana. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. A.), pp. 335–39. Cambridge: Cambridge University Press.Google Scholar
Ogg, J. G., Ogg, G. & Gradstein, J. M. 2008. The Concise Geological Timescale. Cambridge: Cambridge University Press.Google Scholar
Paciullo, F. V. P., Ribeiro, A., Andreis, R. R. & Trouw, R. A. J. 2002. Facies associations in the ?Permian-Triassic Hope Bay Formation, Antarctic Peninsula. In Antarctica at the Close of a Millennium: Proceedings of the 8th International Symposium on Antarctic Earth Sciences (eds Gamble, S. J. A., Skinner, D. N. B. & Henrys, S.), pp. 175–83. The Royal Society of New Zealand Bulletin no. 35.Google Scholar
Pankhurst, R. J., Rapela, C. W., Fanning, C. M. & Marquez, M. 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews 76, 235–57.CrossRefGoogle Scholar
Pankhurst, R. J., Rapela, C. W., Loske, W. P., Marquez, M. & Fanning, C. M. 2003. Chronological study of the pre-Permian basement rocks of southern Patagonia. Journal of South American Earth Sciences 16, 2744.CrossRefGoogle Scholar
Pickering, K. T., Stow, D. A. V., Watson, M. & Hiscott, R. N. 1986. Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments. Earth-Science Reviews 23, 75174.CrossRefGoogle Scholar
Rapalini, A. E., Herve, F., Ramos, V. A. & Singer, S. E. 2001. Paleomagnetic evidence for a very large counterclockwise rotation of the Madre de Dios Archipelago, southern Chile. Earth and Planetary Science Letters 184, 471–87.CrossRefGoogle Scholar
Rapela, C. W., Pankhurst, R. J., Fanning, C. M. & Hervé, F. 2005. Pacific subduction coeval with the Karoo mantle plume: the Early Jurassic subcordilleran belt of northwestern Patagonia. In Terrane Processes at the Margins of Gondwana (eds Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J.), pp. 217–40. Geological Society of London, Special Publication no. 246.Google Scholar
Ribeiro, A., Andreis, R. R., Paciullo, F. V. P. & Trouw, R. A. J. 2002. Triassic submarine fan facies association at Cape Legoupil, Antarctic Peninsula. In Antarctica at the Close of a Millennium: Proceedings of the 8th International Symposium on Antarctic Earth Sciences (eds Gamble, S. J. A., Skinner, D. N. B. & Henrys, S.), pp. 169–74. The Royal Society of New Zealand Bulletin no. 35.Google Scholar
Scheepers, R. & Armstrong, R. 2002. New U-Pb SHRIMP zircon ages of the Cape Granite Suite: implications for the magmatic evolution of the Saldania Belt. South African Journal of Geology 105, 241–56.CrossRefGoogle Scholar
Sepúlveda, F. A., Palma-Heldt, S., Herve, F. & Fanning, C. M. 2010. Permian depositional age of metaturbidites of the Duque de York Complex, southern Chile: U-Pb SHRIMP data and palynology. Andean Geology 37, 375–97.CrossRefGoogle Scholar
Shanmugam, G. 2006. Deep-Water Processes and Facies Models: Implications for sandstone petroleum reservoirs. Handbook of petroleum exploration and production, 5. Amsterdam: Elsevier.Google Scholar
Smellie, J. L. 1991. Stratigraphy, provenance and tectonic setting of (?) Late Palaeozoic–Triassic sedimentary sequences in northern Graham Land and South Scotia Ridge. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.), pp. 411–17. Cambridge: Cambridge University Press.Google Scholar
Smellie, J. L. & Millar, I. L. 1995. New K-Ar isotopic ages of schists from Nordenskold Coast, Antarctic Peninsula: oldest part of the Trinity Peninsula Group. Antarctic Science 7, 191–96.CrossRefGoogle Scholar
Smellie, J. L., Roberts, B. & Hirons, S. R. 1996. Very low- and low-grade metamorphism in the Trinity Peninsula Group (Permo-Triassic) of northern Graham Land, Antarctic Peninsula. Geological Magazine 133, 583–94.CrossRefGoogle Scholar
Söllner, F., Miller, H. & Herve, M. 2000. An Early Cambrian granodiorite age from the pre-Andean basement of Tierra del Fuego (Chile): the missing link between South America and Antarctica? Journal of South American Earth Sciences 13, 163–77.CrossRefGoogle Scholar
Stern, C. R. & de Wit, M. J. 2003. Rocas Verdes ophiolites, southernmost South America: remnants of progressive stages of development on oceanic-type crust in a continental margin back-arc basin. In Ophiolites in Earth History (eds Dilek, Y. & Robinson, P. T.), pp. 665–83. Geological Society of London, Special Publication no. 218.Google Scholar
Stone, P. & Thomson, M. R. A. 2005. Archaeocyathan limestone blocks of likely Antarctic origin in Gondwanan tillite from the Falkland Islands. In Terrane Processes at the Margins of Gondwana (eds Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J.), pp. 347–58. Geological Society of London, Special Publication no. 246.Google Scholar
Storey, B. C. 1995. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377 (6547), 301–08.CrossRefGoogle Scholar
Storey, B. C. & Garrett, S. W. 1985. Crustal growth of the Antarctic Peninsula by accretion, magmatism and extension. Geological Magazine 122, 514.CrossRefGoogle Scholar
Thomas, R. J., Jacobs, J., Horstwood, M. S. A., Ueda, K., Bingen, B. & Matola, R. 2010. The Mecúburi and Alto Benfica Groups, NE Mozambique: aids to unravelling ca. 1 and 0.5 Ga events in the East African Orogen. Precambrian Research 178, 7290.CrossRefGoogle Scholar
Thomson, M. R. A. 1975. New palaeontological and lithological observations on the Legoupil Formation, north-west Antarctic Peninsula. British Antarctic Survey Bulletin 41–42, 169–85.Google Scholar
Thomson, S. N. & Hervé, F. 2002. New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42° S–52° S). Revista Geologica De Chile 29, 255–71.Google Scholar
Trouw, R. A. J., Passchier, C. W., Simoes, L. S. A., Andreis, R. R. & Valeriano, C. M. 1997. Mesozoic tectonic evolution of the South Orkney microcontinent, Scotia arc, Antarctica. Geological Magazine 134, 383401.CrossRefGoogle Scholar
Vaughan, A. P. M. & Livermore, R. A. 2005. Episodicity of Mesozoic terrane accretion along the Pacific margin of Gondwana: implications for superplume-plate interactions. In Terrane Processes at the Margins of Gondwana (eds Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J.), pp. 143–78. Geological Society of London, Special Publication no. 246.Google Scholar
Vaughan, A. P. M. & Storey, B. C. 2000. The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. Journal of the Geological Society, London 157, 1243–56.CrossRefGoogle Scholar
Veevers, J. J. & Saeed, A. 2007. Central Antarctic provenance of Permian sandstones in Dronning Maud Land and the Karoo Basin: integration of U-Pb and T-DM ages and host-rock affinity from detrital zircons. Sedimentary Geology 202, 653–76.CrossRefGoogle Scholar
Visser, J. N. J., Hall, K. J. & Loock, J. C. 1986. The application of stone counts in the glacigene Permo-Carboniferous Dwyka Formation, South Africa. Sedimentary Geology 46, 197212.CrossRefGoogle Scholar
Walker, R. G. 1992. Turbidites and submarine fans. In Facies Models: Response to sea-level change, no. GT1 (eds Walker, R. G. & James, N. P.), pp. 239–63. St Johns, Newfoundland: Geological Association of Canada.Google Scholar
Wandres, A. M. & Bradshaw, J. D. 2005. New Zealand tectonostratigraphy and implications from conglomeratic rocks for the configuration of the SW Pacific of Gondwana. In Terrane Processes at the Margins of Gondwana (eds Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J.), pp. 179–216. Geological Society of London, Special Publication no. 246.Google Scholar
Wandres, A. M., Bradshaw, J. D., Weaver, S., Maas, R., Ireland, T. & Eby, N. 2004. Provenance of the sedimentary Rakaia sub-terrane, Torlesse Terrane, South Island, New Zealand: the use of igneous clast compositions to define the source. Sedimentary Geology 168, 193226.CrossRefGoogle Scholar
Whitehouse, M. J., Kamber, B. S. & Moorbath, S. 1999. Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland – a reassessment based on combined ion-microprobe and imaging studies. Chemical Geology 160, 201–24.CrossRefGoogle Scholar
Will, T. M., Frimmel, H. E., Zeh, A., Le Roux, P. & Schmadicke, E. 2010. Geochemical and isotopic constraints on the tectonic and crustal evolution of the Shackleton Range, East Antarctica, and correlation with other Gondwana crustal segments. Precambrian Research 180, 85112.CrossRefGoogle Scholar
Will, T. M., Zeh, A., Gerdes, A., Frimmel, H. E., Millar, I. L. & Schmadicke, E. 2009. Palaeoproterozoic to Palaeozoic magmatic and metamorphic events in the Shackleton Range, East Antarctica: constraints from zircon and monazite dating, and implications for the amalgamation of Gondwana. Precambrian Research 172, 2545.CrossRefGoogle Scholar
Willan, R. C. R. 2003. Provenance of Triassic–Cretaceous sandstones in the Antarctic Peninsula: implications for terrane models during Gondwana breakup. Journal of Sedimentary Research 73, 1062–77.CrossRefGoogle Scholar
Williams, I. S. 1998. U-Th-Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks, W. C. & Ridley, W. I.), pp. 135. Socorro, New Mexico: Society of Economic Geologists Publishing Company.Google Scholar
Zeh, A., Gerdes, A. & Barton, J. M. 2009. Archean accretion and crustal evolution of the Kalahari Craton: the zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown Arc. Journal of Petrology 50, 933–66CrossRefGoogle Scholar
Supplementary material: File

Bradshaw Supplementary Appendix

Bradshaw Supplementary Appendix

Download Bradshaw Supplementary Appendix(File)
File 37.9 KB
Supplementary material: File

Bradshaw Supplementary Table

Table 1. Summary of U-Pb zircon geochronology from View Point

Download Bradshaw Supplementary Table(File)
File 171 KB