Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T16:13:08.836Z Has data issue: false hasContentIssue false

Palaeomagnetic, rock-magnetic and mineralogical investigations of the Lower Triassic Vardebukta Formation from the southern part of the West Spitsbergen Fold and Thrust Belt

Published online by Cambridge University Press:  31 January 2018

KATARZYNA DUDZISZ*
Affiliation:
Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
KRZYSZTOF MICHALSKI
Affiliation:
Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
RAFAŁ SZANIAWSKI
Affiliation:
Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
KRZYSZTOF NEJBERT
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
GEOFFREY MANBY
Affiliation:
Natural History Museum of London, Great Britain, Cromwell Road, London SW7 5BD, UK
*
Author for correspondence: [email protected]

Abstract

Magnetic, petrological and mineralogical data from 13 sites (99 independently oriented samples) of the Lower Triassic rocks located in the SW segment of the West Spitsbergen Fold and Thrust Belt (WSFTB) are presented in order to identify the ferrimagnetic carriers and establish the origin of the natural remanent magnetization (NRM). Volcanic lithoclasts and other detrital resistive grains in which the primary magnetization might endure are present in some samples. On the other hand, petrological studies indicate that sulphide remineralization could have had an important influence on the remagnetization of these rocks. The dominant ferrimagnetic carriers are titanomagnetite and magnetite. While the titanomagnetite may preserve the primary magnetization, the magnetite is a more likely potential carrier of secondary overprints. The complex NRM patterns found in most of the samples may be explained by the coexistence and partial overlapping of components representing different stages of magnetization. Components of both polarities were identified in the investigated material. The reversal test performed on the most stable components that demagnetized above 300°C proved to be negative at the 95% confidence level at any stage of unfolding. They are better grouped, however, after 100% tectonic corrections and the most stable components are clustered in high inclinations (c. 70–80°). This suggests that at least part of the measured palaeomagnetic vectors represent a secondary prefolding magnetic overprint that originated in post-Jurassic time before the WSFTB event. Vitrinite reflectance studies show these rocks have not been subjected to any strong heating (<200°C).

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullah, W. H. 1999. Organic facies variations in the Triassic shallow-marine and deep-marine shales of central Spitsbergen, Svalbard. Journal of Marine and Petroleum Geology 16, 467–81.Google Scholar
Banerjee, S., Elmore, R. D. & Engel, M. H. 1997. Chemical remagnetization and burial diagenesis: testing the hypothesis in the Pennsylvanian Belden Formation, Colorado. Journal of Geophysical Research 102, 24825–42.Google Scholar
Barbier, E. 2002. Geothermal energy technology and current status: an overview. Renewable and Sustainable Energy Reviews 6, 365.Google Scholar
Barker, C. E. & Pawlewicz, M. J. 1994. Calculation of vitrinite reflectance from thermal histories and peak temperatures: a comparison of methods. In Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations (eds. Mukhopadhyay, P. K. & Dow, W. G.), pp. 216–29. American Chemical Society, Symposium Series no. 570.Google Scholar
Barnes, C. 2016. Cretaceous-Paleogene low temperature history of the Southwestern Province, Svalbard, revealed by (U-Th)/He thermochronometry: implications for High Arctic tectonism. M.Sc. thesis, University of Ottawa, Ottawa, Canada. Published thesis.Google Scholar
Birkenmajer, K. 1990. Geology of the Hornsund area, Spitsbergen. Geological map 1:75,000, with explanations. Polish Academy of Sciences, Committee on Polar Research, and Silesian University, 42 pp.Google Scholar
Birkenmajer, K., Krajewski, K. P., Pécskay, Z. & Lorenc, M. W. 2010. K–Ar dating of basic intrusions at Bellsund, Spitsbergen, Svalbard. Polish Polar Research 31 (1), 316.Google Scholar
Birkenmajer, K. & Trammer, J. 1975. Lower Triassic conodonts from Hornsund, South Spitsbergen. Acta Geologica Polonica 25 (2), 299310.Google Scholar
Braathen, A. & Bergh, S. G. 1995. Kinematics of Tertiary deformation in the basement-involved fold-thrust complex, western Nordenski¢ld Land, Svalbard: tectonic implications based on fault-slip data analysis. Tectonophysics 249, 129.Google Scholar
Brothers, L., Engel, M. H. & Elmore, R. D. 1996. The late diagenetic conversion of pyrite to magnetite by organically complexed ferric iron. Chemical Geology 130, 114.Google Scholar
Butler, R. 1992. Palaeomagnetism: Magnetic Domains to Geologic Terranes. Boston: Blackwell Scientific Publications, 319 pp.Google Scholar
Chadima, M. & Hrouda, F. 2006. Remasoft 3.0 a user-friendly palaeomagnetic data browser and analyzer. Travaux Géophysics XXVII, 20–1.Google Scholar
Clark, S. A., Glorstad-Clark, E., Faleide, J. I., Schmid, D., Hartz, E. H. & Fjeldskaar, W. 2014. Southwest Barents Sea rift basin evolution: comparing results from backstripping and time-forward modeling. Basin Research 26, 550–66.Google Scholar
Dallmann, W. 1992. Multiphase tectonic evolution of the Sørkapp-Hornsund mobile zone (Devonian, Carboniferous, Tertiary), Svalbard. Norsk Geologisk Tidsskrift 72, 4966.Google Scholar
Dörr, N., Lisker, F., Clift, P. D., Carter, A., Gee, D. G., Tebenkov, A. M. & Spiegel, C. 2012. Late Mesozoic–Cenozoic exhumation history of northern Svalbard and its regional significance: Constraints from apatite fission track analysis. Tectonophysics 514–17, 8192.Google Scholar
Dudzisz, K., Szaniawski, R., Michalski, K. & Manby, G. 2016. Applying the anisotropy of magnetic susceptibility technique to the study of the tectonic evolution of the West Spitsbergen fold-and-thrust belt. Polar Research 35, doi: 103402/polar.v35.31683.Google Scholar
Dunlop, D. J. & Özdemir, Ö. 1997. Rock Magnetism Fundamentals and Frontiers. New York, London and Cambridge: Cambridge University Press, 596 pp.Google Scholar
Dypvik, H., Riber, L., Burca, F., Rüther, D., Jargvoll, D., Nagy, J. & Jochmann, M. 2011. The Paleocene-Eocene thermal maximum (PETM) in Svalbard–clay mineral and geochemical signals. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 156–69.Google Scholar
Ellwood, B. B., Burkart, B., Rajeshwar, K., Darwin, R. L., Neeley, R. A., McCall, A. B., Long, G. J., Buhl, M. L. & Hickcox, C. W. 1989. Are the iron carbonate minerals, ankerite, and ferroan dolomite, like siderite, important in palaeomagnetism? Journal of Geophysical Research 94 (B6), 7321–31.Google Scholar
Fisher, R. A. 1953. Dispersion on a sphere. Proceedings of the Royal Society of London A 217, 295305.Google Scholar
Grogan, P., Nyberg, K., Fotland, B., Myklebust, R., Dahlgren, S. & Riis, F. 2000. Cretaceous magmatism south and east of Svalbard: evidence from seismic reflection and magnetic data. Polarforschung 68, 2534.Google Scholar
Halvorsen, E. 1989. A paleomagnetic pole position of Late Jurassic/Early Cretaceous dolerites from Hinlopenstretet, Svalbard, and its tectonic implications. Earth and Planetary Science Letters 94 (3–4), 398408.Google Scholar
Harland, W.B. (ed.) 1997. The Geology of Svalbard. Geological Society of London, Memoir 17, 521 pp.Google Scholar
Heider, F., Körner, U. & Bitschene, P. 1993. Volcanic ash particles as carriers of remanent magnetization in deep-sea sediments from the Kerguelen Plateau. Earth and Planetary Science Letters 118, 121–34.Google Scholar
Hounslow, M. W., Hu, M., Mørk, A., Vigran, J. O., Weitschat, W. & Orchard, M. J. 2007. Magneto-biostratigraphy of the Middle to Upper Triassic transition, central Spitsbergen, arctic Norway. Journal of the Geological Society 164, 581–97.Google Scholar
Hounslow, M. W., Hu, M., Mørk, A., Weitschat, W., Vigran, J. O., Karloukovski, V. & Orchard, M. J. 2008 a. Intercalibration of Boreal and Tethyan time scales: the magnetobiostratigraphy of the Middle Triassic and the latest Early Triassic from Spitsbergen, Arctic Norway. Polar Research 27, 469–90.Google Scholar
Hounslow, M. W. & Nawrocki, J. 2008. Palaeomagnetism and magnetostratigraphy of the Permian and Triassic of Spitsbergen: a review of progress and challenges. Polar Research 27, 502–22.Google Scholar
Hounslow, M. W., Peters, C., Mørk, A., Weitschat, W. & Vigran, J. O. 2008 b. Biomagnetostratigraphy of the Vikinghøgda Formation, Svalbard (Arctic Norway), and the geomagnetic polarity timescale for the Lower Triassic. Geological Society of America Bulletin 120, 13051325.Google Scholar
Jeleńska, M. 1987. Aspects of pre-Tertiary palaeomagnetism of Spitsbergen and their tectonic implications. Tectonophysics 139 (1–2), 99106.Google Scholar
Jeleńska, M., Kądziałko-Hofmokl, M., Kruczyk, J. & Vincenz, S. A. 1978. Thermomagnetic properties of some late Mesozoic diabase dikes of South Spitsbergen. Pure and Applied Geophysics 117 (4), 784–94.Google Scholar
Jeleńska, M. & Lewandowski, M. 1986. A palaeomagnetic study of Devonian sandstone from Central Spitsbergen. Geophysical Journal of the Royal Astronomical Society 87, 617–32.Google Scholar
Kirschvink, J. L. 1980. The least square line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.Google Scholar
Krajewski, K. P. 2013. Organic matter–apatite–pyrite relationships in the Botneheia Formation (Middle Triassic) of eastern Svalbard: Relevance to the formation of petroleum source rocks in the NW Barents Sea shelf. Marine and Petroleum Geology 45, 69105.Google Scholar
Krajewski, K., Karcz, P., Woźny, E. & Mørk, A. 2007. Type section of the Bravaisberget Formation (Middle Triassic) at Bravaisberget, western Nathorst Land, Spitsbergen, Svalbard. Polish Polar Research 28 (2), 79122.Google Scholar
Lattard, D., Engelmann, R., Kontny, A. & Sauerzapf, U. 2006. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effects of compositions, crystal chemistry, and thermomagnetic methods. Journal of Geophysical Research 111, B12S28.Google Scholar
Leever, K. A., Gabrielsen, R. H., Faleide, J. I. & Braathen, A. 2011. A transpressional origin for the West Spitsbergen fold-and-thrust belt: Insight from analog modeling. Tectonics 30, 124.Google Scholar
Lewandowski, M., Michalski, K., Bednarek, J. & Norberciak, H. 2005. Palaeomagnetic study of the Middle Carboniferous Hyrnefjellet Formation from the Hornsund Region, Southern Spitsbergen. American Geophysical Union, Fall Meeting 2005 (conference abstract). San Francisco, 5–9 December 2005.Google Scholar
Lowrie, W. 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters 17, 159–62.Google Scholar
Lyberis, N. & Manby, G. 1993 a. The origin of the West Spitsbergen fold belt from geological constraints and plate kinematics: implications for the Arctic. Tectonophysics 224 (4), 371–91.Google Scholar
Lyberis, N. & Manby, G. M. 1993 b. The West Spitsbergen Fold Belt: the result of Late Cretaceous-Palaeocene Greenland-Svalbard convergence. Geological Journal 28, 125136.Google Scholar
Maher, H. D. Jr., Braathen, A., Bergh, S., Dallmann, W. & Harland, W. B. 1995. Tertiary or Cretaceous age of Spitsbergen's fold-thrust belt on the Barents Shelf. Tectonics 14 (5), 1321–26.Google Scholar
McAndrew, J. 1957. Calibration of a Frantz Isodynamic separator and its application to mineral separation. The Australian Institute of Mining and Metallurgy 181, 5973.Google Scholar
McFadden, P. L. & McElhinny, M. W. 1990. Classification of the reversal test in paleomagnetism. Geophysical Journal International 103, 725–9.Google Scholar
Michalski, K. & Lewandowski, M. 2004. Palaeomagnetic results from the Middle Carboniferous rocks of the Hornsund region, southern Spitsbergen: preliminary report. Polish Polar Research 25, 169–82.Google Scholar
Michalski, K., Lewandowski, M. & Manby, G. 2012. New palaeomagnetic, petrographic and 40Ar/39Ar data to test palaeogeographic reconstructions of Caledonide Svalbard. Geological Magazine 149, 696721.Google Scholar
Michalski, K., Manby, G., Nejbert, K., Domańska-Siuda, J. & Burzyński, M. 2017. Using palaeomagnetic and isotopic data to investigate late to post-Caledonian tectonothermal processes within the Western Terrane of Svalbard. Journal of the Geological Society, published online 23 February 2017, doi: 10.1144/jgs2016-037.Google Scholar
Michalski, K., Nejbert, K., Domańska-Siuda, J. & Manby, G. 2014. New palaeomagnetic data from metamorphosed carbonates of Western Oscar II Land, Western Spitsbergen. Polish Polar Research 35, 553–92.Google Scholar
Morad, S. & Aldahan, A. A. 1986. Alteration of detrital Fe–Ti oxides in sedimentary rocks. Geological Society of America Bulletin 97, 567–78.Google Scholar
Mørk, A., Dallmann, W. K., Dypvik, H., Johannessen, E. P., Larssen, G. B., Nagy, J., Nøttvedt, A., Olaussen, S., Pchelina, T. M. & Worsley, D. 1999. Mesozoic lithostratigraphy. In Lithostratigraphic Lexicon of Svalbard. Upper Palaeozoic to Quaternary Bedrock. Review and Recommendations for Nomenclature Use (ed. Dallmann, W. K.), pp. 127214. Tromsø: Norwegian Polar Institute.Google Scholar
Mørk, A., Embry, A. F. & Weitschat, W. 1989. Triassic transgressive–regressive cycles in the Sverdrup Basin, Svalbard, and the Barents Shelf. In Correlation in Hydrocarbon Exploration (ed. Collinson, J. D.), pp.113–30. London: Graham & Trotman.Google Scholar
Mücke, A. & Bhadra Chaudhuri, J. N. 1991. The continuous alteration of ilmenite through pseudorutile to leucoxene. Ore Geology Reviews 6, 2544.Google Scholar
Nawrocki, J. 1999. Paleomagnetism of Permian through Early Triassic Sequences in central Spitsbergen: implications for paleogeography. Earth and Planetary Science Letters 169, 5970.Google Scholar
Nawrocki, J. & Grabowski, J. 2000. Palaeomagnetism of Permian through Early Triassic sequences in central Spitsbergen: contribution to magnetostratigraphy. Geological Quarterly 44, 109–17.Google Scholar
Nejbert, K., Krajewski, K. P., Dubińska, E. & Pécskay, Z. 2011. Dolerites of Svalbard, north-west Barents Sea Shelf: age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province. Polar Research 30, 7306, 24 pp.Google Scholar
Ohta, Y. & Dallmann, W. K. (eds) 1994. Geological map of Svalbard 1: 100000, sheet B12G Torellbreen. Available at https://data.npolar.no/dataset/eafafbb7-b3df-4c71-a2df-316e80a7992e.Google Scholar
Parnell, J. 2004. Titanium mobilization by hydrocarbon fluids related to sill intrusion in a sedimentary sequence, Scotland. Ore Geology Reviews 24, 155–67.Google Scholar
Piepjohn, K., von Gosen, W. & Tessensohn, F. 2016. The Eurekan deformation in the Arctic: an outline. Journal of the Geological Society, published online 22 September 2016, doi: 10.1144/jgs2016-081.Google Scholar
Polteau, S., Hendriks, B. W. H., Planke, S., Ganerød, M., Corfu, F., Faleide, J. I., Midtkandal, I., Svensen, H. S. & Myklebust, R. 2016. The Early Cretaceous Barents Sea sill complex: distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeography. Palaeoclimatology, Palaeoecology 441, 8395.Google Scholar
Qian, G., Brugger, J., Skinner, W. M., Chen, G. & Pring, A. 2010. An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300°C. Geochimica et Cosmochimica Acta 74, 5610–30.Google Scholar
Rosenblum, S. & Brownfield, I. K. 2000. Magnetic susceptibilities of minerals. USGS, Open-File Report no. 99–529, pp. 2–37.Google Scholar
Rowan, C. J., Roberts, A. P. & Broadbent, T. 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth and Planetary Science Letters 277, 223–35.Google Scholar
Saalmann, K. & Thiedig, F. 2001. Tertiary West Spitsbergen fold and thrust belt on Brøggerhalvøya, Svalbard: Structural structural evolution and kinematics. Tectonics 20 (6), 976–98.Google Scholar
Sandal, S. T. & Halvorsen, E. 1973. Late Mesozoic palaeomagnetism from Spitsbergen: implications for continental drift in the Arctic. Physics of the Earth and Planetary Interiors 7 (2), 125–32.Google Scholar
Senger, K., Tveranger, J., Ogata, K., Braathen, A. & Planke, S. 2014. Late Mesozoic magmatism in Svalbard: a review. Earth-Science Reviews 139, 123–44.Google Scholar
Spall, H. 1968. Anomalous paleomagnetic poles from late Mesozoic dolerites from Spitsbergen. Earth and Planetary Science Letters 4 (1), 73–8.Google Scholar
Steel, R. J. & Worsley, D. 1984. Svalbard's post-Caledonian strata: an atlas of sedimentational patterns and paleogeographic evolution. In Habitat of Hydrocarbons on the Norwegian Continental Margin (eds Spencer, A. M., Holter, E., Johnsen, S. O., Mørk, A., Nysæther, E., Songstad, P. & Spinnangr, Å.), pp. 109–35. Graham & Trotman, London: Norwegian Petroleum Society.Google Scholar
Tanikawa, W., Mishima, T., Hirono, T., Soh, W. & Song, S. 2008. High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu fault in Taiwan. Earth and Planetary Science Letters 272, 372–81.Google Scholar
Tohver, E., Weil, A. B., Solum, J. G. & Hall, C. M. 2008. Direct dating of chemical remagnetizations in sedimentary rocks, insights from clay mineralogy and 40Ar/39Ar age analysis. Earth and Planetary Science Letters 274, 524–30.Google Scholar
Torsvik, T. H. & Cocks, L. R. M. 2005. Norway in space and time: a centennial cavalcade. Norwegian Journal of Geology 85, 7386.Google Scholar
Van der Voo, R. 1990. The reliability of paleomagnetic data. Tectonophysics 184, 19.Google Scholar
Vincenz, S. A., Cossack, D., Duda, S. J., Birkenmajer, K., Jeleńska, M., Kądziałko-Hofmokl, M. & Kruczyk, J. 1981. Palaeomagnetism of some late Mesozoic dolerite sills of South Spitsbergen. Geophysical Journal of the Royal Astronomical Society 67, 599614.Google Scholar
Vincenz, S. A. & Jeleńska, M. 1985. Paleomagnetic investigations of Mesozoic and Palaeozoic rocks from Svalbard. Tectonophysics 114, 163180.Google Scholar
Vincenz, S. A., Jeleńska, M., Aiinehsazian, K. & Birkenmajer, K. 1984. Palaeomagnetism of some late Mesozoic dolerite sills of East Central Spitsbergen, Svalbard Archipelago. Geophysical Journal of the Royal Astronomical Society, 78, 751773.Google Scholar
Supplementary material: PDF

Dudzisz et al. supplementary material 1

Dudzisz et al. supplementary material

Download Dudzisz et al. supplementary material 1(PDF)
PDF 1 MB