Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T17:08:06.307Z Has data issue: false hasContentIssue false

Modes of turbidite deposition deduced from grain-size analyses

Published online by Cambridge University Press:  01 May 2009

A. T. Buller
Affiliation:
Tay Estuary Research Centre, Old Ferry Pier Newport-on-Tay DD6 8 EX, Fife
J. McManus
Affiliation:
Department of Geology, The University Dundee, U.K.

Summary

Values of quartile deviations (QDa) and medians (Mdmm) have been calculated from over 400 grain-size distributions of modern and ancient turbidites. Each QDa–Md pair is plotted on double-log paper to establish any distinctive trends. The QDa–Md analysis of modern turbidites reveals a steep gradient trend derived from the grain-size distributions of submarine canyon and delta fan sediments, and a shallow gradient trend derived from the grain-size distributions of samples from oceanic bottoms and nepheloid water layers. The QDa–Md analysis of ancient turbidites reveals two trends, but these do not coincide with their modern counterparts. The steeper gradient trend is related to distal and proximal turbidites, while the shallow trend is related to fluxoturbidites. The disparity between the ancient and modern QDa–Md analyses is caused by textural modifications of turbidites by diagenetic disintegration of unstable minerals. The alteration products are incorporated subsequently in the matrix. The diagenetic effects on the positions of the QDa–Md plots are demonstrated theoretically by computing the textural alteration of six modern turbidites by assuming that they will lose 20%, and then 40%, of their sand-sized particles to the matrix. By working in reverse the QDa–Md plots of ancient turbidites can be ‘restored’ to their diagenetically unaltered positions. Their restored positions correspond to the QDa–Md trends of modern turbidites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1970. The sequence of sedimentary structures in turbidites, with special reference to dunes. Scott. J. Geol. 6, 146–61.CrossRefGoogle Scholar
Belderson, R. H. & Laughton, A. S. 1966. Correlation of some Atlantic turbidites. Sedimentology, 7, 103–16.CrossRefGoogle Scholar
Bouma, A. H. 1962. Sedimentology of some Flysch Deposits. A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.Google Scholar
Bouma, A. H. 1964. Turbidites. In: Bouma, A. H. & Brouwer, A. (Eds) Turbidites. Elsevier, Amsterdam, pp. 247–56.CrossRefGoogle Scholar
Buller, A. T. & McManus, J. 1971. Investigations in the estuarine environments of the Tay. Physical aspects: an interim report, Res. Rept. I. Tay Estuary Research Centre, University of Dundee, 64 pp.Google Scholar
Buller, A. T. & McManus, J. 1972a. Simple metric sedimentary statistics used to recognise different environments. Sedimentology, 18, 121.Google Scholar
Cummins, W. A. 1962. The greywacke problem. Lpool Manchr geol. J. 3, 5172.CrossRefGoogle Scholar
Dewey, J. F. 1962. The provenance and emplacement of Upper Arenigian turbidites in Co. Mayo, Eire. Geol. Mag. 99, 238–52.CrossRefGoogle Scholar
Drake, D. E., Kolpack, R. L. & Gorsline, D. S. 1971. Transport of fine suspended sediment of southern California. Abstr. Intern. Ass. Sedimentologists Congr. Heidelberg, p. 25.Google Scholar
Dzulynski, S., Ksiazkiewicz, M. & Kuenen, Ph. H. 1959. Turbidites in flysch of the Polish Carpathians. Bull. geol. Soc. Am. 70, 1089–118.CrossRefGoogle Scholar
Dzulynski, S. & Walton, E. K. 1965. Sedimentary Features of Flysch and Greywackes. Developments in Sedimentology. 7, Elsevier, Amsterdam, 274 pp.Google Scholar
Ericson, D. B., Ewing, M. & Heezen, B. C. 1952. Turbidity currents and sediments in North Atlantic. Bull. Am. Ass. Petrol. Geol. 36, 489511.Google Scholar
Friedman, G. M. 1958. Determination of sieve-size distributions from thin section data for sedimentary petrological studies. J. Geol. 66, 394416.CrossRefGoogle Scholar
Gorsline, D. S. & Emery, K. O. 1959. Turbidity current deposits in San Pedro and Santa Monica basins off Southern California. Bull. geol. Soc. Am. 70, 279–90.CrossRefGoogle Scholar
Hand, B. M. & Emery, K. O. 1964. Turbidites and topography of north end of San Diego Trough, California. J. Geol. 72, 526–42.CrossRefGoogle Scholar
Heezen, B. C. 1963. Turbidity Currents. In: The Sea, Hill, M. N. (Ed.), Vol. 3. Inter-science, John Wiley, New York, pp. 742–75.Google Scholar
Henningson, D. 1961. Untersuchungen über Stoffbestand und Paläogeographie der Giessener Grauwacke. Geol. Rdsch. 51, 600–26.CrossRefGoogle Scholar
Holtedahl, H. G. 1965. Recent turbidites in the Hardangerfjord, Norway. In: Whittard, W. F. & Bradshaw, R. (Eds)Submarine Geology and Geophysics. Colston Research Society, Butterworth, London, pp. 107–42.Google Scholar
Huckenholz, H. G. 1959. Sediment-petrographische Untersuchungen an Gesteinen der Tanner Grauwacke. Beitr. Mineral. Petrog. 6, 261–98.Google Scholar
James, D. M. D. 1971. Petrography of the Plinlimon Group, west central Wales. Sediment. Geol. 6, 255–70.CrossRefGoogle Scholar
Kelling, G. 1962. The petrology and sedimentation of Upper Ordovician rocks in the Rhinns of Galloway, Southwest Scotland. Trans. R. Soc. Edin. 65, 107–37.CrossRefGoogle Scholar
Kuenen, Ph. H. 1964. Deep-sea sands and ancient turbidites. In Bouma, A. H. & Brouwer, A. (Eds) Turbidites. Elsevier, Amsterdam, pp. 333.CrossRefGoogle Scholar
Krumbein, W. C. & Pettijohn, F. J. 1938. Manual of Sedimentary Petrography. Appleton-Century Crofts, New York, N. Y., 549 pp.Google Scholar
Mizutani, S. 1957. Permian sandstones in the Mugu Area, Gifu Prefecture, Japan. J. Earth. Sci., Nagoya Univ., 5, 135–51.Google Scholar
Normark, W. R. & Piper, D. J. W. 1972. Sediments and growth pattern of Navy Deep-Sea Fan, San Clemente Basin, California. J. Geol. 80, 198223.CrossRefGoogle Scholar
Piper, D. J. W. 1970. Transport and deposition of Holocene sediment on La Jolla deep-sea fan, California. Marine Geology, 8, 211–28.CrossRefGoogle Scholar
Radomski, A. 1958. The sedimentological character of the Podhale flysch. Acta. Geol. Polon. 8, 335410.Google Scholar
Rizzini, A. & Passega, R. 1964. Evolution de la sédimentation et orogénèse vallée du Santerno Appennin septentrional. In: Bouma, A. H. & Brouwer, A. (Eds) Turbidites. Elsevier, Amsterdam, pp. 6574.CrossRefGoogle Scholar
Shepard, F. P. & Dill, R. F. 1965. Submarine Canyons and Other Sea Valleys. Rand McNally and Co., Chicago, 381 pp.Google Scholar
Unrug, R. 1963. Istebna beds—a fluxoturbidite formation in the Carpathian flysch. Ann. Soc. geol. Pologne. 33 (1), 4992.Google Scholar