Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T07:25:18.999Z Has data issue: false hasContentIssue false

Neoproterozoic (Vendian) ichnofossils from Lower Alcudian strata in central Spain

Published online by Cambridge University Press:  01 May 2009

Gonzalo Vidal
Affiliation:
Uppsala University, Institute of Earth Sciences, Norbyvägen 22, S-752 36 Uppsala, Sweden
Sören Jensen
Affiliation:
Uppsala University, Institute of Earth Sciences, Norbyvägen 22, S-752 36 Uppsala, Sweden
Teodoro Palacios
Affiliation:
Universidad de Extremadura, Facultad de Ciencias, Area de Paleontologia, 06071 Badajoz, Spain

Abstract

Simple trace fossils are reported from three localities in central Spain within a monotonous succession of shale and greywacke and classical turbidites attributed to the Neoproterozoic (Riphean) Lower Alcudian megaunit. The Lower Alcudian strata are believed to have a complex tectonic history including deformation during the Pan-African Orogeny. Chronostratigraphic control is not available for this structurally complex succession and fossil evidence is sparse. Here we report on a low-diversity ichnofossil association including the ichnospecies (isp.) Gordia marina Emmons, 1844, Gordia isp., G. aff. arcuata Książkiewicz, 1977. The stratigraphically inferred Proterozoic age of the rocks, added to the present ichnofossil association, suggests that colonization of deeper waters started before the early Cambrian. We further consider that the plausible oxygen requirements of marine invertebrate(s) which produced the present ichnofossil taxa may well have exceeded the oxygen levels in a largely dysaerobic environment. A circulation model proposed by one of us (Palacios, 1989), implying the presence of extensive upwelling and descending oxygen-rich waters, helps to explain the continuous colonization of deep-water settings in Lower and Upper Alcudian strata. We argue that the ichnofaunal record of strata older than 650 Ma is both rare and inconclusive. Moreover, the present ichnofauna, being similar to ichnofaunal associations in environmentally comparable Upper Alcudian strata, is largely documented from Neoproterozoic (Vendian) and early Palaeozoic associations elsewhere. We conclude that the new ichnofossil evidence is consistent with a Vendian or younger age for the Lower Alcudian megaunit. This view is also consistent with a recently published maximum deposition age of 565 Ma inferred from U–Pb datings of detrital zircons from the supposedly much older (Middle Riphean) Tentudia Group or ‘Serie Negra’, that appears roughly time-equivalent with Lower Alcudian strata. It thus may appear that basin formation and flysch deposition in central Iberia encompass a minor segment of Neoproterozoic time, being probably limited to the Vendian. By default, formerly postulated Pan-African deformation of Neoproterozoic Lower Alcudian strata appears implausible. We further conclude that the complex pre-Phanerozoic structural history of Alcudian strata is probably restricted to Cadomian and younger deformation. Former structural models need substantial revision.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G. & Durand, F. 1973. Trazas fósiles del basamento cristalino del noroeste Argentine. Boletin de la Asociacion geológica de Córdoba 2, 4553.Google Scholar
Aceñolaza, F. G. & Durand, F. 1986. Upper Precambrian-Lower Cambrian biota from the northwest of Argentina. Geological Magazine 123, 367–75.CrossRefGoogle Scholar
Aceñolaza, F. G. & Durand, F. 1987. Paleontologia del limite Precámbrico-Cámbrico de Argentina. Décimo Congreso Geológico Argentino, Actas 1, 315–20.Google Scholar
Aceñolaza, F. G., Durand, F. & Taddei, R. D. 1987. Geologia y contenido paleontológica del basamento metamorfico de la Region de Cachi, provincia de Salta. VI Congreso Geológico Argentino, Actas 1, 319–22.Google Scholar
Aceñolaza, F. G., Miller, H. & Toselli, A. 1988. The Puncoviscana Formation (Late Precambrian-Early Cambrian)–sedimentology, tectonometamorphic history and age of the oldest rocks of NW Argentina. In The Southern Central Andes. Lecture Notes in Earth Sciences 17 (eds Bahlburg, H., Breitkreutz, C. and Giese, P.), pp. 2537. Berlin: Springer-Verlag.Google Scholar
Benton, M. J. 1982. Trace fossils from Lower Palaeozoic ocean-floor sediments of the Southern Uplands of Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences 73, 6787.CrossRefGoogle Scholar
Bergström, J. 1986. Metazoan evolution–a new model. Zoologica Scripta 15, 189200.CrossRefGoogle Scholar
Brasier, M. D. & Cowie, J. W. 1989. Other areas: North-west Canada; California, Nevada, and Mexico; Morocco, Spain, and France. In The Precambrian–Cambrian Boundary (eds Cowie, J. W. and Brasier, M. D.), pp. 105–14. Oxford Monographs on Geology and Geophysics no. 12. Oxford University Press.Google Scholar
Brasier, M. D., Perejón, A. & San José, M. A. 1979. Discovery of an important fossiliferous Precambrian-Cambrian sequence in Spain. Estudios de Geologia 35, 379–83.Google Scholar
Byers, C. W. 1982. Geological significance of marine biogenic sedimentary structures. In Animal-Sediment Relations (eds McCall, P. L. and Tevesz, M. J. S.), pp. 221–56. New York: Plenum Press.CrossRefGoogle Scholar
Conway Morris, S. 1989. Burgess Shale faunas and the Cambrian explosion. Science 246, 339–46.CrossRefGoogle Scholar
Crimes, T. P. 1974. Colonisation of the early ocean floor. Nature 248, 328–30.CrossRefGoogle Scholar
Crimes, T. P. 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine 124, 97119.CrossRefGoogle Scholar
Crimes, T. P. 1989. Trace fossils. In The Precambrian–Cambrian Boundary (eds Cowie, J. M. & Brasier, M.), pp. 167–85. Oxford Monographs on Geology and Geophysics no. 12. Oxford University Press.Google Scholar
Crimes, T. P. 1992. Changes in the trace fossil biota across the Proterozoic–Phanerozoic boundary. Journal of the Geological Society, London 149, 637–46.CrossRefGoogle Scholar
Crimes, T. P. & Anderson, M. M. 1985. Trace fossils from late Precambrian–early Cambrian strata of southeastern Newfoundland (Canada): temporal and environ-mental implications. Journal of Paleontology 59, 310–43.Google Scholar
Crimes, T. P. & Crossley, J. D. 1991. A diverse ichnofauna from Silurian flysch of the Aberystwyth Grits Formation, Wales. Geological Journal 26, 2764.CrossRefGoogle Scholar
Crimes, T. P., Garcia Hidalgo, J. F. & Poire, D. G. 1992. Trace fossils from Arenig flysch sediments of Eire and their bearing on the early colonisation of the deep seas. Ichnos 2, 6177.CrossRefGoogle Scholar
Diez Balda, M. A., Vegas, R. & Gonzalez Lodeiro, F. 1990. Part IV Central Iberian Zone. Structures. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D. and Garcia, E. Martinez), pp. 172–88. Springer-Verlag.Google Scholar
El Hassani, A. & Willefert, S. 1992. La zone cambrienne á Oldhamia des Sehoul (Maroc septentrional). Géologie Méditerranéenne 17, 229–41.CrossRefGoogle Scholar
Emmons, E. 1944. The Taconic System; based on observations in New York, Massachusetts, Maine, Vermont, and Rhode Island. Caroll & Cook, 68 pp.Google Scholar
Fedonkin, M. A. 1981. White Sea Biota of the Vendian. (Precambrian Non-skeletal Fauna of the Russian Plat-form North). Akademia Nauk SSSR, Nauka no. 342, 100 pp.Google Scholar
Fedonkin, M. A. 1985. Systematic description of the Vendian Metazoa. In The Vendian System. Paleontology 1 (eds Sokolov, B. S. and Ivanovskij, A. B.), pp. 112–17. Moskow: Nauka.Google Scholar
Fillion, D. & Pickerill, R. K. 1990. Ichnology of the Upper Cambrian? to Lower Ordovician Bell Island and Wabana Groups of Eastern Newfoundland, Canada. Palaeontographica Canadiana no. 7, 119 pp.Google Scholar
Fitch, A. 1850. A historical, topographical and agricultural survey of the County of Washington. Parts 2–5. New York Agricultural Society, Transactions (1849) 9, 753944.Google Scholar
Fritz, W. H. & Crimes, T. P. 1985. Lithology, Trace Fossils, and Correlation of Precambrian–Cambrian Boundary Beds, Cassiar Mountain, North–central British Columbia. Geological Survey of Canada Paper 83–13, 24 pp.CrossRefGoogle Scholar
Germs, G. J. B. 1972. New shelly fossils from the Nama Group, South West Africa. American Journal of Science 272, 752–61.CrossRefGoogle Scholar
Gibson, G. G. 1989. Trace fossils from the late Precambrian Carolina Slate Belt, south-central North Carolina. Journal of Paleontology 63, 110.CrossRefGoogle Scholar
Gibson, G. G., Teeter, S. A. & Fedonkin, M. A. 1984. Ediacaran fossils from the Carolina slate belt, Stanley County, North Carolina. Geology 12, 387–90.2.0.CO;2>CrossRefGoogle Scholar
Gil Cid, M. D. & Jago, J. B. 1989. New data on the Lower Cambrian trilobites of Cortijos de Malagon (Spain). Estudios de Geologia 45, 91–9.Google Scholar
Glaessner, M. 1984. The Dawn of Animal Life–a Bio-historical Study. Cambridge: Cambridge University Press, 244 pp.Google Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290-A, 261–94.Google ScholarPubMed
Häntzschel, W. 1975. Trace fossils and problematica. In Treatise on Invertebrate Paleontology, Part W. Miscellanea, Supplement 1 (ed. Teichert, C.). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Herranz, P., San José, M. & Vilas, L. 1977. Ensayo de correlatión del Precámbrico entre los Montes de Toledo y el Valle del Matachel. Estudios de Geologia 33, 327–42.Google Scholar
Hofmann, H. J. 1990. Computer simulation of trace fossils with random patterns and the use of goniograms. Ichnos 1, 1520.CrossRefGoogle Scholar
Jankauskas, T. V. 1989. Precambrian Microfossils of the USSR. Akademia Nauk SSSR, Institute of Precambrian Geology and Geochronology, Nauka, 191 pp.Google Scholar
Jenkins, R. J. F. 1991. The early environment. In Metazoan Life (ed. Bryant, C.), pp. 3864. Chapman and Hall.Google Scholar
Ježek, P., Willner, A. P., Aceñolaza, F. G. & Miller, H. 1985. The Puncoviscana trough – a large basin of Late Precambrian to Early Cambrian age on the Pacific edge of the Brazilian shield. Geologische Rundschau 74, 573–84.CrossRefGoogle Scholar
Kitchell, J. A. 1979. Deep-sea foraging pathways: an analysis of randomness and resource exploitation. Paleobiology 5, 107–25.CrossRefGoogle Scholar
Knoll, A. H. 1992. Biological and biochemical preludes of the Ediacaran radiation. In Origin and Early Evolution of the Metazoa (eds Lipps, J. H. and Signor, P. W.), pp. 5384. Topics in Geobiology no. 10. Plenum Press.CrossRefGoogle Scholar
Książkiewicz, M. 1977. Trace Fossils in the Flysch of the Polish Carpathians. Palaeontologia Polonica no. 36, 208 pp.Google Scholar
Liñán, E. & Palacios, T. 1987. Asociaciones de Pistas fósiles y microorganismos de pared orgánica del Proterozoico en las facies esquisto-grauváquicas del Norte de Caceres. Consecuencias regionales. Boletin de la Real Sociedad Española de Historia Natural (Geologia) 82, 211–32.Google Scholar
Liñán, E., Palacios, T. & Perejón, A. 1984. Precambrian–Cambrian boundary and correlation from southwestern and central part of Spain. Geological Magazine 121, 221–8.CrossRefGoogle Scholar
Lindholm, R. M. & Casey, J. F. 1989. Regional significance of the Blow Me Down Brook Formation, western Newfoundland: new fossil evidence for an Early Cambrian age. Geological Society of American Bulletin 101, 113.2.3.CO;2>CrossRefGoogle Scholar
Lindholm, R. M. & Casey, J. F. 1990. The distribution and possible biostratigraphic significance of the ichnogenus Oldhamia in shales of the Blow Me Down Brook Formation, western Newfoundland. Canadian Journal of Earth Sciences 27, 1270–87.CrossRefGoogle Scholar
Lotze, F. 1956. Das Präkambrium Spaniens. Neues Jahrbuch für Geologie und Paläontologie 8, 373–80.Google Scholar
Lotze, F. & Sdzuy, K. 1961. Das Kambrium Spaniens. Teil l. Stratigraphie. Akademic der Wissenschaft und der Literatur Abhandlungen der Naturwissenschaftlichen Klasse 6–8, 1216.Google Scholar
Martin Herrero, D., Bascones, L., Carballeria, J., Corretge, L. G., Cuesta, A., Galan, G., Gallastegui, G., GOY, J. L., Gutierrez, J. C., Liñán, E., Martinez, C., Palacios, T., Rodriguez, J., Zazo, C., Baron, J. M. & Ruiz, C. 1987. Mapa Geológico de España a escala 1:50000 n' 651, Serradilla. Madrid: Instituto Geológico y Minero, 56 pp.Google Scholar
Mitrofanov, F. P. & Timofeev, B. V. 1977. Première étude des microfaunes du Précambrien de la Péninsule Ibérique. Institute of Precambrian Geology and Geochronology Monograph. Leningrad.Google Scholar
Moreno, F., Vegas, R. & Marcos, A. 1977. Sobre la edad de las series ordovicicas y cámbricas relacionadas con la discordancia ‘Sardica’ en el Anticlinal de Valdelacasa (Montes de Toledo, España). Breviora Geologica Asturica 20, 816.Google Scholar
Narbonne, G. M. & Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, Northwestern Canada. Palaeontology 33, 945–80.Google Scholar
Narbonne, G. M. & Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palae-ontology 30, 647–76.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E. & Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.CrossRefGoogle Scholar
Nozal, F., García Casquero, J. L. & Picart, J. 1988. Discordancia intraprecámbrica y series sedimentarias en el sector suroriental de los Montes de Toledo. Boletin Geológico y Minero 99, 473–89.Google Scholar
Nozal, F. & Robles Casas, R. 1988. Series y correlatión de los materiales anteordovicicos en los Montes de Toledo y el Sur de Salamanca. Congreso Geológico de España, 1988, Comunicaciones 1, 139–42.Google Scholar
Ortega, E., Hernandez Urroz, J. & Fernandez Lodeiro, F. 1988. Distributión paleogeográfica y control estructural de los materiales anteordovicicos en la parte suroriental del autóctono de la Zona Centro Ibérica. Simposio sobre Cinturones Orogénicos. II Congreso Geológico de España, 85–9.Google Scholar
Ovtracht, A. & Tamain, G. 1970. Tectonique en Sierra Morena (España). Comptes Rendus de I' Académie des Sciences de Paris (Sér. D) 270, 2634–6.Google Scholar
Pacześna, J. 1985. Ichnogenus Paleodictyon meneghini from the Lower Cambrian of Zbilutka (Holy Cross Mountains). Kwartalnik Geologiczny 29, 589–96.Google Scholar
Pacześna, J. 1986. Upper Vendian and Lower Cambrian ichnocoenoses of Lublin Region. Biuletyn Instytutu Geologicznego 355, 3147.Google Scholar
Palacios, T. 1983. Primeros microfósiles de pared orgánica extraidos en el olistostroma del Membrillar (Proterozoico superior del Centro de España). Revista Española de Micropaleontología 60 (30), 511–17.Google Scholar
Palacios, T. 1989. Microfósiles de pared orgánica del Proterozoico superior (Región Central de la Peninsula Ibérica). Memorias del Museo Paleontológico de la Universidad de Zaragoza 3, 191.Google Scholar
Palacios, T. & Vidal, G. 1992. Lower Cambrian acritarchs from northern Spain: the Precambrian–Cambrian boundary and biostratigraphic implications. Geological Magazine 129, 421–36.CrossRefGoogle Scholar
Palij, V. M. 1976. Remains of non-skeletal fauna and traces of life activity from deposits of the Upper Precambrian and Lower Cambrian of Podolia. In Paleontology and Stratigraphy of Upper Precambrian and Lower Cambrian in South-west East-European Platform, pp. 6377. Naukova Dunka, Kiev.Google Scholar
Perejón, A. 1986. Bioestratigrafía de los Arqueociatos en España. Cuadernos de Geologia Ibérica 9, 213–65.Google Scholar
Pickerill, R. K. 1980. Phanerozoic flysch trace fossil diversity – observations on an Ordovician flysch ichnofauna from the Aroostook–Matapedia Carbonate Belt of northern New Brunswick. Canadian Journal of Earth Sciences 17, 1259–70.CrossRefGoogle Scholar
Pickerill, R. K. 1981. Trace fossils in a Lower Palaeozoic submarine canyon sequence – the Siegas Formation of northwestern New Brunswick, Canada. Maritime Sediments and Atlantic Geology 17, 3658.Google Scholar
Pickerill, R. K., Fyffe, L. R. & Forbes, W. H. 1987. Late Ordovician–Early Silurian trace fossils from the Matapedia Group, Tobique River, western New Brunswick, Canada. Maritime Sediments and Atlantic Geology 23, 7788.Google Scholar
Pickerill, R. K., Fyffe, L. R. & Forbes, W. H. 1988. Late Ordovician–Early Silurian trace fossils from the Matapedia Group, Tobique River, western New Brunswick, Canada. II. Additional discoveries with descriptions and comments. Maritime Sediments and Atlantic Geology 24, 139–48.Google Scholar
Pickerill, R. K. & Harland, T. L. 1988. Trace fossils from Silurian slope deposits, North Greenland. In Cambrian–Jurassic Fossils, Trace Fossils and Stra-tigraphy from Greenland (ed. Peel, J. S.), pp. 119–33. Grønlands Geologiske Undersøgelse, Rapport 137.Google Scholar
Prado, C. 1855. Mémoire sur la géologie d'Almaden, d'une partie de la Sierra Morena et des Montagnes de Tolède. Bulletin de la Société Géologique de France, Série 2, 12, 124, 182–204.Google Scholar
Quesada, C., Apalategui, O., Eguiluz, L., Liñán, E. & Palacios, T. 1990. Part V. Ossa-Morena Zone. 2. Stratigraphy. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D. and Garcia, E. Martinez), pp. 252–8. Springer-Verlag.CrossRefGoogle Scholar
Robles, R. & Alvarez Nava, H. 1988. Los materiales precámbricos–-cámbricos del Domo de las Hurdes: Existencia de tres series sedimentarias separadas por discordancias, SO de Salamanca (Zona Centro Ibérica). II Congreso Geológico de España, Granada Comunidad 1, 185–8.Google Scholar
Runnegar, B. 1986. Molecular palaeontology. Palaeon-tology 29, 124.Google Scholar
Runnegar, B. 1991. Oxygen and the early evolution of the metazoa. In Metazoan Life (ed. Bryant, C.), pp. 6587. Chapman and Hall.Google Scholar
Runnegar, B. 1992. Evolution of the earliest animals. In Major Events in the History of Life (ed. Schopf, J. W.), pp. 6593. Boston: Jones and Bartlett.Google Scholar
San José, M. A. 1984. Los materiales anteordovicicos del anticlinal de Navalpino. Cuadernos de Geologia Ibérica 9, 81117.Google Scholar
San-José, de M. A., Pieren, A. P., Garcia, , Hidalgo, F. J., Vilas, L., Herranz, P., Pelaez, J. R. & Perejón, A. 1990. Part IV. Central Iberian Zone. Ante-Ordovician Stratigraphy. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D. and Garcia, E. Martinez), pp. 147–59. Springer-Verlag.Google Scholar
Schäfer, H. J., Gebauer, D., Nägler, T. F. & Eguiluz, L. 1993. Conventional and ion-microprobe U-Pb dating of detrital zircons of the Tentudia Group (Serie Negra, SW Spain): implications for zircon systematics, stratigraphy, tectonics and the Precambrian/Cambrian boundary. Contributions to Mineralogy and Petrology 113, 289–99.CrossRefGoogle Scholar
Sdzuy, K. 1971. Acerca de la correlation del Cámbrico inferior en la Peninsula Ibérica. I Congreso Hispano-Luso Americano Geologia Económica Sección I, Geologia 2, 753–68.Google Scholar
Seilacher, A. 1974. Flysch trace fossils: evolution of behavioral diversity in the deep sea. Neues Jahrbuch für Geologie und Paläontologie 4, 233–45.Google Scholar
Seilacher, A. 1977. Pattern analysis of Paleodictyon and related trace fossils. In Trace Fossils 2 (eds Crimes, T. P. and Harper, J. C.), pp. 289334. Geological Journal Special Issue no. 9.Google Scholar
Seilacher, A. 1986. Evolution of behavior as expressed in marine trace fossils. In Evolution of Animal Behavior (eds Matthew, H. N. and Kitchell, A. K.), pp. 6287. New York: Oxford University Press.Google Scholar
Stankovskij, A. F., Verichev, E. M. & Dobejko, M. P. 1985. Vendian of the South Eastern White Sea area. In Vendian System 2. Stratigraphy and Geological Processes (eds Sokolov, B. S. and Ivanovskij, A. B.), pp. 6776. Moskow: Nauka.Google Scholar
Tamain, G. 1970. Guide sommaire de I'excursion de la Commission Internationale de la Carte Tectonique de I'Europe (Péninsule Ibérique, Espagne), et Complément. Impaca-Bibas édit.Google Scholar
Tamain, G. 1971. El alcudiense y la Orogénesis Cadomiense en el Sur de la Meseta Ibérica (España). Primer Centenario del Boletin de la Real Sociedad Española de Historia Natural (Geologia), 437–64.Google Scholar
Towe, K. M. 1970. Oxygen-collagen priority and the early fossil record. Proceedings of the National Academy of Sciences, USA 65, 781–8.CrossRefGoogle Scholar
Towe, K. M. 1981. Biochemical keys to the emergence of complex life. In Life in the Universe (ed. Billingham, J.), pp. 297306. Cambridge, Massachusetts: MIT Press.Google Scholar
Tucker, M. E. 1992. The Precambrian–Cambrian boundary: seawater chemistry, ocean circulation and nutrient supply in metazoan evolution, extinction and bio-mineralization. Journal of the Geological Society, London 149, 655–68.CrossRefGoogle Scholar
Vermeij, G. J. 1987. Evolution and Escalation. An Ecological History of Life. Princeton: Princeton University Press, 527 pp.CrossRefGoogle Scholar
Vidal, G., Moczydlowska, M. & Rudavskaya, V. A. 1993. Biostratigraphical implications of a Chauria–Tawuia assemblage and associated acritarchs from the Neoproterozoic of Yakutia. Palaeontology 36, 387402.Google Scholar
Vidal, G. & Nystuen, J. P. 1990. Micropalaeontology, depositional environment and biostratigraphy of the Upper Proterozoic Hedmark Group, southern Norway. American Journal of Science 290-A, 170211.Google Scholar
Vilas, L., Herranz, P., Pelaez, J. R. & Perejon, A. 1990. Part IV. Central Iberian Zone. Ante-Ordovician Stra-tigraphy. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D. & Garcia, E. Martinez), pp. 147–59. Springer-Verlag.Google Scholar
Webby, B. D. 1970. Late Precambrian trace fossils from New South Wales. Lethaia 3, 79109.CrossRefGoogle Scholar