Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T17:29:51.292Z Has data issue: false hasContentIssue false

Myrmekites of Exsolution and Replacement Origins

Published online by Cambridge University Press:  01 May 2009

J. R. Ashworth
Affiliation:
Department of Mineralogy and PetrologyDowning PlaceCambridge

Summary

Myrmekite in a two-feldspar migmatite suite has two distinct modes of occurrence: (i) marginally embaying potash feldspar, and (ii) in replacement aggregates after that mineral, the other major constituent of the pseudomorphs being a muscovite-quartz intergrowth. Electron-probe data give quartz proportionalities agreeing with the predictions of existing theories. It is shown that these theories, which refer to either exsolution or small-scale metasomatism, share a common foundation of kinetic impediment to AlSi diffusion. In neither case need one assume the presence of ‘Schwantke's molecule’ as a component of potash feldspar. The two myrmekite occurrences here described are interpreted in terms of essentially simultaneous exsolution and hydrative replacement processes operating as regional metamorphic temperatures began to decline from their climactic values. The existence of exsolution myrmekites of ideal quartz proportionality is not in itself evidence for the existence of ‘Schwantke's molecule’.

Type
Articles
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, D. S. 1970. Compositions of granophyre, myrmekite, and graphic granite. Bull. geol. Soc. Am. 81, 3339–50.CrossRefGoogle Scholar
Becke, F. 1908. Über Myrmekit. Tschermaks miner. petrogr. Mitt. 27, 377–90.CrossRefGoogle Scholar
Bhattacharyya, C. 1971. Myrmekite from the charnockitic rocks of the Eastern Ghats, India. Geol. Mag. 108, 433–8.CrossRefGoogle Scholar
Carman, J. H. & Tuttle, O. F. 1964. Experimental study bearing on the origin of myrmekite. Geol. Soc. Am. Spec. Pap. 76, 29.Google Scholar
Carmichael, D. M. 1969. On the mechanism of prograde metamorphic reactions in quartz-bearing rocks. Contr. Miner. Petrol. 20, 244–67.CrossRefGoogle Scholar
Clark, S. P. (Ed.) 1966. Handbook of physical constants. Mem. geol. Soc. Am. 97.Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1963. Rock-forming minerals. 5 vols. Longmans, London.Google Scholar
Evans, B. W. & Guidotti, C. V. 1966. The sillimanite-potash feldspar isograd in western Maine, U.S.A. Contr. Miner. Petrol. 12, 2562.CrossRefGoogle Scholar
Grant, J. A. & Weiblen, P. W. 1971. Retrograde zoning in garnet near the second sillimanite isograd. Am. J. Sci. 270, 281–96.CrossRefGoogle Scholar
Guidotti, C. V. 1963. Metamorphism of the pelitic schists in the Bryant Pond Quadrangle, Maine. Am. Miner. 48, 772–91.Google Scholar
Hubbard, F. H. 1966. Myrmekite in charnockite from south-west Nigeria. Am. Miner. 51, 762–73.Google Scholar
Hubbard, F. H. 1967 a. Myrmekite in charnockite from south-west Nigeria: a reply. Am. Miner. 52, 920–3.Google Scholar
Hubbard, F. H. 1967 b. Exsolution myrmekite. Geol. Fören. Stockholm Förh. 89, 410–22.CrossRefGoogle Scholar
McConnell, J. D. C. & McKie, D. 1960. The kinetics of the ordering process in triclinic NaAlSi3O8. Mineralog. Mag. 32, 436–54.Google Scholar
PerryK., Jr. K., Jr. 1968. Representation of mineral chemical analyses in 11-dimensional space: Part I, feldspars. Lithos, 1, 201–18.CrossRefGoogle Scholar
Phillips, E. R. 1964. Myrmekite and albite in some granites of the New England Batholith, New South Wales. J. geol. Soc. Aust. 11, 4960.CrossRefGoogle Scholar
Phillips, E. R. & Ransom, D. M. 1968. The proportionality of quartz in myrmekite. Am. Miner. 53, 1411–13.Google Scholar
Phillips, E. R. 1970. Myrmekite and non-myrmekite plagioclase compositions in gneisses from Broken Hill, New South Wales. Mineralog. Mag. 37, 729–32.CrossRefGoogle Scholar
Ransom, D. M. & Phillips, E. R. 1969. The proportionality of quartz in myrmekite: a reply. Am. Miner. 54, 984–7.Google Scholar
Schwantke, A. 1909. Die Beimischung von Ca im Kalifeldspat und die Myrmekitbildung. Centralbl. Min. for 1909, 311–16.Google Scholar
Sederholm, J. J. 1897. Über eine archäische Sedimentformation in südwestlichen Finland. Bull. Comm. geol. Finl. 6, 108.Google Scholar
Sederholm, J. J. 1916. On synantectic minerals and related phenomena. Bull. Comm. geol. Finl. 48.Google Scholar
Shelley, D. 1964. On myrmekite. Am. Miner. 49, 4152.Google Scholar
Shelley, D. 1967. Myrmekite and myrmekite-like intergrowths. Mineralog. Mag. 36, 491503.Google Scholar
Shelley, D. 1969. The proportionality of quartz in myrmekite: a discussion. Am. Miner. 54, 982–4.Google Scholar
Sturt, B. A. 1970. Exsolution during metamorphism with particular reference to feldspar solid solutions. Mineralog. Mag. 37, 815–32.CrossRefGoogle Scholar
Sweatman, T. R. & Long, J. V. P., 1969. Quantitative electron-probe microanalysis of rock-forming minerals. J. Petrology 10, 332–79.CrossRefGoogle Scholar
Widenfalk, L. 1969. Electron-probe analyses of myrmekites and coexisting feldspars. Lithos 2, 295309.CrossRefGoogle Scholar
Zen, E-an. 1963. Components, phases and criteria of chemical equilibrium in rocks. Am. J. Sci. 261, 929–42.CrossRefGoogle Scholar