Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T16:30:11.589Z Has data issue: false hasContentIssue false

A new nektaspid euarthropod from the Lower Ordovician strata of Morocco

Published online by Cambridge University Press:  10 July 2020

Francesc Pérez-Peris*
Affiliation:
Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015Lausanne, Switzerland
Lukáš Laibl
Affiliation:
Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015Lausanne, Switzerland Czech Academy of Sciences, Institute of Geology, Rozvojová 269, 165 00Prague 6, Czech Republic Institute of Geology and Palaeontology, Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic
Lorenzo Lustri
Affiliation:
Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015Lausanne, Switzerland
Pierre Gueriau
Affiliation:
Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015Lausanne, Switzerland
Jonathan B Antcliffe
Affiliation:
Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015Lausanne, Switzerland
Orla G Bath Enright
Affiliation:
Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015Lausanne, Switzerland
Allison C Daley
Affiliation:
Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015Lausanne, Switzerland
*
Author for correspondence: Francesc Pérez-Peris, Email: [email protected]

Abstract

Nektaspids are Palaeozoic non-biomineralized euarthropods that were at the peak of their diversity during the Cambrian Period. Post-Cambrian nektaspids are a low-diversity group with only a few species described so far. Here we describe Tariccoia tazagurtensis, a new species of small-bodied nektaspid from the Lower Ordovician Fezouata Shale of Morocco. The new species differs from the type (and only other known) species from the Ordovician strata of Sardinia (Italy), Tariccoia arrusensis, in possessing more pointed genal angles, a cephalon with marginal rim, a pygidium with anterior margin curved forwards, a rounded posterior margin, and longer and more curved thoracic tergites. The two specimens of T. tazagurtensis sp. nov. show remains of digestive glands that are comparable to those seen in the Cambrian nektaspid Naraoia. The rare occurrence of T. tazagurtensis sp. nov. in the Fezouata Shale and the distribution of other liwiids suggest that these liwiids were originally minor members of open-marine communities during the Cambrian Period, and migrated into colder brackish or restricted seas during the Ordovician Period.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, RJ, Theron, J and Gabbott, S (1994) The Soom Shale: a unique Ordovician fossil horizon in South Africa. Geology Today 10, 218–21.CrossRefGoogle Scholar
Antcliffe, JB and Brasier, MD (2011) Fossils with little relief: using lasers to conserve, image, and analyze the Ediacara Biota. In Quantifying the Evolution of Early Life: Numerical Approaches to the Evaluation of Fossils and Ancient Ecosystems (eds Laflamme, M, Schiffbauer, JD and Dornbos, SQ), pp. 223–40. Washington: Springer, Topics in Geobiology no. 36.CrossRefGoogle Scholar
Brasier, MD, Antcliffe, JB, and Callow, RHT (2011) Evolutionary trends in remarkable fossil preservation across the Ediacaran-Cambrian transition and the impact of Metazoan mixing. In Taphonomy: Process and Bias through Time (eds Allison, PA and Bottjer, DJ), pp. 519–67. London: Springer. Second Edition.Google Scholar
Bruton, DL and Haas, W (1997) Functional morphology of Phacopinae (Trilobita) and the mechanics of enrolment. Palaeontographica Abteilung A 245, 143.Google Scholar
Budd, GE (1999) A nektaspid arthropod from the Early Cambrian Sirius Passet fauna, with a description of retrodeformation based on functional morphology. Palaeontology 42, 99122.CrossRefGoogle Scholar
Budd, GE (2011) Campanamuta mantonae gen. et. sp. nov., an exceptionally preserved arthropod from the Sirius Passet Fauna (Buen Formation, lower Cambrian, North Greenland). Journal of Systematic Palaeontology 9, 217–60.CrossRefGoogle Scholar
Budd, GE, Butterfield, NJ and Jensen, S (2001) Crustaceans and the “Cambrian explosion”. Science 294, U1.CrossRefGoogle ScholarPubMed
Budil, P, Fatka, O and Bruthansová, J (2003) Trilobite fauna of the Šárka Formation at Praha–Červený Vrch Hill (Ordovician, Barrandian area, Czech Republic). Bulletin of Geosciences 78, 113–17.Google Scholar
Caron, J-B and Jackson, DA (2008) Paleoecology of the greater phyllopod bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology 258, 222–56.Google Scholar
Caron, J-B, Rudkin, DM and Milliken, S (2004) A new late Silurian (Pridolian) naraoiid (Euarthropoda: Nektaspida) from the Bertie Formation of southern Ontario, Canada—delayed fallout from the Cambrian explosion. Journal of Paleontology 78, 1138–45.CrossRefGoogle Scholar
Chen, J-Y, Edgecombe, GD and Ramskold, L (1997) Morphological and ecological disparity in naraoiids (Arthropoda) from the Early Cambrian Chengjiang fauna, China. Records of the Australian Museum 49(1), 124.CrossRefGoogle Scholar
Chen, X, Ortega-Hernández, J, Wolfe, JM, Zhai, D, Hou, X, Chen, A, Mai, H and Liu, Y (2019) The appendicular morphology of Sinoburius lunaris and the evolution of the artiopodan clade Xandarellida (Euarthropoda, early Cambrian) from South China. BMC Evolutionary Biology 19, 165.CrossRefGoogle ScholarPubMed
Choubert, G, Termier, H and Termier, G (1947) Sur la stratigraphie de l’Ordovicien marocain. Comptes Rendus Sommaire Société Géologique France 16, 335–7.Google Scholar
Corbacho, J and Vela, A (2010) Giant trilobites from Lower Ordovician of Morocco. Batalleria 15, 334.Google Scholar
Daley, AC, Antcliffe, JB, Drage, HB and Pates, S (2018) Early fossil record of Euarthropoda and the Cambrian Explosion. Proceedings of the National Academy of Sciences 115, 5323–31.CrossRefGoogle ScholarPubMed
Destombes, J, Hollard, H and Willefert, S (1985) Lower palaeozoic rocks of Morocco. In Lower Palaeozoic Rocks of North-Western and West-Central Africa (ed. CH Holland), pp. 91336. Chichester: John Wiley.Google Scholar
Dunne, JA, Williams, RJ, Martinez, ND, Wood, RA and Erwin, DH (2008) Compilation and network analyses of Cambrian food webs. PLoS Biology 6, e102.CrossRefGoogle ScholarPubMed
Dzik, J and Lendzion, K (1988) The oldest arthropods of the East European platform. Lethaia 21, 2938.CrossRefGoogle Scholar
Edgecombe, GD and Ramsköld, L (1999) Relationships of Cambrian Arachnata and the systematic position of Trilobita. Journal of Paleontology 73, 263–7.CrossRefGoogle Scholar
Esteve, J, Hughes, NC and Zamora, S (2013) Thoracic structure and enrolment style in middle Cambrian Eccaparadoxides pradoanus presages caudalization of the derived trilobite trunk. Palaeontology 56, 589601.CrossRefGoogle Scholar
Fortey, R and Theron, J (1994) A new Ordovician Arthropod, Soomaspis, and the agnostid problem. Palaeontology 37, 841–62.Google Scholar
Fu, D, Tong, G, Dai, T, Liu, W, Yang, Y, Zhang, Y, Cui, L, Li, L, Yun, H, Wu, Y and Sun, A (2019) The Qingjiang biota—a burgess shale–type fossil lagerstätte from the early cambrian of South China. Science 363, 1338–42.CrossRefGoogle ScholarPubMed
Gaines, RR, Hammarlund, EU, Hou, X, Qi, C, Gabbott, SE, Zhao, Y, Peng, J and Canfield, DE (2012) Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences 109, 5180–4.CrossRefGoogle ScholarPubMed
Geyer, G (1996) The Moroccan fallotaspidid trilobites revisited. Beringeria 18, 89199.Google Scholar
Gutiérrez-Marco, JC, García-Bellido, D, Rábano, I and , AA (2017) Digestive and appendicular soft-parts, with behavioural implications, in a large Ordovician trilobite from the Fezouata Lagerstätte, Morocco. Scientific Reports 7, 39728.CrossRefGoogle Scholar
Gutiérrez-Marco, JC and Martin, EL (2016) Biostratigraphy and palaeoecology of Lower Ordovician graptolites from the Fezouata Shale (Moroccan Anti-Atlas). Palaeogeography, Palaeoclimatology, Palaeoecology 460, 3549.CrossRefGoogle Scholar
Hammann, W, Laske, R and Pillola, G (1990) Tariccoia arrusensis ngn sp., an unusual Trilobite-like Arthtropod. Rediscovery of the “phyllocarid” bed of Taricco (1922) in the Ordovician “Puddinga” sequence of Sardinia. Bollettino della Societa Paleontologica Italiana 29, 163–78.Google Scholar
Hammann, W and Leone, F (1997) Trilobites of the post-Sardic (Upper Ordovician) sequence of southern Sardinia. Part I. Beringeria 20, 3217.Google Scholar
Harper, DA, Hammarlund, EU, Topper, TP, Nielsen, AT, Rasmussen, JA, Park, T-YS and Smith, MP (2019) The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian explosion. Journal of the Geological Society 176, 1023–37.CrossRefGoogle Scholar
Hou, X and Bergström, J (1997) Arthropods of the lower Cambrian Chengjiang Fauna, Southwest China. Fossils and Strata 45, 1116.Google Scholar
Hou, X, Williams, M, Sansom, R, Siveter, DJ, Siveter, DJ, Gabbott, S, Harvey, TH, Cong, P and Liu, Y (2018) A new Xandarellid Euarthropod from the Cambrian Chengjiang Biota, Yunnan Province, China. Geological Magazine 156, 1375–84.CrossRefGoogle Scholar
Ivantsov, AY (1999) Trilobite-like Arthropod from the Lower Cambrian of the Siberian Platform. Acta Palaeontologica Polonica 44, 455–66.Google Scholar
Laibl, L, Esteve, J and Fatka, O (2016) Enrollment and thoracic morphology in Paradoxidid Trilobites from the Cambrian of the Czech Republic. Fossil Imprint 72, 161–71.CrossRefGoogle Scholar
Landing, E, Antcliffe, JB, Geyer, G, Kouchinsky, A, Bowser, SS and Andreas, A (2018) Early evolution of colonial animals (Ediacaran Evolutionary Radiation–Cambrian Evolutionary Radiation–Great Ordovician Biodiversification Interval). Earth Science Reviews 178, 105–35.CrossRefGoogle Scholar
Lefebvre, B, Gutiérrez-Marco, JC, Lehnert, O, Martin, EL, Nowak, H, Akodad, M, El Hariri, K and Servais, T (2018) Age calibration of the lower Ordovician Fezouata Lagerstätte, Morocco. Lethaia 51, 296311.CrossRefGoogle Scholar
Legg, DA, Sutton, MD and Edgecombe, GD (2013) Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications 4, 2485.CrossRefGoogle ScholarPubMed
Lehnert, O, Nowak, H, Sarmiento, GN, Gutiérrez-Marco, JC, Akodad, M and Servais, T (2016) Conodonts from the lower Ordovician of Morocco—contributions to age and faunal diversity of the Fezouata Lagerstätte and peri-Gondwana biogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 460, 5061.CrossRefGoogle Scholar
Lendzion, K (1975) Fauna of the Mobergella Zone in the polish lower Cambrian. Geological Quarterly 19, 237–42.Google Scholar
Lerosey-Aubril, R, Gaines, RR, Hegna, TA, Ortega-Hernández, J, Van Roy, P, Kier, C and Bonino, E (2018) The weeks formation Konservat-Lagerstätte and the evolutionary transition of Cambrian Marine Life. Journal of the Geological Society 175, 705–15.CrossRefGoogle Scholar
Lerosey-Aubril, R, Kimmig, J, Pates, S, Skabelund, J, Weug, A and Ortega-Hernández, J (2020) New exceptionally preserved Panarthropods from the Drumian Wheeler Konservat-Lagerstatten of the House Range of Utah. Papers in Palaeontology, published online 23 April 2020, doi: 10.1002/spp2.1307.CrossRefGoogle Scholar
Lerosey-Aubril, R, Zhu, X and Ortega-Hernández, J (2017) The vicissicaudata revisited–insights from a New Aglaspidid Arthropod with Caudal appendages from the Furongian of China. Scientific Reports 7, 11117.CrossRefGoogle ScholarPubMed
Marshall, CR (2006) Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences 34, 355–84.CrossRefGoogle Scholar
Martin, EL, Pittet, B, Gutiérrez-Marco, J-C, Vannier, J, El Hariri, K, Lerosey-Aubril, R, Masrour, M, Nowak, H, Servais, T and Vandenbroucke, TR (2015) The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: age, environment and evolutionary perspectives. Gondwana Research 34, 274–83.CrossRefGoogle Scholar
Martin, EL, Vidal, M, Vizcaïno, D, Vaucher, R, Sansjofre, P, Lefebvre, B and Destombes, J (2016) Biostratigraphic and Palaeo environmental controls on the trilobite associations from the Lower Ordovician Fezouata Shale of the central Anti-Atlas, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 460, 142–54.CrossRefGoogle Scholar
Mayers, B, Aria, C and Caron, JB (2019) Three new naraoiid species from the Burgess Shale, with a morphometric and phylogenetic reinvestigation of Naraoiidae. Palaeontology 62, 1950.CrossRefGoogle Scholar
Nowak, H, Servais, T, Pittet, B, Vaucher, R, Akodad, M, Gaines, RR and Vandenbroucke, TR (2016) Palynomorphs of the Fezouata Shale (Lower Ordovician, Morocco): age and environmental constraints of the Fezouata Biota. Palaeogeography, Palaeoclimatology, Palaeoecology 460, 6274.CrossRefGoogle Scholar
Oggiano, G, Martini, I and Tongiorgi, M (1986) Sedimentology of the Ordovician “Puddinga” Formation (SW-Sardinia). IGCP Project No. 5: Correlation of Prevariscan and Variscan Events in the Alpine-Mediterranean Mountain Belts. Final Meeting, Sardinia, May 25–31 1986.Google Scholar
Ortega-Hernández, J, Azizi, A, Hearing, TW, Harvey, TH, Edgecombe, GD, Hafid, A and El Hariri, K (2017) A xandarellid artiopodan from Morocco–a middle Cambrian link between soft-bodied euarthropod communities in North Africa and South China. Scientific Reports 7, 42616.CrossRefGoogle Scholar
Ortega-Hernández, J, Esteve, J and Butterfield, NJ (2013a) Humble origins for a successful strategy: complete enrolment in early Cambrian olenellid trilobites. Biology Letters 9, 20130679.CrossRefGoogle ScholarPubMed
Ortega-Hernández, J, Legg, DA and Braddy, SJ (2013b) The phylogeny of aglaspidid arthropods and the internal relationships within Artiopoda. Cladistics 29, 1545.CrossRefGoogle Scholar
Paterson, JR, Edgecombe, GD, García-Bellido, DC, Jago, JB and Gehling, JG (2010) Nektaspid arthropods from the lower Cambrian Emu Bay Shale Lagerstätte, South Australia, with a reassessment of lamellipedian relationships. Palaeontology 53, 377402.CrossRefGoogle Scholar
Paterson, JR, García-Bellido, DC and Edgecombe, GD (2012) New Artiopodan Arthropods from the Early Cambrian Emu Bay Shale Konservat-Lagerstätte of South Australia. Journal of Paleontology 86, 340–57.CrossRefGoogle Scholar
Paterson, JR, García-Bellido, DC, Jago, JB, Gehling, JG, Lee, MS and Edgecombe, GD (2016) The Emu Bay Shale Konservat-Lagerstätte: a view of Cambrian life from East Gondwana. Journal of the Geological Society 173, 111.Google Scholar
Peng, S, Babcock, L and Cooper, R (2012) The Cambrian period. In The Geologic Time Scale (eds Gradstein, FM, Ogg, JG, Schmitz, MD and Ogg, GM), pp. 437–88. Amsterdam: Elsevier.CrossRefGoogle Scholar
Peters, SE and Gaines, RR (2012) Formation of the ‘Great Unconformity’as a trigger for the Cambrian explosion. Nature 484, 363.CrossRefGoogle ScholarPubMed
Raymond, PE (1920The Appendages, Anatomy, and Relationships of Trilobites, volume 7. Connecticut: Connecticut Academy of Arts and Sciences.Google Scholar
Repina, L and Okuneva, O (1969) Cambrian arthropods of the Maritime Territory. Paleontological Journal 3, 95103.Google Scholar
Robison, RA (1984) New occurrences of the unusual trilobite Naraoia from the Cambrian of Idaho and Utah. The University of Kansas Paleontological Contributions 112, 18.Google Scholar
Saleh, F, Antcliffe, JB, Lefebvre, B, Pittet, B, Laibl, L, Gueriau, P, Perez Peris, F, Lustri, L and Daley, AC (2020) Fossilization bias in exceptionally preserved biotas. Earth and Planetary Science Letters 529, 115873.CrossRefGoogle Scholar
Schwimmer, DR and Montante, WM (2007) Exceptional fossil preservation in the Conasauga Formation, Cambrian, northwestern Georgia, USA. Palaios 22, 360–72.CrossRefGoogle Scholar
Scotese, C (2004) Cenozoic and Mesozoic paleogeography: changing terrestrial biogeographic pathways. In Frontiers of Biogeography: New Directions in the Geography of Nature (eds Lomolino, MV and Heaney, LR), pp. 926. Sunderland, MA: Sinauer Associates.Google Scholar
Servais, T and Harper, DA (2018) The great Ordovician biodiversification event (GOBE): definition, concept and duration. Lethaia 51, 151164.CrossRefGoogle Scholar
Servais, T, Owen, AW, Harper, DA, Kröger, B and Munnecke, A (2010) The Great Ordovician Biodiversification Event (GOBE): The Palaeoecological Dimension. Amsterdam: Elsevier.Google Scholar
Theron, J, Rickards, R and Aldridge, R (1990) Bedding plane assemblages of Promissum pulchrum, a new giant Ashgill conodont from the Table Mountain Group, South Africa. Palaeontology 33, 577–94.Google Scholar
Torsvik, TH and Cocks, LRM (2013a) Gondwana from top to base in space and time. Gondwana Research 24, 9991030.CrossRefGoogle Scholar
Torsvik, TH and Cocks, LRM (2013b) New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. In Early Palaeozoic Biogeography and Palaeogeography (eds Harper, DAT and Servais, T), pp. 524. Geological Society of London, Memoir no. 38.Google Scholar
Van Roy, P (2013) Nektaspidid Arthropods from the Early Ordovician Fezouata Biota, Morocco. In Proceedings of 2013 GSA Annual Meeting, Denver. Boulder: Geological Society of America.Google Scholar
Van Roy, P, Briggs, DE and Gaines, RR (2015a) The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician. Journal of the Geological Society 172, 541–9.CrossRefGoogle Scholar
Van Roy, P, Daley, AC and Briggs, DE (2015b) Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature 522, 77.CrossRefGoogle ScholarPubMed
Van Roy, P, Orr, PJ, Botting, JP, Muir, LA, Vinther, J, Lefebvre, B, El Hariri, K and Briggs, DE (2010) Ordovician faunas of Burgess Shale type. Nature 465, 215.CrossRefGoogle ScholarPubMed
Vannier, J and Chen, JY (2002) Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia 35, 107–20.CrossRefGoogle Scholar
Vaucher, R, Martin, EL, Hormière, H and Pittet, B (2016) A genetic link between Konzentrat-and Konservat-Lagerstätten in the Fezouata Shale (lower Ordovician, Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 460, 24–34.CrossRefGoogle Scholar
Walcott, CD (1912) Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Cambrian Geology and Paleontology II. Washington: Smithsonian Institution, Smithsonian Miscellaneous Collections no. 57, 145–228.Google Scholar
Whittington, HB (1977) The Middle Cambrian Trilobite Naraoia, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, Biological Sciences 280, 409–43.Google Scholar
Whittington, HB (1985) Tegopelte gigas, a second soft-bodied trilobite from the Burgess Shale, Middle Cambrian, British Columbia. Journal of Paleontology 59(5), 1251–74.Google Scholar
Whittington, HB (1989) Olenelloid trilobites: type species, functional morphology and higher classification. Philosophical Transactions of the Royal Society of London B, Biological Sciences 324, 111147.Google Scholar
Zhai, D, Edgecombe, GD, Bond, AD, Mai, H, Hou, X and Liu, Y (2019) Fine-scale appendage structure of the Cambrian trilobitomorph Naraoia spinosa and its ontogenetic and ecological implications. Proceedings of the Royal Society B 286, 20192371.CrossRefGoogle ScholarPubMed
Zhang, W-T and Hou, X-G (1985) notes on the occurrence of the unusual trilobite Naraoia in Asia. Acta Palaeontologica Sinica 24, 591–95.Google Scholar
Zhang, X, Ahlberg, P, Babcock, LE, Choi, DK, Geyer, G, Gozalo, R, Hollingsworth, JS, Li, G, Naimark, EB and Pegel, T (2017) Challenges in defining the base of Cambrian Series 2 and Stage 3. Earth-Science Reviews 172, 124–39.CrossRefGoogle Scholar
Zhang, X, Fu, D and Dai, T (2012) A new species of Kangacaris (Arthropoda) from the Chengjiang lagerstätte, lower Cambrian, southwest China. Alcheringa: An Australasian Journal of Palaeontology 36, 23–5.CrossRefGoogle Scholar
Zhang, X, Shu, D, Li, Y and Han, J (2001) New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. Journal of the Geological Society 158, 211–18.CrossRefGoogle Scholar
Zhang, X-L, Shu, D-G and Erwin, DH (2007) Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships. Journal of Paleontology 81, 153.CrossRefGoogle Scholar
Zhao, F, Caron, J-B, Hu, S and Zhu, M (2009) Quantitative analysis of taphofacies and paleocommunities in the Early Cambrian Chengjiang Lagerstatte. Palaios 24, 826–39.CrossRefGoogle Scholar