Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T03:06:13.912Z Has data issue: false hasContentIssue false

Neoproterozoic-early Cambrian geology and palaeontology of Iberia

Published online by Cambridge University Press:  01 May 2009

Gonzalo Vidal
Affiliation:
Uppsala University, Institute of Earth Sciences, Micropalaeontology, Norbyvägen 22, S-752 36 Uppsala, Sweden
Teodoro Palacios
Affiliation:
Universidad de Extremadura, Facultad de Ciencias, Area de Paleontologia, 06071 Badajoz, Spain
Jose Antonio Gámez-Vintaned
Affiliation:
Universidad de Zaragoza, Facultad de Ciencias, Departamento de Geología, Paleontologia, 50009 Zaragoza, Spain
Maria Antonia Díez Balda
Affiliation:
Universidad de Salamanca, Facultad de Ciencias, Departamento de Geología, 37008 Salamanca, Spain
Stephen W. F. Grant
Affiliation:
Macquarie University, School of Earth Sciences, NSW 2109, Australia

Abstract

Neoproterozoic-early Cambrian successions in Iberia are reexamined. A gradual transition across the Neoproterozoic-Cambrian boundary is present in Central Iberia, whereas in the Cantabrian region and the Iberian Chains Lower Cambrian arenaceous successions rest with profound angular unconformity on Neoproterozoic turbidites. In Central Iberia, the Neoproterozoic sedimentary succession is referred to the informal Domo Extremeño group, representing mostly basinal facies, and the overlying Rio Huso group consisting of slope deposits and proximal turbidites that grade into shallower marine deposits. The latter is inferred to represent distal slope to outer platform depositional conditions and contains widespread carbonate olistostromic units. The position of the Precambrian-Cambrian boundary is within the Pusa shale of the Rio Huso group and can be correlated at the regional level by the occurrence of trace fossils, acritarchs, and in particular the abundant shelly metazoan Cloudina. The succession also yielded megascopic carbonaceous fossils, such as vendotaenids and Beltanelioides? sp. ind., and Sabellidites. Contrary to former interpretations assuming transport of older platform carbonates from the Ibor region into ‘younger’ olistostromic beds of the Rio Huso group, we interpret sedimentary and fossil evidence to suggest that shallower platform deposits of the informal Ibor group were penecontemporaneously incorporated in the olistostromic lower part of the Rio Huso group. Hence, the olistostromes are not believed to mark a major erosive unconformity. Based on the ichnofossil record and recent U-Pb age determinations, we argue that a proposed disconformity between Lower and Upper ‘Alcudian’ strata is neither regional nor does it mark a significant hiatus. Neoproterozoic-early Cambrian deposition in Central Iberia can be accommodated in a model that implies a generalized stretching of the crust during an extensional event which closely followed the Cadomian phase of the Pan-African Orogeny and which eventually could have included transcurrent components. An extensional phase with transcurrent components during the deposition of the Ibor and lower Rio Huso groups is regarded as a probable cause of widespread ponding resulting in the juxtaposition of platform and basinal successions, eventually leading to anoxic conditions in Pusa shale deposition times. A possible cause for repeated collapse events developing olistostromes and intra-sequential folding could be sought in this tectonic context.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ábalos, B., & Eguíluz, L., 1992. Evolutión Geodinámica de la zona de cizalla d´ctil de Badajoz-Córdoba durante el Proterozoico superior-Cámbrico inferior. In Palaeozoico Inferior de Ibero-América (eds Gutierrez Marco, J. C., Saavedra, J., and Rabano, I.), pp. 577–92. Universidad de Extremadura.Google Scholar
ÁBalos, B., Gil Ibarguchi, J. I., & Eguíluz, L., 1991. Cadomian subduction/collision and Variscan transgression in the Badajoz-Córdoba shear belt (southwest Spain). Teclonophysics 199, 5172.CrossRefGoogle Scholar
Ahlberg, P., 1989. Cambrian stratigraphy of the När I deep well, Gotland. Geologiska Föreningens i Stockholm Förhandlingar lll, 137–48.CrossRefGoogle Scholar
Alpert, S. P., 1977. Trace fossils and the basal Cambrian boundary. In Trace Fossils 2 (eds Crimes, T. P., & Harper, J. C.), pp. 18. Geological Journal Special Issue no. 9.Google Scholar
ÁLvarez Nava, H., García Casquero, J. L., Gil Toja, A., Hernandez Urroz, J., Lorenzo Alvarez, S., Lopez Diaz, F., Mira Lopez, M., Monteserin, V., Nozal, F., Pardo, M. V., Picart, J., Robles, R., Santamaria, J., Solé, F.J, 1988. Unidades litoestratigráficas de los materiales precámbricos-cámbricos en la mitad suroriental de la zona Centro-Ibérica. Congreso Geológico de España, 1988, Comunicaciones 1, 1922.Google Scholar
Apalategui, O., Quesada, C., & Eguíluz, L., 1990. Part V Ossa-Morena Zone. 3. Structure. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D., and Martinez García, E.), pp. 280–91. Springer-Verlag.CrossRefGoogle Scholar
Arbey, F., Bouyx, E., & Devigne, J. P, 1975. Une population de bactéries sporulales témoin d'un été; glaciaire ou d'un interglaciaire éocambrien. 9 Congrés International de Sédimentologie, Nice, Thémes 1, 51–4.Google Scholar
Arriola, A., Eguíluz, L., Fernández Carrasco, J., & Garrote, A., 1984. Individualización de diferentes dominios y unidades en el anticlinorio de Olivenza-Monasterio. Cuadernos do Laboratorio Xeoloxico de Laxe 8, 147–68.Google Scholar
Bastida, F., Martinez Catalan, J. R, & Pulgar, J. A, 1986. Structural, metamorphic and magmatic history of the Mondoñedo nappe (Hercinian Belt, NW Spain). Journal of Structural Geology 8, 415–30.CrossRefGoogle Scholar
Bengtson, S., (in press). The advent of animal skeletons. In Early Life on Earth. Nobel Symposium 84 (ed. Bengtson, S.). New York: Columbia University Press.Google Scholar
Bengtson, S., & Yue, Zhao. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science 257, 367–9.CrossRefGoogle ScholarPubMed
Bernardo De Sousa, M., 1983. Litostratigrafia do CXGGrupo do Douro (NE Portugal). Memórias e Noticias, Museo Laboratória Mineralógico e Geológico Universidade de Coimbra 95, 363.Google Scholar
Bouyx, E., 1970. Contribution à lélude des formations Anteordoviciennes de la Méseta méridionale (Ciudad Real et Badajoz). Memorias del Instituto Geológico y Minero no. 73, 263 pp.Google Scholar
Brasier, M. D., 1990. Nutrients in the early Cambrian. Nature 347, 521–2.CrossRefGoogle Scholar
Brasier, M. D., Perejón, A., & San José, M. A De., 1979. Discovery of an important fossiliferous Precambrian-Cambrian sequence in Spain. Estudios Geológicos 35, 379–83.Google Scholar
Brasier, M. D., & Cowie, J. W., 1989. Other areas: Northwest Canada; California, Nevada, and Mexico; Morocco, Spain, and France. In The Precambrian-Cambrian Boundary (eds Cowie, J. W., and Brasier, M. D.), pp. 105–19. Oxford Monographs on Geology and Geophysics no. 12. Oxford Science Publications.Google Scholar
Byers, C. W., 1982. Geological significance of marine biogenic sedimentary structures. In Animal-Sediment Relations. The Biogenic Alteration of Sediments (eds McCall, P. L., and Tevesz, M. J. S.), pp. 221–56. Topics in Geobiology, 2. New York, London: Plenum Press.CrossRefGoogle Scholar
Capote, R., 1983. El Precambrico en los orogenos alpinos. In Geologia de España 1, I.G.M.E. Ed., Jubilar, Libro, Lios, L. M., 109.Google Scholar
Capote, R., Casquet, C., Fernández-Casals, M. J., Moreno, F., Navidad, M., Peinado, M., & Vegas, R., 1977. The Precambrian in the Central Part of the Iberian Massif. Estudios Geológicos 33, 343–55.Google Scholar
Carrington da Costa, J., 1950. Noticia sobre una carta geológica do Bucaco, de Nery Delgado. Comunicacoes dos Servicos Geológicos de Portugal, 28 pp.Google Scholar
Chacón, J., 1981. Las series precámbricas de la zona de Ossa-Morena (Macizo Ibérico Meridional). Curso de Conferencias sobre el Programa Internacional de Correlación Geológica (PICG). Real Academia de Ciencias Exactas, Físicas y Naturales, Madrid, no. 93–11.Google Scholar
Chacón, J., Fernández, J., Mitrofanov, F., & Timofeev, B. V., 1984. Primeras dataciones microfitopaleontológicas en el sector de Valverde de Burguillos-Jerez de los Caballeros (Anticlinorio de Olivenza-Monasterio). Cuadernos do Laboratio Xeolóxico de Laxe 8, 211–20.Google Scholar
Menge, Chen, & Yizhao, Wang. 1977. Tubular animal fossils in the middle Denying Formation, Upper Sinian, East Yangtze Gorge. Kexue Tongbao 22 (4–5), 219–21 (in Chinese).Google Scholar
Meng'e, Chen, Yiyuan, Chen, & Yi, Qian. 1981. Some tubular fossils from Sinian-Lower Cambrian Boundary Sequences, Yangtze Gorge. Bulletin of the Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 3, 117–24 (in Chinese, English abstract).Google Scholar
Compston, W., Sambridge, M. S., Reinfrank, R. F., Moczydlowska, M., Vidal, G., & Claesson, S., (in press). Numerical ages of volcanics and the earliest faunal zone within the Late Precambrian of East Poland. Journal of the Geological Society of London.Google Scholar
Conway Morris, S., 1989. Burgess Shale faunas and the Cambrian explosion. Science 246, 339–46.CrossRefGoogle Scholar
Conway Morris, S., Mattes, B. W., & Menge, Chen. 1990. The early skeletal organism Cloudina: new occurrences from Oman and possibly China. American Journal of Science 290-A, 245–60.Google Scholar
Cook, H. E., 1979. Ancient continental slope sequences and their value in understanding modern slope development. In Geology of Continental Slopes (eds Doyle, L. J., and Pilkey, O. H.), pp. 287305. Society of Economic Paleontologists and Mineralogists Special Publication no. 27.CrossRefGoogle Scholar
Cowie, J. W., & Brasier, M. D., (eds) 1989. The Precambrian-Cambrian Boundary. Oxford Monographs on Geology and Geophysics no. 12. Oxford: Clarendon Press, 213 pp.Google Scholar
Crespo, V., & Rey, J., 1971. Contributión al estudio del Valle de Alcudia. Boletin Geológico y Minero de España 82, 512–15.Google Scholar
Crimes, T. P., 1970. Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. Geological Journal 7, 4768.CrossRefGoogle Scholar
Crimes, T. P., 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine 124, 97119.CrossRefGoogle Scholar
Crimes, T. P., 1989. Trace fossils. In The Precambrian-Cambrian Boundary (eds Cowie, J. W., and Brasier, M. D.), pp. 166–85. Oxford Monographs on Geology and Geophysics no. 12. Oxford: Clarendon Press.Google Scholar
Crimes, T. P., 1992. Changes in the trace fossil biota across the Proterozoic-Phanerozoic boundary. Journal of the Geological Society, London 149, 637–46.CrossRefGoogle Scholar
Crimes, T. P., & Germs, G. J. B., 1982. Trace fossils from the Nama Group (Precambrian-Cambrian) of Southwest Africa (Namibia). Journal of Paleontology 56, 890907.Google Scholar
Crimes, T. P., Legg, I., Marcos, A., & Arboleya, M., 1977. ?Late Precambrian-low Lower Cambrian trace fossils from Spain. In Trace Fossils 2 (eds Crimes, T. P., and Harper, J. C.), pp. 91138. Geological Journal Special Issue no. 9.Google Scholar
Dallmeyer, R. D., & Quesada, C., 1992. Cadomian vs. Variscan evolution of the Ossa-Morena zone (SW Iberia): field and 40Ar-39Ar mineral age constraints. Tectonophysics 216, 339–64.CrossRefGoogle Scholar
DíEz Balda, M. A., 1981. La estructura herciniana entre Salamanca y Sequeros (Zona Centro Ibérica). La superposición de fases y su influencia en la fábrica de las rocas. Cuadernos de Geología Ibérica 7, 519–34.Google Scholar
DíEz Balda, M. A., 1986. El Complejo Esquisto-Grauváquico, las series paleozoicas y la estructura hercinica al Sur de Salamanca. Acla Salmanticensia, Seción de Ciencias 52, 1162.Google Scholar
DíEz Balda, M. A., & Fournier Vinas, Ch., 1981. Hallazgo de acritarcos en el Complejo Esquisto-Grauvaquico al Sur de Salamanca. Acla Geológica Hispánica 16, 131–4.Google Scholar
DíEz Balda, M. A., Vegas, R., & González Lodeiro, F., 1990. Part IV. Central Iberian Zone. Structures. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D., and Martinez García, E.), pp. 172–88. Springer-Verlag.Google Scholar
Ding, Lian-Fang, Li, Yong, & Chen, Hui-Xin. 1992. Discovery of Micrhystridium regulare from the Sinian-Cambrian boundary strata in Yichang, Hubei, and its stratigraphic significance. Acta Micropalaeontologica Sinica 9, 303–10.Google Scholar
Eguíluz, L., & ÁBalos, B., 1992. Tectonic setting of Cadomian low-pressure metamorphism in the central Ossa-Morena Zone (Iberian Massif, SW Spain). Precambrian Research 56, 113–37.CrossRefGoogle Scholar
Eguíluz, L., Garrote, A., Fernández-Carrasco, J., 1983. Explicación de la Hoja n. 897 (Monasterio) del Mapa Geológico National de España 1:50000. Instituto Geológico y Minero de España.Google Scholar
Emmons, E., 1844. The Taconic System; based on observations in New York, Massachusetts, Maine, Vermont, and Rhode Island. Albany: Caroll & Cook, 68 pp.Google Scholar
Farmer, J., Vidal, G., Strauss, H., Moczydlowska, M., Ahlberg, P., & Siedlecka, A., 1992. Ediacaran medusoid fossils from the Innerelv Member (late Proterozoic) of Digermul Peninsula, Tanafjord area, northeastern Finnmark. Geological Magazine 129, 181–95.CrossRefGoogle Scholar
Fedonkin, M. A., 1980. New representatives of Precambrian coelenterates in the north of the Russian platform. Paleontologicheskiy Zhurnal 1980, 715.Google Scholar
Fedonkin, M. A., 1981. Vendian biotas of the White Sea (Precambrian non-skeletal fauna of the northern Russian Platform). (In Russian). Moscow: Nauka, 100 pp.Google Scholar
Fedonkin, M. A., 1985. Precambrian metazoans: The problems of preservation, systematics, and evolution. Philosophical Transactions Royal Society of London, Part B 311, 2745.Google Scholar
Fedonkin, M. A., 1990. Precambrian metazoans. In Paleobiology. A Synthesis (eds Briggs, D. E. G., and Crowther, P. R.), pp. 1724. Blackwell Scientific Publications Ltd.Google Scholar
Fedonkin, M., Liñán, E., & Perejón, A., 1983. Icnofósiles de las rocas precambrico-cambricas de la Sierra de Córdoba, España. Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica) 81, 125–38.Google Scholar
FøYn, S., & Glaeessner, M. F., 1979. Platysolenites, other animal fossils, and the Precambrian-Cambrian transition in Norway. Norsk Geologisk Tidsskrift 59, 2546.Google Scholar
Gámez-Vintaned, J. A., & LiñáN, E., (in press). Les flores du Permien basal et al palichnologie de la fosse de Fombuena (province de Zaragoza, Espagne). IV. Palichnologie. Mededelingen Rijks Geologische Dienst.Google Scholar
García-Hidalgo, J. F., 1988. El Anticlinal de Ibor: estratigrafia, sedimentologia, Tectónica y ciclos sedimentarios. II. Congreso Geologico de España. Simposio sobre Cinturones Orogénicos, 101–10.Google Scholar
Germs, G. J. B., 1972 a. Trace fossils from the Nama Group, south-west Africa. Journal of Paleontology 46, 864–70.Google Scholar
Germs, G. J. B., 1972 b. New shelly fossils from the Nama Group, South West Africa. American Journal of Science 272, 752–61.Google Scholar
Gnilovskaya, M. B., 1983. Vendotaenids. In Upper Precambrian and Cambrian Palaeontology of the East European Platform (eds Urbanek, A., and Yu Rozanov, A.), pp. 4656. Warsaw: Publishing House Wydawnictwa Geologiczne.Google Scholar
Gnilovskaya, M. B., 1985. Vendotaenids — Vendian Metaphyta. In Vendskaya Sistema I. [Vendian System 1] (eds. Sokolov, B. S., and Ivanovsky, A. B.), pp. 117–29. Akademiia Nauk SSSR, ‘Nauka’.Google Scholar
Grant, S. W. F., 1990. Shell structure and distribution of Claudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290-A, 261–94.Google Scholar
Grant, S. W., Knoll, A. H., & Germs, G. J. B., 1991. Probable calcified metaphytes in the latest Proterozoic Nama Group: origin, diagenesis and implications. Journal of Paleontology 65, 118.CrossRefGoogle ScholarPubMed
Hahn, G., & Pflug, H. D., 1985. Die Cloudinidae N. fam., Kalk-Röhren aus dem Vendium und Unter-Kambrium. Senckenbergiana Lethaea 65, 413–31.Google Scholar
Haldemann, S. S., 1840. Supplement to number one of ‘A monograph of the Limniades, and other fresh-water univalve shells of North America’, containing descriptions of apparently new animals in different classes, and the names and characters of the subgenera in Paludina and Anculosa. Philadelphia: J. Dobson, 3 pp.Google Scholar
Hall, J., 1852. Palaeontology of New York. Vol. 2. Albany: C. Van Benthuysen, 362 pp.Google Scholar
Han, Tsu-Ming, & Runnegar, B., 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science 257, 232–5.CrossRefGoogle ScholarPubMed
Hedberg, H. D., (ed.) 1976: International Stratigraphic Guide. A guide to stratigraphic classification, terminology and procedure, New York: John Wiley & Sons, Inc., 200 pp.Google Scholar
Hofmann, H. J., (in press). Proterozoic carbonaceous compressions (‘metaphytes’ and ‘worms’). In Early Life on Earth. Nobel Symposium 84 (ed. Bengtson, S.). New York: Columbia University Press.Google Scholar
Jackson, P., & Sanderson, D. J., 1992. Scaling of fault displacements from the Badajoz-Córdoba shear zone, SW Spain. Tectonophysics 210, 179–90.CrossRefGoogle Scholar
Jankauskas, T. V., 1989. Precambrian Microfossils of the USSR. Akademia Nauk SSSR., Institute of Precambrian Geology and Geochronology, Nauka. 191 pp.Google Scholar
Jiang, Z., Luo, H., & Zang, S., 1982. Trace fossils of the Meishucun Stage (Lowermost Cambrian) from the Meishucun section in China. Geological Review 28, 713.Google Scholar
Knoll, A. H., 1992. Biological and biochemical preludes of the Ediacaran radiation. In Origin and Early Evolution of the Metazoa (eds Lipps, J. H., and Signor, P. W.), pp. 5384. Topics in Geobiology no. 10. Plenum Press.CrossRefGoogle Scholar
Ksiażkiewicz, M., 1968. O niektorych problematykach z fliszu Karpat Polskich (Czesc III). Polskiego Towarzystwa Geologicznego, Rocznik 38, 317. [On some problematic organic traces from the flysch of the Polish Carpathians (Part III). Annales de la Societé Geologique de Pologne].Google Scholar
Ksiażkiewicz, M., 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeontologia Polonica 36, 1208.Google Scholar
Landing, E., Myrow, P., Benus, A. P., & Narbonne, G. M., 1989. The Placentian Series: Appearance of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology 63 739–69.CrossRefGoogle Scholar
Liñán, E., 1984. Los icnofósiles de la Formación Torrearboles (?Precambrico?-Cambrico inferior) en los alrededores de Fuente de Cantos, Badajoz. Cuadernos do Laboratorio Xeolóxico de Laxe 8, 4774.Google Scholar
Liñán, E., & Palacios, T., 1983. Aportaciones micropaleontológicas para el conocimiento del límite Precámbrico-Cámbrico en la Sierra de Córdoba, España. Comunicações dos Serviços Geológicos de Portugal 69, 227–34.Google Scholar
Liñán, E., & Palacios, T., 1987. Asociaciones de pistas fósiles y microorganismos de pared orgánica del Proterozoico, en las facies esquisto-grauváquicas del norte de Cáceres. Consequencias regionales. Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica) 82, 211–32.Google Scholar
Liñán, E., & Perejón, A., 1981. El Cámbrico inferior de la ‘Unidad de Alconera’, Badajoz (SW de España). Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica) 79, 125–48.Google Scholar
Liñán, E., Palacios, T., & Perejón, A., 1984. Precambrian-Cambrian boundary and correlation from southwestern and central part of Spain. Geological Magazine 121, 221–8.CrossRefGoogle Scholar
Liñán, E., Perejón, A., & Sdzuy, K., 1993. The Lower-Middle Cambrian stages and stratotypes from the Iberian Peninsula: a revision. Geological Magazine 130, 817–33.CrossRefGoogle Scholar
Liñán, E., & Tejero, R., 1988. Las formaciones precámbricas del antiforme de Paracuellos (Cadenas Ibéricas). Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica) 84, 3949.Google Scholar
Lorenzo Álvarez, S., & Solé, J., 1988. La discordancia intraprecámbrica y la estratigrafía del Precámbrico superior en el sector suroriental del Anticlinal de Abenojar-Tirteafuera. Congreso Geológico de España 1, 115–18.Google Scholar
Lotze, F., 1956. Das Präkambrium Spaniens. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 8, 373–80.Google Scholar
Lotze, F., 1957. Zum Alter nordwestspanischer Quartzit-Sandstein-Folgen. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 10, 128–39.Google Scholar
Männil, R. M., 1966. A small vertically excavated cavity in Baltic Ordovician limestone. Akademiya Nauk SSSR, Paleontologicheskiy Institut, 200–7 [in Russian].Google Scholar
Marcos, A., 1973. Las series del Paleozoico inferior y la estructura herciniana del occidente de Asturias (NW de España). Trabajos de Geología 6, 3113.Google Scholar
Marcos, A., Azor, A., GonzáLez Lodeiro, F., & Simancas, F., 1991. Early Phanerozoic trace fossils from the Sierra Albarrana Quartzites (Ossa-Morena Zone, Southwest Spain). Scripta Geologica 97, 4753.Google Scholar
Martín Parra, L. M., Aramburu, C., Bardají, T., Bea, F., Brime, C., Corretge, C., Enrile, A., García Ramos, J. C., González, J., Gutiérrez Marco, J. C., Lorenzo, P., Palacios, T., Pérez Estaún, A., & Maymo, A., 1989. Mapa Geológico de España. 1:50000. Riello n. 128. Instituto Tecnolñgico Geominero de España. 119 pp.Google Scholar
MartíN Herrero, D., Bascones, L., Carballeira, J., Corretge, L. G., Cuesta, A., Galán, G., Gallastegui, G., Goy, J. L., Gutiérrez, J. C., LiñáN, E., Martínez, C., Palacios, T., Rodríguez, J., Zazo, C., Barón, J. M., & Ruiz, C., 1987. Mapa Geologico de España 1:50000, 651, Serradilla. Madrid: Instituto Geológico y Minero, Madrid, 56 pp.Google Scholar
MartíNez Catalán, J. R., 1985. Estratigrafía y estructura del domo de Lugo (Sector Oeste de la zona Astur-Occidental Leonesa). Corpus Geol Gallaeciae 2 Serie 2.Google Scholar
MartíNez Catalán, J. R., Pérez-Estaún, A., Bastida, F., Pulgar, J. A., & Marcos, A., 1990. Part III. West Asturian-Leonese Zone. Structure. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D., and Martinez García, E.), pp. 103–14. Springer-Verlag.CrossRefGoogle Scholar
Matte, P., 1967. Le Précambrien supérieur schisto-gréseux de l'Ouest des Asturies (Nord-Ouest de l'Espagne et ses relations avec les series précambriennes plus internes de l'arc galicien. Comptes Rendus de la Académie des Sciences de Paris 264, 1769–72.Google Scholar
Matte, P., 1968. Précisions sur le Précambrien supérieur schisto-gréseux de l'Ouest des Asturies. Comparaision avec les autres affleurements précambriennes du Nord-Ouest de l'Espagne. Revue de Géographie Physique et Géologie Dynamique (2& Serie) 10, 205–11.Google Scholar
Mcmenamin, M. A. S., 1985. Basal Cambrian small shelly fossils from the La Ciénega Formation, Northwestern Sonora, Mexico. Journal of Paleontology 59, 1414–25.Google Scholar
Miller, S. A., 1889. North American geology and palaeontology for the use of amateurs, students and scientists. Cincinnati: Western Methodist Book Concern, 664 pp.CrossRefGoogle Scholar
Mitrofanov, F. P., & Timofeev, B. V., 1977. Première étude des microfaunes du Précambrien de la Peninsule lbérique. Leningrad: Institute of Precambrian Geology and Geochronology, 2 pp.Google Scholar
Moczydlowska, M., 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland. Fossils and Strata 29, 127 pp.Google Scholar
Moczydlowska, M., & Vidal, G., 1988. How old is the Tommotian? Geology 16, 166–8.2.3.CO;2>CrossRefGoogle Scholar
Moczydlowska, M., Vidal, G., & Rudavskaya, V. A., 1993. Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology 36, 495521.Google Scholar
Moorman, M. A., 1974. Microbiota of the Late Proterozoic Hector Formation, southwestern Alberta, Canada. Journal of Paleontology 48, 524–39.Google Scholar
Moreno, F., 1974. Las formaciones anteordovícicas del anticlinal de Valdelacasa. Boletín Geológica y Minero de España 85, 396400.Google Scholar
Moreno, F., 1975. Olistostromas, fangoconglomerados y ‘slump folds’. Distributión de facies en las series de tránsito Cámbrico-Precámbrico en el anticlinal de Valdelacasa. (Provincias de Toledo, Cáceres y Ciudad Real). Estudios Geológicos 31, 249–60.Google Scholar
Moreno, F., 1977. Tectónica y sedimentatión de las series de tránsito (Precámbrico terminal) entre el anticlinal de Valdelacasa y el Valle de Alcudia. Ausencia de Cámbrico. Studia Geológica 12, 123–36.Google Scholar
Mount, J. F., & Signor, P. W., 1988. Environmental stratigraphy of the Proterozoic-Cambrian transition and the record of the metazoan radiation event in western North America. In Trace fossils, small shelly fossils, and the Precambrian-Cambrian boundary (eds Landing, E., and Narbonne, G.), pp. 181. New York State Museum and Geological Survey Bulletin no. 463.Google Scholar
Narbonne, G. M., & Myrow, P., 1988. Trace fossils, small shelly fossils and the Precambrian—Cambrian boundary (eds Landing, E., Narbonne, G. M., & Myrow, P.), pp. 72–6. New York State Museum Bulletin no. 463.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E., & Anderson, M. M., 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.CrossRefGoogle Scholar
Nozal Martín, F., Robles Casas, R., & Santamaria Casanovas, J., 1988. Series y correlación de los materiales anteordovícicos en los Montes de Toledo y el Sur de Salamanca. Congreso Geológico de España, 1988, Comunicaciones 1, 139–42.Google Scholar
Nozal Martín, F., García Casquero, J. L., & Picart Boira, J., 1988. Discordancia intraprecámbrica y series sedimentarias en el sector suroriental de los Montes de Toledo. Boletín Geológico y Minero 99, 473–89.Google Scholar
Odriozola, J. M., PeóN, A., & Vargas Alonso, I., 1983. Mapa geológico de España 1:50000 (segunda serie), Hoja 854 (Zafra), 57 pp.Google Scholar
Oliviera, J. T., Pereira, J. M., Picarra, T., Young, T., Romano, M., 1992. O Paleozóico inferior de Portugal. Sintese da estratigrafia e da evolucao paleogeográfica. In Paleozoico Inferior de lbero-América (eds Guthiérrez Marco, J. C., Saavedra, J., & Rábano, I.), pp. 259376. Universidad de Extremadura.Google Scholar
Ortega, E., & Gonzalez Lodeiro, F., 1986. La discordancia intra-Alcudiense en el dominio meridional de la zona Centroibérica. Breviora Geólogica Astúrica 3–4, 2732.Google Scholar
Ortega, E., HernáNdez Urroz, J., & González Lodeiro, F., 1988. Distributión paleogeográ;fico y control estructural de los materiales anteordovícicos en la parte suroriental del autóctono de la Zona Centro lbérica. Simposio sobre Cinturones Orogénicos. II Congreso Geológico de España, 85–9.Google Scholar
Ovtracht, A., & Tamain, G., 1970. Tectonique en Sierra Morena (España). Comptes Rendus de la Académie des Sciences de Paris (Ser. D) 270, 2634–6.Google Scholar
Pacześna, J., 1986. Upper Vendian and Lower Cambrian ichnocoenoses of Lublin Region. Biuletyn Instytuiu Geologicznego 355, 3147.Google Scholar
Palacios, T., 1983. Primeros microfósiles de pared orgánica extraidos en el olistostroma del Membrillar (Proterozoico superior del Centro de España). Revista Española de Micropaleontología 60, 511–17.Google Scholar
Palacios, T., 1989. Microfósiles de pared orgánica del Proterozoico Superior (región central de la Península lbérica). Memorias del Museo Paleontológico de la Universidad de Zaragoza 3(2), 191.Google Scholar
Palacios, T., & Vidal, G., 1992. Lower Cambrian acritarchs from northern Spain: the Precambrian-Cambrian boundary and biostratigraphic implications. Geological Magazine 129, 421–36.CrossRefGoogle Scholar
Palij, V. M., Posti, E., & Fedonkin, M. A., 1983. Softbodied metazoa and animal trace fossils in the Vendian and early Cambrian. In Upper Precambrian and Cambrian Palaeontology of the East-European Platform (eds Urbanek, A., and Rozanov, A. Yu), pp. 5694. Warsaw: Wydawnictwa Geologiczne.Google Scholar
Perconig, E., Vázquez, F., Velando, F., & Leyva, F., 1986. Proterozoic and Cambrian phosphorites-deposits: Fontanerejo, Spain. In Phosphate deposits of the world. Vol. I Proterozoic and Cambrian phosphorites (eds Cook, P. J., and Shergold, J. H.), pp. 220–34. Cambridge University Press.Google Scholar
Pérez-Estaún, A., 1973. Datos sobre la sucesión estrátigrafica del Precámbrico y la estructura del extremo sur del antiforme del Narcea (NW de España). Breviora Geológica Astúrica 17, 516.Google Scholar
Pérez-EstaúN, A., 1978. Estratigrafía y estructura de la Rama S. de la zona Asturoccidental-Leonesa. Memorias del Instituto Geológico y Minero de España 92, 1150.Google Scholar
Pérez-Estaún, A., Bastida, F., Martínez Catalán, J. R., Gutiérrez Marco, J. C., Marcos, A., & Pulgar, J. A., 1990. Part III West Asturian-Leonese Zone. Stratigraphy. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D., and Martinez Garcia, E.), pp. 92102. Springer-Verlag.CrossRefGoogle Scholar
Pérez-Estaún, A., Martínez Catalán, J. R., & Bastida, F., 1991. Crustal thickening and deformation sequence in the footwall of the structure of the variscan belt of northwest Spain. Tectonophyscs 191, 243–53.CrossRefGoogle Scholar
Pieren Pidal, A. P., & Herranz, P., 1988. Presencia y caracterización del ‘Alcudiense superior’ (Vendiense) en el entronque de la Serena y el valle de Alcudia (Este de la Provincia de badajoz). II Congreso Geológico de España, Granada. Simposio sobre Cinturones Orogénicos, 91100.Google Scholar
Pieren Pidal, A. P., Herranz Araujo, P., & Garcia Gil, S., 1991. Evolución de los depósitos continentales del Proterozoico Superior en ‘La Serena’, Badajoz (Zona Centro lbérica). Cuadernos do Laboratorio Xeolóxico de Laxe 15, 179–91.Google Scholar
Pieren Pidal, A. P., Pineda Velasco, A., & Herranz Araujo, P., 1987. Discordancia intra-Alcudiense en el anticlinal de Agudo (Ciudad Real-Badajoz). Geogaceta 2, 26–9.Google Scholar
Quesada, C., 1990 a. Precambrian successions in Sw Iberia: their relationship to ‘Cadomian’ orogenic events. In The Cadomian Orogeny (eds D'lemos, R. S., Strachan, R. A., and Topley, C. G.), pp. 353–62. Geological Society Special Publications.Google Scholar
Quesada, C., 1990 b. Precambrian terranes in the Iberian Variscan Foldbelt. In Avalonion and Cadomian Geology of the North Atlantic (eds Strachan, R. A., and Taylor, G. K.), pp. 109–33. Glasgow: Blackie and Son Ltd.CrossRefGoogle Scholar
Quesada, C., Apalategui, O., EguíLuz, L., Liñán, E., & Palacios, T., 1990. Part V. Ossa-Morena Zone. 2. Stratigraphy. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D., and Martinez García, E.), pp. 252–8. Springer-Verlag.CrossRefGoogle Scholar
Quesada, C., & Dallmeyer, R. D., 1990. 40Ar 39Ar mineral ages of Late Precambrian tectonothermal events in the Ossa Morena Zone (SW Iberia). Geological Society of America, Annual Meeting, Dallas, Abstracts 22 (7), 98.Google Scholar
Ribeiro, A., Sousa, B., & Noronha, F., 1991. A formaçao (Volcanosedimentar) de Envendos e rochas acidas associadas. Resumos III Gongreso Nacional do Geologia. Coimbra.Google Scholar
Richter, R., 1937. Marken und Spuren aus alien Zeiten. III. Senckenbergiana 13, 299342.Google Scholar
Robles Casas, R., & Álvarez Nava, H., 1988. Los materiales precámbricos-cámbricos del Domo de las Hurdes: Existencia de tres series sedimentarias separadas por discordancias, SO de Salamanca (Zona Centro Iberica). II Congreso Geológico de España, Granada, Comunicaciones 1, 185–8.Google Scholar
Rodríguez Alonso, M. D., 1984. El Complejo esquistograuváquico en el área de las Hurdes y Sierra de Gata, provincia de Salamanca y Cáceres, España. Cuadernos de Geología Ibérica 9, 3780.Google Scholar
Rödlz, P., 1975. Beiträge zum Aufbau des jungpräkambrischen und altapaläozoischen Grundgebirges in den provinzen Salamanca und Cáceres (Sierra de Tamames, Sierra de Francia und östliche Sierra de Gata. Spanien). Münstersche Forschungen zur Geologie und Paläontologie 36, 168.Google Scholar
Ruiz López, J. L., Fernández Carrasco, J., Collault, J. L., & Apalategui, O., 1985. Mapa Geológico de España E. 1:50000. n. 896, Higuera la Real. Instituto Geológico y Minero de España. 48 pp.Google Scholar
San José, M. A. De, 1983. El complejo sedimentario pelíticograuváquico. In Libro Jubilar J. M. Rios (ed. Comba, J. A.), pp. 91–9. Instituto Geólogico y Minero de España, Madrid 1.Google Scholar
San José, M. A. De, 1984. Los materiales anteórdovicicos del anticlinal de Navalpino. Cuadernos de Geologia Ibárica 9, 81117.Google Scholar
San José, M. A. De, Pieren, A. P., GarcílA Hidalgo, F. J., Vilas, L., Herranz, P., Peláez, J. R., & Perejón, A., 1990. Part IV. Central Iberian Zone. Ante-Ordovician Stratigraphy. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D., & Martínez García, E.), pp. 147–59. Springer-Verlag.Google Scholar
San José, M. A. De, Rábano, I., Herranz, P., & Gutiérrez Marco, J. L., 1992. El Paleozoico inferior de la zona Centro Ibérica meridional. In Paleozoico Inferior de Ibero-America (eds Gutiérrez Marco, J. C., Saavedra, J., and Rabano, I.), pp. 503–21. Universidad de Extremadura.Google Scholar
Sánchez Carretero, R., Carrecedo, M., Eguíluz, L., Garrote, A., & Apalategui, O., 1989. El magmatismo calcoalcalino del Precámbrico terminal en la zona de Ossa Morena. Revisla de la Sociedad Geológica de España 2, 721.Google Scholar
Schäfer, H. J., Gebauer, D., & Nägler, T. F., 1989. Pan-African and Caledonian ages in the Ossa Morena Zone (SW Spain): A U-Pb Zircon- and Sm-Nd study. Terra Abstracts 1, 350–1.Google Scholar
Schäfer, H. J., Gebauer, D., Nägler, T. F., & Eguíluz, L., 1993. Conventional and ion-microprobe U-Pb dating of detrital zircons of the Tentudía Group (Serie Negra, SW Spain): implications for zircon systematics, stratigraphy, tectonics and the Precambrian/Cambrian boundary. Contributions to Mineralogy and Petrology 113, 289–99.CrossRefGoogle Scholar
Seilacher, A., 1955. Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). IV. Spuren und Lebensweise der Trilobiten. V. Spuren und Fazies im Unterkambrium. Akademie der Wissenschaften und der Literatur in Mainz, mathematisch-naturwissenschaftliche Klasse, Abhandlungen 10, 342–99.Google Scholar
Seilacher, A., 1956. Der Beginn des Kambriums als biologische Wende. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 103, 155–80.Google Scholar
Seilacher, A., 1960. Lebensspuren als Leitfossilien. Geologische Rundschau 49, 4150.CrossRefGoogle Scholar
Seilacher, A., 1989. Vendozoa: Organismic construction in the Proterozoic biosphere. Lethaia 22, 229–39.CrossRefGoogle Scholar
Sequeira, A. J. D., 1991. O grupo das Beiras (Complexo Xisto — Grauváquico entre Zebreira e Penamocor e sua relaçao com o Ordovícico. Resumos III Congreso Nacional de Geología. Coimbra.Google Scholar
Signor, P. W., & Mcmenamin, M. A. S., 1988. The early Cambrian worm tube Onuphionella from California and nevada. Journal of Paleontology 62, 233–40.CrossRefGoogle Scholar
Signor, P. W., Mount, J. F., & Onken, B. R., 1987. A pretrilobite shelly fauna from the White-Inyo region of eastern California and western Nevada. Journal of Paleontology 61, 425–38.CrossRefGoogle Scholar
Sokolov, B. S., 1972. The Vendian Period in Earth history. Palaeontologiya, Doklady Sovetskikh Geologov, Akademiya Nauk SSSR 1, 114–24.Google Scholar
Sokolov, B. S., & Fedonkin, M. A., 1985. (Vendian System). Vol. 2, Moscow, Nauka, 237 pp. (In Russian).Google Scholar
Sokolov, B. S., & Ivanovsky, A. B., 1985. Vendian System, Vol. 1, Moscow, Nauka, 220 pp. (In Russian).Google Scholar
Stewart, W. D., Dixon, O. A., & Rust, B. R., 1993. Middle Cambrian carbonate-platform collapse, southeastern Canadian Rocky Mountains. Geology 21, 687–90.2.3.CO;2>CrossRefGoogle Scholar
Tamain, G., 1970. Guide sommaire de l'excursion de la Commission Internationale de la Carte Tectonique de L'Europe (Péninsule Ibérique, Espagne), et Complément. Impaca-Bibas.Google Scholar
Tamain, G., 1971. El alcudiense y la Orogénesis Cadomiense en el Sur de la Meseta Ibérica (España). Primer Centenario del Boletin de la Real Sociedad Española de Historia Natural Geologia, 437–64.Google Scholar
Torell, O. M., 1869. Bidrag till Sparagmitetagens geognosi och paleontologie. Ada Universitatis Lundensis, Lunds Universitets Årsskrift 4 Afdelning 2, 140.Google Scholar
Urbanek, A., & Mierzejewska, G., 1983. The fine structure of zooidal tubes in Sabellitida and Pogonophora. In Upper Precambrian and Cambrian Palaeontology of the East-European Platform (eds Urbanek, A., and Rozanov, A. Yu.), pp. 100–11. Warsaw: Wydawnictwa Geologiczne.Google Scholar
Van Den Bosch, W., 1969. Geology of the Luna-Sil region. Cantabrian Mountains (NW Spain). Leidse Geologische Mededelingen 44, 137225.Google Scholar
Vanguestaine, M., 1974. Espèces zonales d'Acritarches du Cambro-Trémadocien de Belgique et de l'Ardenne françhise. Review of Palaeobotany and Palynology 18, 6382.CrossRefGoogle Scholar
Vidal, G., 1989. Are late Proterozoic carbonaceous megafossils metaphytic algae or bacteria? Lethaia 22, 375–9.CrossRefGoogle Scholar
Vidal, G., (in press). Early ecosystems – limitations imposed by the fossil record. In Early Life on Earth. Nobel Symposium 84 (ed. Bengtson, S.). New York: Columbia University Press.Google Scholar
Vidal, G., Jensen, S., & Palacios, T., 1994. Neoproterozoic (Vendian) ichnofossils from Lower Alcudian strata in central Spain. Geological Magazine 131, 111.CrossRefGoogle Scholar
Vidal, G., & Moczydlowska, M., 1992. Patterns of phytoplankton radiation across the Precambrian-Cambrian boundary. Journal of the Geological Society, London 149, 647–54.CrossRefGoogle Scholar
Vidal, G., Moczydlowska, M., & Rudavskaya, V. A., 1993. A Chuaria—Tawuia assemblage and associated acritarchs from the Neoproterozoic of the Lena-Anabar Depression, Yakutia – biostratigraphic implications. Palaeontology 36(2), 387402.Google Scholar
Vidal, G., & Nystuen, J. P., 1990. Micropaleontology, depositional environment and biostratigraphy of the Upper Proterozoic Hedmark Group, southern Norway. American Journal of Science 290-A, 170211.Google Scholar
Vilas, L., & San José, M. A. De. 1990. Part IV Central Iberian Zone. Autochthonous Sequences. Introduction. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D., and Martinez García, E.), pp. 145–6. Springer-Verlag.CrossRefGoogle Scholar
Walcott, C. D., 1899. Precambrian fossiliferous formations. Geological Society of America Bulletin 10, 199244.CrossRefGoogle Scholar
Walter, M. R., Elphinstone, R., & Heys, G. R., 1989. Proterozoic and Early Cambrian trace fossils from the Amadeus and Georgina Basins, central Australia. Alcheringa 13, 209–56.CrossRefGoogle Scholar
Webby, B. D., 1970. Late Precambrian trace fossils from New South Wales. Lethaia 3, 79109.CrossRefGoogle Scholar
Yin, Leiming. 1985. Microfossils of the Doushantuo Formation in the Yangtze Gorge district, western Hubei. Palaeontologia Cathayana 2, 229–49.Google Scholar
Zaine, M. F., & Fairchild, T. R., 1985. Comparison of Aulophycus lucianoi Buerlen and Sommer from Ladário (MS) and the genus Clouclina Germs, Ediacaran of Namibia. Anais da Academia Brasileira de Ciências 57, 130.Google Scholar
Zaine, M. F., & Fairchild, T. R., 1987. Novas Consideraçoes sobre os fósseis da Formaçào Tamengo, Grupo Corumbá, SW do Brasil. Anais X Congresso Brasileiro de Paleontologia, Rio de Janeiro, 1987, 797807.Google Scholar
Zang, W., & Walter, M. R., 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy. Amadeus Basin, central Australia. Association of Australian Palaeontologists, Memoir no. 12, 132 pp.Google Scholar