Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T17:29:07.131Z Has data issue: false hasContentIssue false

On the Origin and Occurrence of Basic Bodies Associated with Discordant Bathyliths

Published online by Cambridge University Press:  01 May 2009

Germaine A. Joplin
Affiliation:
Australian National University, Canberra.

Abstract

It is suggested that the rock-suite, characteristic of the discordant bathyliths and ranging in composition from ultrabasic to ultra-acid, is formed from two magmas, a basaltic and a granodioritic, that the basic rocks are emplaced among the geosynclinal sediments before the introduction of the acid magma, and that intermediate rocks are hybrids. Further, it is suggested that hybridization takes place in two stages: first, by reaction between basic rocks and water and carbon dioxide, released from sediments as a result of deep-seated metamorphism, and rising in advance of the acid magma; and secondly, by the magma itself. The first intrusions carry shattered country rocks and are stock-like bodies, and these are followed by successive emplacements of granodiorite, the earliest of which envelop most of the stocks and are, thereby hybridized to form tonalites. Only those stocks near the margins of the later intrusions are preserved, and hence occur as satellites about the larger more acid bodies.

The order of intrusion, the grainsize of the basic hybrids, and the occurrence of hornblende is discussed and it is concluded that dioritic rocks and dioritic magmas originate at a high level in the geosynclinal pile.

Type
Articles
Copyright
Copyright © Cambridge University Press 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaad, M. K., 1956. The Ardara Granite Diapir of County Donegal, Ireland. Quart. Journ. Geol. Soc., cxii, 263290.CrossRefGoogle Scholar
Anderson, J. G. C., 1935. The Marginal Intrusions of Ben Nevis. Trans. Geol. Soc. Glasgow, xix, 225269.CrossRefGoogle Scholar
Anderson, J. G. C., 1937. The Etive Granite Complex. Quart. Journ. Geol. Soc., xciii, 487532.Google Scholar
Bailey, E. B., 1958. Some Chemical Aspects of South-west Highland Devonian Igneous Rocks. Geol. Surv. Great Brit., Bull., xv, 120.Google Scholar
Bailey, E. B., and Maufe, H. B., 1916. The Geology of Ben Nevis and Glen Coe. Geol. Surv. Great Brit. Mem., liii, 150186.Google Scholar
Bowen, N. L., 1922 (a). The Reaction Principle in Petrogenesis. Journ. Geol., xxx, 177198.CrossRefGoogle Scholar
Bowen, N. L., 1922 (b). The Behaviour of Inclusions in Igneous Magma. Journ. Geol., xxx, 513570.Google Scholar
Brown, I. A., 1928. The Geology of the South Coast of New South Wales. Pt.1. The Palaeozoic Geology of the Moruya District. Proc. Linn. Soc. N.S.W., liii, 151192.Google Scholar
Chayes, F., 1956. Modal Composition of the Major Members of the Southern California Batholith. Ann. Rept. Director of Geophy. Lab., 19551956, 214215.Google Scholar
Curtis, G. H., Evernden, J. F., and Lipson, J., 1958. Age Determination of some Granitic Rocks in California by the potassium-argon Method. Div. of Mines, State of California, Spec. Rept. liv.Google Scholar
Dakyns, J. R., and Teall, J. J. H., 1892. On the Plutonic Rocks of Garabal Hill and Meall Breac. Quart. Journ. Geol. Soc, xlviii, 104120.Google Scholar
Deer, W. A., 1935. The Cairnsmore of Carphairn Igneous Complex. Quart. Journ. Geol. Soc., xci, 4776.Google Scholar
Deer, W. A., 1937. Note on a Pegmatitic Hornblende from Carphairn Complex. Geol. Mag., lxxiv, 359361.Google Scholar
French, W. J., and Pitcher, W. S., 1959. The Intrusion-Breccia of Dun-more, Co. Donegal. Geol. Mag., xcvi, 6974.Google Scholar
Holmes, A., 1920. The Nomenclature of Petrology. Thos. Murby and Co., London, p. 34.Google Scholar
Holmes, A., 1931. The Problem of the Association of Acid and Basic Rocks in the Central Complexes. Geol. Mag., lxix, 241255.CrossRefGoogle Scholar
Joplin, G. A., 1931. The Petrology of the Hartley District. I. The Plutonic Complex. Proc. Linn. Soc. N.S.W., lvi, 1650.Google Scholar
Joplin, G. A., 1933. Idem II. The Metamorphosed Gabbros and Associated Hybrid and Contaminated Rocks. Proc Linn. Soc. N.S.W., lviii, 125158.Google Scholar
Joplin, G. A., 1935. A Note on the Origin of Basic Xenoliths in Plutonic Rocks, with special reference to their Grain-size. Geol. Mag., lxxii, 227234.CrossRefGoogle Scholar
Joplin, G. A, 1936. The Ben Bullen Plutonic Complex. Journ. and Proc. Roy. Soc. N.S.W., lxx 6094.Google Scholar
Joplin, G. A., 1939. Studies in Metamorphism and Assimilation in the Cooma District of N.S.W. I. The Amphibolites and their Metasomatism. Journ. and Proc. Roy. Soc. N.S.W., lxxiii, 88106.Google Scholar
Joplin, G. A., 1944. The Petrology of the Hartley District. V. Evidence of Hybridization in the Moyne Farm Intrusion: A Revision. Proc. Linn. Soc. N.S.W., lxix, 129138.Google Scholar
Joplin, G. A., 1957. Basic and Ultrabasic Rocks near Happy Jacks and Tumut Pond in the Snowy Mountains of N.S.W., Journ. and Proc. Roy. Soc. N.S.W., xxi, 120141.Google Scholar
Larsen, E. S., 1948. Batholith of Southern California. Geol. Soc. Amer. Mem., xxix, 4153, 138.Google Scholar
Matthes, F. E., 1930. Geologic History of the Yosemite Valley. U. S. Geol. Surv. Prof. Paper, clx, 123124.Google Scholar
Miller, F. S., 1937. Petrology of the San Marcos gabbro, Southern California. Geol. Soc. Amer. Bull., xlviii, 13971426.Google Scholar
Nockolds, S. R., 1931. The Dhoon (Isle of Man) Granite. Miner Mag., xxii, 494509.Google Scholar
Nockolds, S. R., 1933. Some Theoretical Aspects of Contamination in Acid Magmas. Jourh. Geol., xli, 563.Google Scholar
Nockolds, S. R., 1934. The Contaminated Tonalites of Loch Awe, Argyll. Quart. Journ. Geol. Soc., xc, 302321.CrossRefGoogle Scholar
Nockolds, S. R., 1940. The Garabal Hill-Glen Fyne Igneous Complex. Quart. Journ. Geol. Soc., xcvi, 451510.CrossRefGoogle Scholar
Peterlongo, J., 1958. Les Monts du Lyonnais Itinéraire Géologique de Limoges à Lyon dans le Massif Central Français Lab. de Géol. et Minéral. Fac. Sci. Clermont. Série documentaire, xvii, 31.Google Scholar
Pitcher, W. A., and Read, H. H., 1952. An Appinitic Intrusion-Breccia at Kilkenny, Maas, Co. Donegal. Geol. Mag., lxxxix, 328336.CrossRefGoogle Scholar
Reynolds, D. L., 1934. The Eastern End of the Newry Igneous Complex. Quart. Journ. Geol. Soc., xc, 585636.Google Scholar
Thomas, H. H. and Campbell, Smith W., 1932. Xenoliths of Igneous Origin in the Tregastel-Ploumanac'h Granite, Cotes du Nord, France. Quart. Journ. Geol. Soc., lxxxviii, 274295.CrossRefGoogle Scholar
Walker, F., 1928. The Plutonic Intrusions of the Southern Uplands east of the Nith Valley. Geol. Mag., lxv, 153162.CrossRefGoogle Scholar
Wyllie, B. K. N., and Scott, A., 1913. The Plutonic Rocks of Garabal Hill. Geol. Mag., x, 499508, 536–545.CrossRefGoogle Scholar