Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T08:45:23.992Z Has data issue: false hasContentIssue false

Ostracods from Upper Ordovician (Katian) carbonate lithofacies in southwest Scotland

Published online by Cambridge University Press:  25 May 2010

M. MOHIBULLAH*
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK Department of Geology, University of Balochistan, Quetta, Pakistan
J. AFZAL
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK National Centre of Excellence in Geology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
M. WILLIAMS
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
T. MEIDLA
Affiliation:
Department of Geology, Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila Str., Tartu 50411, Estonia
D. J. SIVETER
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
J. A. ZALASIEWICZ
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
*
Author for correspondence: [email protected]

Abstract

The Ordovician Craighead Limestone Formation of southwest Scotland was formed on a carbonate platform on the eastern tropical margin of the Laurentia palaeocontinent during the early Katian (c. 456 Ma). It yields the most diverse and well-preserved ostracod fauna yet recovered from the Scottish Ordovician succession, with some 25 species divisible into two distinct marine biotopes comprising shallow lagoonal and deeper platform margin settings, respectively. The ostracods show strong biogeographic links at species-level with Sandbian and early Katian faunas of North America, including Krausella arcuata, Steusloffina cuneata, Monoceratella teres and species of Levisulculus and Platybolbina. However, many of the ostracod genera that characterize the Craighead Limestone Formation have earlier origins in the Baltica palaeocontinent, suggesting enhanced migration of species from mid- (Baltica about 30° S) to low (Laurentia) latitudes in the late Sandbian and early Katian interval. Such Baltica-origin genera include Distobolbina, Kiesowia and Platybolbina. Notable is the wide biogeographic occurrence of Steusloffina cuneata, extending from warm tropical Laurentia to cooler high-latitude Gondwana, an enormous latitudinal range for a shelf-dwelling marine species. The possible Tvaerenellidae taxon Duoarcus levigatus gen. et sp. nov. is described.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aigner, T. 1985. Storm depositional systems: Dynamic stratigraphy in modern and ancient marine sequences. Lecture Notes in Earth Sciences, 3rd ed. Berlin: Springer-Verlag, 174 pp.Google Scholar
Ausich, W. I. 1997. Regional encrinites: a vanished lithofacies. In Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications (eds Brett, C. E. & Baird, G. C.), pp. 509–19. New York: Columbia University Press.Google Scholar
Assaruri, M. & Langbein, R. 1987. Verbreitung und Entstehung intraformationeller Konglomerate im Unteren Muschelkalk Thüringens (Mittlere Trias). Zeitschrift für Geologische Wissenschaften 15, 511–25.Google Scholar
Barattolo, F. 1991. Mesozoic and Cenozoic marine benthic calcareous algae with particular regard to the Mesozoic dasycladaceans. In Calcareous Algae and Stromatolites (ed. Riding, R.), pp. 504–40. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bergström, S. M. 1990. Biostratigraphic and biogeographic significance of Middle and Upper Ordovician conodonts in the Girvan succession, southwest Scotland. Courier Forschungsinstitut Senckenberg 118, 143.Google Scholar
Cocks, L. R. M. 2000. The Early Palaeozoic geography of Europe. Journal of the Geological Society, London 157, 110.CrossRefGoogle Scholar
Cocks, L. R. M. & Fortey, R. A. 1982. Faunal evidence for oceanic separations in the Palaeozoic of Britain. Journal of the Geological Society, London 139, 465–78.CrossRefGoogle Scholar
Cocks, L. R. M. & Fortey, R. A. 1990. Biogeography of Ordovician and Silurian faunas. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. S. & Scotese, C. F.), pp. 97104. Geological Society of London, Memoir no. 12.Google Scholar
Cocks, L. R. M., McKerrow, W. S. & van Staal, C. R. 1997. The margins of Avalonia. Geological Magazine 134, 627–36.CrossRefGoogle Scholar
Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews 72, 3966.CrossRefGoogle Scholar
Copeland, M. J. 1965. Ordovician Ostracoda from Lake Timiskaming, Ontario. Bulletin of the Geological Survey of Canada 127, 152.Google Scholar
Copeland, M. J. 1977 a. Early Paleozoic Ostracoda from southwestern District of Mackenzie and Yukon Territory. Bulletin of the Geological Survey of Canada 275, 188.Google Scholar
Copeland, M. J. 1977 b. Ordovician Ostracoda, southeastern District of Franklin. In Geology of Ordovician rocks, Melville Peninsula and region, southeastern District of Franklin (eds Bolton, T. E., Sanford, B. V., Copeland, M. J., Barnes, C. E. & Rigby, J. K.), pp. 77–97. Bulletin of the Geological Survey of Canada 269.Google Scholar
Copeland, M. J. 1981. Latest Ordovician and Silurian ostracode faunas from Anticosti Island, Québec. In Field Meeting, Subcommission on Silurian stratigraphy, Ordovician–Silurian Boundary Working Group, Anticosti – Gaspé, Quebec, 1981 (ed. Lespérance, P. J.), pp. 185–95. Stratigraphy and Paleontology II.Google Scholar
Copeland, M. J. 1982. Bathymetry of early middle Ordovician (Chazy) ostracodes, Lower Esbataottine Formation, District of Mackenzie. Bulletin of the Geological Survey of Canada 347, 139.Google Scholar
Copeland, M. J. 1983. Steusloffina cuneata (Steusloff), 1895, from Anticosti Island, Quebec. Geological Survey of Canada, Paper 83–1B, 201–4.Google Scholar
Copeland, M. J. 1989. Silicified Upper Ordovician–Lower Silurian ostracodes from the Avalanche Lake area southwestern District of Mackenzie. Bulletin of the Geological Survey of Canada 341, 1100.Google Scholar
Da Silva, A.-Ch. & Boulvain, F. 2002. Sedimentology, magnetic susceptibility and isotopes of a Middle Frasnian carbonate platform: Tailfer section, Belgium. Facies 46, 89102.CrossRefGoogle Scholar
Demicco, R. V. & Hardie, L. A. 1994. Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. Society of Economic Paleontologists and Mineralogists Atlas Series 1, 255 pp.Google Scholar
Ferriti, A. & Kříž, J. 1995. Cephalopod limestone biofacies in the Silurian of Prague Basin, Bohemia. Palaios 10, 240–53.CrossRefGoogle Scholar
Floyd, J. D., Williams, M. & Rushton, A. W. A. 1999. Late Ordovician (Ashgill) Ostracodes from the Drummuck Group, Craighead Inlier, Girvan district, southwest Scotland. Scottish Journal of Geology 35, 1524.CrossRefGoogle Scholar
Floyd, J. D. & Williams, M. 2003. A revised lithostratigraphy for the Silurian of the Girvan district. Transactions of the Royal Society of Edinburgh: Earth Sciences 93, 383–92.CrossRefGoogle Scholar
Flügel, E. 1991. Environmental analysis of allochthonous carbonate blocks and autochthonous mounds at the northern margin of the Schlern-Rosengarten (Sciliar-Catinaccio) platform. In The northern margin of the Schlern/Sciliar – Rosengarten/Catinaccio platform. Dolomieu Conference on Carbonate Platforms and Dolomitization (eds Brander, R., Flügel, E., Koch, R. & Yose, L. A.), pp. 4155. Guidebook Excursion A.Google Scholar
Flügel, E. 2004. Microfacies of carbonate rocks: analysis, interpretation and application. Berlin-Heidelberg-New York: Springer, 976 pp.CrossRefGoogle Scholar
Fortey, R. A. 1984. Global earlier Ordovician transgressions and regressions and their biological implications. In Aspects of the Ordovician System (ed. Bruton, D. L.), pp. 3750. Contributions from the University of Oslo, no. 295. Universitetsforlaget.Google Scholar
Fürsich, F. T., Wilmsen, M., Seyed-Emami, K., Schairer, G. & Majidifard, M. R. 2003. Platform-basin transect of a Middle to Late Jurassic large-scale carbonate platform system (Shotori Mountains, Tabas area, east-central Iran). Facies 48, 171–98.CrossRefGoogle Scholar
Haas, J. 1999. Genesis of Late Cretaceous toe-of-slope breccias in the Bakony Mts., Hungary. Sedimentary Geology 128, 5166.CrossRefGoogle Scholar
Harper, D. A. T. 1982. The stratigraphy of the Drummuck group (Ashgill), Girvan. Geological Journal 17, 251–77.CrossRefGoogle Scholar
Harris, R. W. 1957. Ostracoda from the Simpson Group. Oklahoma Geological Survey Bulletin 75, 1333.Google Scholar
Hender, K. L. B. & Dix, G. R. 2008. Facies development of a Late Ordovician mixed carbonate-siliclastic ramp proximal to the developing Taconic orogen: Lourdes Formation, Newfoundland, Canada. Facies 54, 121–49.CrossRefGoogle Scholar
Herbig, H. G. 1984. Rekonstruktion eines nicht mehr existenten Sedimentationraumes. Die Kalkgerölle im Karbon-Flysch der Malagiden (Betische Kordillere, Südspanien). Facies 11, 1108.CrossRefGoogle Scholar
Hessland, I. & Adamczak, F. 1974. On the taxonomic position of Steusloffina Teichert (Ostracoda). Geoscience and Man 6, 5964.Google Scholar
Holland, S. M. 1993. Sequence stratigraphy of a carbonate-clastic ramp: the Cincinnatian Series (Upper Ordovician) in its type area. Bulletin of the Geological Society of America 105, 306–22.2.3.CO;2>CrossRefGoogle Scholar
Ingham, J. K. 1992. The Craighead Inlier. In Geological Excursions around Glasgow and Girvan (eds Lawson, J. D. & Weedon, D. S.), pp. 417–35. Geological Society of Glasgow.Google Scholar
Jannusson, V. 1957. Middle Ordovician ostracodes of Central and Southern Sweden. Bulletin of the Geological Institution of the University of Uppsala 37, 173442.Google Scholar
Jones, C. R. 1986. Ordovician (Llandeilo and Caradoc) Beyrichiocope Ostracoda from England and Wales. Part 1. Monograph of the Palaeontographical Society, London, pp. 1–76. (Publ. No. 569, part of Vol. 138 for 1984.)CrossRefGoogle Scholar
Jones, C. R. 1987. Ordovician (Llandeilo and Caradoc) Beyrichiocope Ostracoda from England and Wales. Part 2. Monograph of the Palaeontographical Society, London, pp. 77–114. (Publ. No. 571, part of Vol. 139 for 1985.)CrossRefGoogle Scholar
Jones, T. R. 1879. Order Ostracoda. In A monograph of the Silurian fossils of the Girvan district in Ayrshire with special reference to those contained in the “Gray collection” (eds Nicholson, H. A. & Etheridge, R.), pp. 216–23. Volume 1, Fasciculus II. Edinburgh and London: William Blackwood and Sons.Google Scholar
Jones, T. R. 1889. Notes on the Palaeozoic bivalved Entomostraca. No. 28. Annals and Magazine of Natural History 4, 267–73.CrossRefGoogle Scholar
Jones, T. R. 1893. On some Palaeozoic Ostracoda from the district of Girvan, Ayrshire. Quarterly Journal of the Geological Society of London 49, 296307.CrossRefGoogle Scholar
Kay, G. M. 1940. Ordovician Mohawkian Ostracoda: Lower Trenton Decorah Fauna. Journal of Paleontology 14, 234–69.Google Scholar
Kesling, R. V. 1960 a. Middle Ordovician Black River ostracods from Michigan, Part II, Levisulculus and Eurychilina. Contributions from the Museum of Paleontology, University of Michigan 15, 349–63.Google Scholar
Kesling, R. V. 1960 b. Middle Ordovician Black River ostracods from Michigan, Part III, Platybolbina. Contributions from the Museum of Paleontology, University of Michigan 15, 365–85.Google Scholar
Kraft, J. C. 1962. Morphologic and systematic relationships of some middle Ordovician Ostracoda. Memoir of the Geological Society of America 86, viii + 104 pp., 19 pls.Google Scholar
Krause, A. 1892. Neue Ostrakoden aus märkischen Silurgeschieben. Zeitschrift der Deutschen Geologischen Gesellschaft 44, 383–99.Google Scholar
Latreille, P. A. 1802. Histoire naturelle, générale et particulière, des crustacés et des insectes, 3rd ed. Paris: Dufart, 468 pp.CrossRefGoogle Scholar
Lavoie, D. & Asselin, E. 1998. Upper Ordovician facies in the Lac Saint-Jean outlier, Quebec (eastern Canada): palaeoenvironmental significance for Late Ordovician Oceanography. Sedimentology 45, 817–32.CrossRefGoogle Scholar
Leigh, S. & Hartley, A. J. 1992. Mega-debris flow deposits from the Oligo-Miocene Pindos foreland basin, western mainland Greece: implications for transport mechanisms in ancient deep marine basins. Sedimentology 39, 1003–12.CrossRefGoogle Scholar
Leslie, S. P. & Bergström, S. M. 1995. Revision of the North American late middle Ordovician standard stage classification and timing of the Trenton transgression based on K-bentonite bed correlation. In Ordovician Odyssey: short papers from the Seventh International Symposium on the Ordovician System (eds Cooper, J. D., Droser, M. L. & Finney, S. C.), pp. 4954. Society for Sedimentary Geology (SEPM), Fullerton, California.Google Scholar
Levinson, S. A. 1961. New genera and species of Bromide (Middle Ordovician) ostracodes of Oklahoma. Micropaleontology 7, 359–64.CrossRefGoogle Scholar
Martinsson, A. 1960. The primitiopsid ostracodes from the Ordovician of Oklahoma and the systematics of the Family Primitiopsidae. Bulletin of the Geological Institution of the University of Uppsala 36, 79105.Google Scholar
McKerrow, W. S., Dewey, J. F. & Scotese, C. R. 1991. The Ordovician and Silurian development of the Iapetus Ocean. Special Papers in Palaeontology 44, 165–78.Google Scholar
McLaughlin, P. I., Brett, C. E., Taha-McLaughlin, S. L. & Cornell, S. R. 2004. High resolution sequence stratigraphy of a mixed carbonate-siliciclastic, cratonic ramp (Upper Ordovician; Kentucky–Ohio, USA): insight into the relative influence of eustacy and tectonics through analysis of facies gradients. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 267–94.CrossRefGoogle Scholar
Meidla, T. 1986. New ostracodes from the Ordovician of the Baltic area. Proceedings of the Estonian SSR. Geology 35, 1019.Google Scholar
Meidla, T. 1993. The ostracode genus Longiscula Neckaja, 1958 in the Ordovician of East Baltic. Neues Jahrbuch für Geologie and Paläontologie, Abhandlungen 188, 289303.Google Scholar
Meidla, T. 1996. Late Ordovician ostracodes of Estonia. Fossilia Baltica, 2. Tartu University Press, 222 pp.Google Scholar
Morris, W. E. & Hill, A. L. 1952. New Ostracoda from the Middle Silurian Newson shale of Tennesse. Bulletins of American Paleontology 34 (142), 122.Google Scholar
Neckaja, A. I. 1966. Ordovician and Silurian Ostracods of the USSR (families Schmidtellidae, Longisculidae and some new species from other families). Trudy VNIGRI 251, 1103 (in Russian).Google Scholar
Peryt, T. M. 1981. Phanerozoic oncoids – a review. Facies 4, 197214.CrossRefGoogle Scholar
Pickering, K. T., Bassett, M. G. & Siveter, D. J. 1988. Late Ordovician–early Silurian destruction of the Iapetus Ocean: Newfoundland, British Isles and Scandinavia – a discussion. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 361–82.CrossRefGoogle Scholar
Pranskevičius, A. 1972. South Baltic Silurian Ostracoda. Department of Geology under the council of Ministers of Lithuanian SSR, Lithuanian Scientific-Research Geological Survey Institute, Transactions 15, 1280.Google Scholar
Read, J. F. 1985. Carbonate platform facies models. Bulletin of the American Association of Petroleum Geologists 69, 121.Google Scholar
Reading, H. G. 1986. Sedimentary environments and facies, 2nd ed. Oxford: Blackwell, 615 pp.Google Scholar
Richter, D. R. & Füchtbauer, H. 1981. Merkmale und Genese von Breccien und ihre Bedeutung im Mesozoikum von Hydra (Griechenland). Zeitschrift der Deutschen Geologischen Gesellschaft 132, 451501.CrossRefGoogle Scholar
Rushton, A. W. A., Tunnicliff, S. P. & Tripp, R. P. 1996. The faunas of the Albany Group in the Girvan area, and their palaeogeographical implications. Scottish Journal of Geology 32, 2332.CrossRefGoogle Scholar
Salas, M. J., Vannier, J. & Williams, M. 2007. Early Ordovician ostracods from Argentina: their bearing on the origin of the binodicope and palaeocope clades. Journal of Paleontology 81, 1384–95.CrossRefGoogle Scholar
Sano, H. & Tamada, E. 1994. Collisional collapse-related internal destruction of Carboniferous–Permian limestone in Jurassic accretionary complex, southwest Japan. Journal of the Geological Society of Japan 100, 828–47.Google Scholar
Sarv, L. 1960. On the stratigraphic distribution of ostracods in the Estonian S.S.R. Ensv Teaduste Akadeemia Geoloogia Instituudi Uurimused 5, 237–44.Google Scholar
Schallreuter, R. E. L. 1968. Ordovizische ostracoden mit geradem Schlossrand und konkavem Ventraland; Wissenschaftliche Zeitschrift der Ernst Moritz-Arndt-Universitat Greifswald, Jahrgang XVII, 1968. Mathematisch-naturwissenschaftliche Reihe NR 1/2, 25721.Google Scholar
Schallreuter, R. E. L., Hinz-Schallreuter, I. & Suttner, T. 2008. New Ordovician ostracodes from Himalaya and their palaeobiological and palaeogeographical implications. Revue de Micropaleontologie 51, 191204.CrossRefGoogle Scholar
Schallreuter, R. E. L. & Siveter, D. J. 1985. Ostracodes across the Iapetus Ocean. Palaeontology 28, 577–98.Google Scholar
Selting, A. J. & Schmitt, J. G. 1999. Carbonate sedimentation in a foreland basin lake system, Upper Cretaceous Beaverhead Group, southwest Montana. Bulletin of the American Association of Petroleum Geologists 83, 1188.Google Scholar
Siveter, D. J. 1978. The Ordovician. In A stratigraphical index of British Ostracoda (eds Bate, R. & Robinson, E.), pp. 4156. Geological Journal, Special Issue no. 8. Liverpool: Seel House Press.Google Scholar
Siveter, D. J. 1982. Late Ordovician and Early Silurian ostracodes from the Oslo Region, Norway, In IUGS Subcommission on Silurian Stratigraphy, Field Meeting, Oslo Region 1982 (ed. Worsley, D.), pp. 121–8. Palaeontological contributions from the University of Oslo 278.Google Scholar
Siveter, D. J. 1984. Habitats and modes of life of Silurian Ostracodes, In The Autecology of Silurian organisms (ed. Bassett, M. G.), pp. 71–85. Special papers in Palaeontology 32.Google Scholar
Siveter, D. J. 2009. Ordovician. In Ostracods in British Stratigraphy (eds Whittaker, J. E. & Hart, M. B.), pp. 1544. The Micropalaeontological Society, Special Publications.CrossRefGoogle Scholar
Siveter, D. J. & Curry, G. B. 1984. Lower Ordovician (Arenig) ostracods from the Highland Border Complex. In Age, evolution and tectonic history of the Highland Border Complex, Scotland (eds Curry, G. B., Bluck, B. J., Burton, C. J., Ingham, J. K., Siveter, D. J. & Williams, A.), pp. 113–33. Transactions of the Royal Society of Edinburgh: Earth Sciences 75.Google Scholar
Siveter, D. J., Vannier, J. M. C. & Palmer, D. 1991. Silurian Myodocopes: pioneer pelagic ostracods and the chronology of an ecological shift. Journal of Micropalaeontology 10, 151–73.CrossRefGoogle Scholar
Sivhed, U., Erlström, M., Bojeson-Koefoed, J. A. & Löfgren, A. 2004. Upper Ordovician carbonate mounds on Gotland, central Baltic Sea: distribution, composition and reservoir characteristics. Journal of Petroleum Geology 27, 115–40.CrossRefGoogle Scholar
Spence, G. H. & Tucker, M. E. 1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sedimentary Geology 112, 163–19.CrossRefGoogle Scholar
Stepanova, A., Taldenkova, E., Simstich, J. & Bauch, H. A. 2007. Comparison study of the modern ostracod associations in the Kara and Laptev Sea: Ecological aspects. Marine Micropaleontology 63, 111–42.CrossRefGoogle Scholar
Steusloff, A. 1895. Neue Ostrakoden aus Diluviageschieben von Neu-Brandenburg. Zeitschrift der Deutschen Geologischen Gesellschaft 46, 775–87.Google Scholar
Stieglitz, R. D. 1973. Carbonate needles: Additional Organic Sources. Bulletin of the Geological Society of America 84 (3), 927–30.2.0.CO;2>CrossRefGoogle Scholar
Stumbur, H. 1956. About the ostracode fauna of Porkuni stage of Estonia. Tartu Riikliku Ülikooli Toimetised 42, 176–85 (in Russian).Google Scholar
Swain, F. M. 1957. Early middle Ordovician ostracoda of the eastern United States. Part 1. Stratigraphic data and description of Leperditiidae, Aparchitidae and Leperditellidae. Journal of Paleontology 31, 528–70.Google Scholar
Swain, F. M. 1962. Early middle Ordovician ostracoda of the eastern United States; Part 2. Leperditiidae (part), Hollinacea, Kloedenellacea. Journal of Paleontology 36, 719–44.Google Scholar
Sylvester-Bradley, P. C. 1971. The reaction of systematics to the revolution in micropalaeontology. In Scanning Electron Microscopy, Systematic and Evolutionary Applications (ed. Heywood, V. H.), pp. 95111. London: Academic Press for the Systematics Association.Google Scholar
Teichert, C. 1937. Ordovician and Silurian faunas from Arctic Canada. Report of the Fifth Thule Expedition 1921–24. Copenhagen: Gyldendalske Boghandel, Nordisk Forlag, 169 pp., 24 pls.Google Scholar
Thorslund, P. 1940. On the Chasmop series of Jemtland and Sodermanland (Tvaren). Sveriges Geologiska Undersoekning, Series C, 436, 1191.Google Scholar
Tinn, O. & Meidla, T. 2004. Phylogenetic relationships of Early Middle Ordovician ostracods of Baltoscandia. Palaeontology 47, 199221.CrossRefGoogle Scholar
Tomašových, A. 2006. A new Early Jurassic rhynchonellid brachiopod from the western Tethys and implications for systematics of rhynchonellids from the Triassic–Jurassic boundary. Journal of Paleontology 80, 212–28.CrossRefGoogle Scholar
Tripp, R. P. 1980. Trilobites from the Ordovician Ardwell Group of the Craighead Inlier, Girvan district, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 71, 147–57.CrossRefGoogle Scholar
Ulrich, E. O. 1892. New Lower Silurian Ostracoda, No 1. American Geologist 10, 263–70.Google Scholar
Ulrich, E. O. 1894. The Lower Silurian Ostracoda of Minnesota. Report of the Geological and Natural History Survey of Minnesota 3, pt. 2, Paleontology, 629–93.Google Scholar
Ulst, R. Zh., Gailite, L. K. & Yakovleva, V. I. 1982. Ordovik Lattvii. Riga: Zinatne, 294 pp.Google Scholar
Vannier, J. M. C., Siveter, D. J. & Schallreuter, R. E. L. 1989. The composition and palaeogeographical significance of the Ordovician ostracode faunas of southern Britain, Baltoscandia, and Ibero-Armorica. Palaeontology 32, 163222.Google Scholar
Warshauer, S. M. & Berdan, J. M. 1982. Palaeocopid and podocopid ostracoda from the Lexington Limestone and Clays Ferry Formation (Middle and Upper Ordovician) of Central Kentucky. Professional Paper United States Geological Survey 1066-H, 180.Google Scholar
Wendit, J. & Aigner, T. 1985. Facies patterns and depositional environments of Paleozoic cephalopod limestones. Sedimentary Geology 44, 263300.CrossRefGoogle Scholar
Williams, A. 1962. The Barr and Lower Ardmillan Series (Caradoc) of the Girvan district, south-west Ayrshire, with descriptions of the Brachiopoda. Memoir of the Geological Society of London 3, 1267.Google Scholar
Williams, M. & Floyd, J. D. 2000. Mid-Caradoc (Ordovician) Ostracodes from the Craighead Limestone Formation, Girvan district, south-west Scotland. Scottish Journal of Geology 36, 5160.CrossRefGoogle Scholar
Williams, M., Floyd, J. D., Salas, M. J., Siveter, D. J., Stone, P. & Vannier, J. M. C. 2003. Patterns of ostracod migration for the “North Atlantic” region during the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 193228.CrossRefGoogle Scholar
Williams, M., Floyd, J. D., Siveter, D. J. & Miller, C. G. 2001 a. Scottish Ordovician Ostracodes: a review of their palaeoenvironmental, biostratigraphical and paleobiogeographical significance. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 499508.CrossRefGoogle Scholar
Williams, M. & Siveter, D. J. 1996. Lithofacies-influenced ostracod associations in the middle Ordovician Bromide Formation, Oklahoma, USA. Journal of Micropalaeontology 15, 6981.CrossRefGoogle Scholar
Williams, M., Siveter, D. J., Salas, M. J., Vannier, J., Popov, L. E. & Ghoubadi Pour, M. 2008. The earliest ostracods: the geological evidence. Senckenbergiana lethaea 88, 111.CrossRefGoogle Scholar
Williams, M., Stone, P., Siveter, D. J. & Taylor, P. 2001 b. Upper Ordovician ostracods from the Cautley district, northern England: Baltic and Laurentian affinities. Geological Magazine 138, 589607.CrossRefGoogle Scholar
Williams, M. & Vannier, J. M. C. 1995. Middle Ordovician Aparchitidae and Schmidtellidae: the significance of ‘featureless’ ostracodes. Journal of Micropalaeontology 14, 724.CrossRefGoogle Scholar
Wray, J. L. 1977. Calcareous Algae. Developments in Palaeontology and Stratigraphy, 4th ed. New York: Elsevier, 185 pp.Google Scholar
Wright, V. 1983. A Rendzina from the Lower Carboniferous of South Wales. Sedimentology 30, 159–79.CrossRefGoogle Scholar