Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T16:11:42.608Z Has data issue: false hasContentIssue false

Middle Paleocene uplift of the Brabant Massif from central Belgium up to the southeast coast of England

Published online by Cambridge University Press:  19 August 2016

JEF DECKERS*
Affiliation:
VITO, Flemish Institute for Technological Research, Boeretang 200, BE-2400 Mol, Belgium
JOHAN MATTHIJS
Affiliation:
VITO, Flemish Institute for Technological Research, Boeretang 200, BE-2400 Mol, Belgium
*
*Author for correspondence: [email protected]

Abstract

During the middle Paleocene Laramide phase, several basins in Europe experienced subsidence, while others experienced uplift. Previous studies have shown that during the Laramide phase some basins surrounding the Brabant Massif experienced subsidence into shallow depocentres. This study discusses how the Brabant Massif simultaneously experienced uplift along its WNW–ESE Caledonian structural axis from central Belgium in the east up to the southeast coast of England (Ipswich) in the west. Uplift resulted in erosion of the formerly deposited Chalk Group on top of the axis of the Brabant Massif. The erosion products of the Chalk Group were reworked in the latest Danian to earliest Thanetian deposits that filled the surrounding depocentres. Early to middle Thanetian pulsed marine transgressions caused flooding and deposition across the entire region, including the previously uplifted axis of the Brabant Massif. The depositional thicknesses, however, indicate that the axis of the Brabant Massif remained a relative high up to the middle Thanetian.

Both the geometry and timing of the middle Paleocene vertical surface movements of the Brabant Massif and surrounding areas are very similar to those described for other structural entities in central and northern Europe, despite their often strongly differing Mesozoic tectonic evolutions. We discuss several mechanisms that might have triggered these vertical surface movements, of which lithospheric folding seems the most likely.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betz, D., Fuhrer, F., Greiner, G. & Plein, E. 1987. Evolution of the Lower Saxony Basin. Tectonophysics 137, 127–70.Google Scholar
Bless, M. J. M., Felder, P. J. & Meessen, J. P. 1986. Late Cretaceous sea level rise and inversion: their influence on the depositional environment between Aachen and Antwerp. Annales de la Société géologique de Belgique 109, 333–55.Google Scholar
Briais, J., Guillocheau, F., Lasseur, E., Robin, C., Châteauneuf, J.-J. & Serrano, O. 2016. Response of a low-subsiding intracratonic basin to long wavelength deformations: the Palaeocene–early Eocene period in the Paris Basin. Solid Earth 7, 205–28.Google Scholar
Clemmensen, A. & Thomsen, E. 2005. Palaeoenvironmental changes across the Danian–Selandian boundary in the North Sea Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 351–94.CrossRefGoogle Scholar
Cloetingh, S. & Van Wees, J. D. 2005. Strength reversal in Europe's intraplate lithosphere: transition from basin inversion to lithospheric folding. Geology 33, 285–8.CrossRefGoogle Scholar
De Bast, E., Steurbaut, E. & Smith, T. 2013. New mammals form the marine Selandian of Maret, Belgium, and their implications for the age of the Paleocene continental deposits of Walbeck, Germany. Geologica Belgica 16 (4), 236–44.Google Scholar
Deckers, J. 2015. The Paleocene stratigraphic records in the Central Netherlands and close surrounding basins: highlighting the different responses to a late Danian change in stress regime within the Central European Basin System. Tectonophysics 659, 102–8.Google Scholar
Deckers, J., Broothaers, M., Lagrou, D. & Matthijs, J. 2014. The late Maastrichtian to Late Paleocene tectonic evolution of the southern part of the Roer Valley Graben (Belgium). Netherlands Journal of Geosciences 93, 8393.Google Scholar
Deckers, J. & Matthijs, J. 2014. A late Danian change in deformation style in the south-eastern part of the Campine Basin. Geologica Belgica 17, 236–43.Google Scholar
Deconinck, J. F., Amédro, F., Baudin, F., Godet, A., Pellenard, P., Robaszynski, F. & Zimmerlin, I. 2005. Late Cretaceous palaeoenvironments expressed by the clay mineralogy of Cenomanian-Campanian chalks from the east of the Paris Basin. Cretaceous Research 26, 171–9.CrossRefGoogle Scholar
De Jager, J. 2003. Inverted basins in the Netherlands, similarities and differences. Geologie en Mijnbouw 82, 339–49.CrossRefGoogle Scholar
De Jager, J. 2007. Geological development. In Geology of the Netherlands (eds Wong, Th. E., Batjes, D. A. J. & De Jager, J.), pp. 526. Royal Netherlands Academy of Arts and Sciences, Amsterdam.Google Scholar
Delmer, A. 1972. Origine du bassin crétacique de la Vallée de la Haine. Service Géologique de Belgique. Professional Paper 5, 13 pp.Google Scholar
Demyttenaere, R. 1989. The post-Paleozoic geological history of north-eastern Belgium. Mededelingen van de Koninklijke Academie voor Wetenschappen, Letteren en Schone Kunsten van België 51–4, 5181.Google Scholar
De Vos, W., Verniers, J., Herbosch, A. & Vanguestaine, M. 1993. A new geological map of the Brabant Massif, Belgium. Special Issue on the Caledonides of the Anglo-Brabant Massif. Geological Magazine 130, 605–11.CrossRefGoogle Scholar
Duin, E. J. T., Doornenbal, J. C., Rijkers, R. H. B., Verbeek, J. W. & Wong, T. E. 2006. Subsurface structure of the Netherlands – results of recent onshore and offshore mapping. Netherlands Journal of Geosciences 85, 245–76.CrossRefGoogle Scholar
Dupuis, C. & Vandycke, S. 1989. Tectonique et karstification profonde: un modèle de subsidence original pour le Bassin de Mons. Annales de la Société Géologique de Belgique 112, 479–87.Google Scholar
Dusar, M. & Lagrou, D. 2007. Cretaceous flooding of the Brabant Massif and the lithostratigraphic characteristics of its chalk cover in northern Belgium. Geologica Belgica 10, 2738.Google Scholar
Ellison, R. A., Knox, R. W. O., Jolley, D. W. & King, C. 1994. A revision of the lithostratigraphical classification of the early Palaeogene strata of the London Basin and East Anglia. Proceedings of the Geologists’ Association 105, 187–97.Google Scholar
Fourmarier, P. 1920. La tectonique du Brabant et des régions voisines. Mémoires de l'Académie Royale de Belgique, Classe des Sciences 4, 195.Google Scholar
Geluk, M. C., Duin, E. J., Dusar, M., Rijkers, R. H., van den Berg, M. W. & van Rooijen, P. 1994. Stratigraphy and tectonics of the Roer Valley Graben. Geologie en Mijnbouw 73, 129–41.Google Scholar
Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromart, G., Friedenberg, R., Garcia, J. P., Gaulier, J. M., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C., Serrano, O. & Grandjean, G. 2000. Meso-Cenozoic geodynamic evolution of the Paris Basin; 3-D stratigraphic constraints. Geodinamica Acta 13, 189245.Google Scholar
Hennebert, M. 1993. Rôle possible des structures profondes du Massif cambro-silurien du brabant dans l'évolution des bassins sédimentaires post-calédoniens. Annales de la Société géologique de Belgique 116, 147–62.Google Scholar
Jolley, D. W. 1992. Palynofloral association sequence stratigraphy of the Palaeocene Thanet Beds and equivalent sediments in eastern England. Review of Palaeobotany and Palynology 74, 207–37.Google Scholar
Jolley, D. W. 1998. Palynostratigraphy and depositional history of the Paleocene Ormesby/Thanet depositional sequence set in southeastern England and its correlation with continental West Europe and the Lista Formation, North Sea. Review of Palaeobotany and Palynology 99, 265315.Google Scholar
Jolley, D. W. & Bell, B. R. 2002. The evolution of the North Atlantic Igneous Province and the opening of the NE Atlantic rift. In The North Atlantic Igneous Province: Stratigraphy, Tectonic, Volcanic and Magmatic Processes (eds Jolley, D. W. et al.), pp. 113. Geological Society Special Publication no. 197.Google Scholar
King, C. 2006. Paleogene and Neogene: uplift and a cooling climate. In The Geology of England and Wales (eds Brenchley, P. J. & Rawson, P. F.), pp. 395427. The Geological Society, London.Google Scholar
Knox, R. W. O. 1996. Tectonic controls on sequence development in the Palaeocene and earliest Eocene of southeast England: implications for North Sea stratigraphy. In Sequence Stratigraphy in British Geology (eds Hesselbro, S. P. & Parkinson, D. N.), pp. 209–30. Geological Society of London Special Publication no. 103.Google Scholar
Knox, R. W. O., Hine, N. M. & Ali, J. R. 1994. New information on the age and sequence stratigraphy of the type Thanetian of southeast England. Newsletters on Stratigraphy 30, 4560.Google Scholar
Kockel, F. 2003. Inversion structures in Central Europe – expressions and reasons, an open discussion. Netherlands Journal of Geosciences 82, 367–82.Google Scholar
Lee, M. K., Pharao, T. C., Williamson, J. P., Green, C. A. & De Vos, W. 1993. Evidence of the deep structure of the Anglo-Brabant Massif from gravimetry and magnetic data. Special Issue on the Caledonides of the Anglo-Brabant Massif. Geological Magazine 130, 575–82.CrossRefGoogle Scholar
Legrand, R. 1968. Le Massif du Brabant. Mémoires pour servir à l'Explication des cartes Géologiques et Minières de la Belgique, Mémoire 9, 1148.Google Scholar
Maclennan, J. & Jones, S. M. 2006. Regional uplift, gas hydrate dissociation and the origins of the Paleocene–Eocene Thermal Maximum. Earth and Planetary Science Letters 245, 6580.CrossRefGoogle Scholar
Mansy, J.-L., Manby, G. M., Averbuch, O., Everaerts, M., Bergerat, F., Van Vliet-Lanoe, B. & Lamarche, J. 2003. Dynamics and inversion of the Mesozoic Basin of the Weald-Boulonnais area: role of basement reactivation. Tectonophysics 373, 161–79.Google Scholar
Marlière, R. 1970. Géologie du bassin de Mons. Annales Société géologique du Nord, Lille 90, 171–89.Google Scholar
Meyer, R., van Wijk, J. & Gernigon, L. 2007. The North Atlantic Igneous Province: a review of models for its formation. In Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.), 525–52 Geological Society of America, Special Paper 430.CrossRefGoogle Scholar
Michon, L., Van Balen, R.T., Merle, O. & Pagnier, H. 2003. The Cenozoic evolution of the Roer Valley rift system integrated at a European scale. Tectonophysics 367, 101–26.Google Scholar
Nielsen, S. B., Stephenson, R. & Thomsen, E. 2007. Dynamics of mid-Paleocene north Atlantic rifting linked with European intra-plate deformations. Nature 450, 1071–3.CrossRefGoogle Scholar
Nielsen, S. B., Thomsen, E., Hansen, D. L. & Clausen, O. R. 2005. Plate-wide stress relaxation explains European Palaeocene basin inversions. Nature 435, 195–8.CrossRefGoogle ScholarPubMed
Piessens, K., Vancampenhout, P. & De Vos, W. 2006. Geologische Subcropkaart van het Massief van Brabant in Vlaanderen. Belgische Geologische Dienst, Brussels.Google Scholar
Rawson, P. F. 2006. Cretaceous: sea levels peak as the North Atlantic opens. In The Geology of England and Wales (eds Brenchley, P. J. & Rawson, P. F.), pp. 365–94. The Geological Society, London.Google Scholar
Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J. & Kent, R. W. 1997. The North Atlantic Igneous Province. In Large Igneous Provinces: Continental, Oceanic and Planetary (eds Mahoney, J. J. & Coffin, M. F.), pp. 4593. Geophysical Monograph 100. American Geophysical Union, Washington, DC.Google Scholar
Saunders, A., Jones, S., Morgan, L., Pierce, K., Widdowson, M. & Xu, Y. 2007. The role of mantle plumes in the formation of continental large igneous provinces: field evidence used to constrain the effects of regional uplift. Chemical Geology 241, 282318.Google Scholar
Sintubin, M. 1997. Structural implications of the aeromagnetic lineament geometry in the Lower Paleozoic Brabant Massif (Belgium). Aardkundige Mededelingen 8, 165–8.Google Scholar
Steurbaut, E. 1998. High-resolution holostratigraphy of Middle Paleocene to Early Eocene strata in Belgium and adjacent areas. Palaeontographica 247, 91156.Google Scholar
Steurbaut, E. & Sztrákos, K. 2008. Danian/Selandian boundary criteria and North Sea Basin–Tethys correlations based on calcareous nannofossil and foraminiferal trends in SW France. Marine Micropaleontology 67, 129.Google Scholar
Thomsen, E. 1995. Kalk og Kridt i den danske undergrund. In Danmarks Geologi fra Kridt til i Dag (ed. Nielsen, O. B.), pp. 3167. Aarhus Geokompendier, vol. 1. Geologisk Institut, Aarhus Universitet.Google Scholar
Vandenberghe, N., Laga, P., Steurbaut, E., Hardenbol, J. & Vail, P. R. 1998. Tertiary sequence stratigraphy at the southern border of the North Sea Basin in Belgium. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P. R.), pp. 119–54. Society for Sedimentary Geology (SEPM), Special Publication 60.Google Scholar
Vandenberghe, N., Van Simaeys, S., Steurbaut, E., Jagt, J. W. M. & Felder, P. J. 2004. Stratigraphic architecture of the Upper Cretaceous and Cenozoic along the southern border of the North Sea Basin in Belgium. Geologie en Mijnbouw 83 (3), 155–71.Google Scholar
Van Vliet-Lanoë, B., Gosselin, G., Mansy, J.-L., Bourdillon, C., Meurisse-Fort, M., Henriet, J.-P., Le Roy, P. & Trentesaux, A. 2010. A renewed Cenozoic story of the Strait of Dover. Annales de la Société Géologique du Nord, 17(2ème série), 5980.Google Scholar
Woods, M. A., Mortimore, R. N. & Wood, C. J. 2012. The chalk of Suffolk. In A Celebration of Suffolk Geology: GeoSuffolk 10th Anniversary Volume (ed. Dixon, R.), pp. 105–31. GeoSuffolk, Ipswich.Google Scholar
Ziegler, P. A. 1990. Geological Atlas of Western and Central Europe, 2nd edn. Geological Society Publishing House, Bath, 238 pp.Google Scholar
Zijerveld, L., Stephenson, R., Cloetingh, S., Duin, E. & van den Berg, M. W. 1992. Subsidence analysis and modelling of the Roer Valley Graben (SE Netherlands). Tectonophysics 208, 159–71.CrossRefGoogle Scholar