Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T16:00:30.117Z Has data issue: false hasContentIssue false

Microstructural, compositional and petrophysical properties of mylonitic granodiorites from an extensional shear zone (Rhodope Core complex, Greece)

Published online by Cambridge University Press:  24 February 2014

ROSALDA PUNTURO*
Affiliation:
Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Corso Italia 57, I-95129 Catania (Italy)
ROSOLINO CIRRINCIONE
Affiliation:
Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Corso Italia 57, I-95129 Catania (Italy)
EUGENIO FAZIO
Affiliation:
Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Corso Italia 57, I-95129 Catania (Italy)
PATRIZIA FIANNACCA
Affiliation:
Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Corso Italia 57, I-95129 Catania (Italy)
HARTMUT KERN
Affiliation:
CAU Universität, Institut für Geowissenschaften, Olshausenstr. 40, D-24098 Kiel (Germany)
KURT MENGEL
Affiliation:
Technische Universität Clausthal, Institut für Endlagerforschung, Adolph-Roemer-Str. 2a, D-38678 Clausthal-Zellerfeld (Germany)
GAETANO ORTOLANO
Affiliation:
Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Corso Italia 57, I-95129 Catania (Italy)
ANTONINO PEZZINO
Affiliation:
Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Corso Italia 57, I-95129 Catania (Italy)
*
Author for correspondence: [email protected]

Abstract

At the southern boundary of the Rhodope Massif, NE Greece, the Kavala Shear Zone (KSZ) represents an example of the Eastern Mediterranean deep-seated extensional tectonic setting. During Miocene time, extensional deformation favoured syntectonic emplacement and subsequent exhumation of plutonic bodies. This paper deals with the strain-related changes in macroscopic, geochemical and microstructural properties of the lithotypes collected along the KSZ, comprising granitoids from the pluton, aplitic dykes and host rock gneisses. Moreover, we investigated the evolution of seismic anisotropy on a suite of granitoid mylonites as a result of progressive strain. Isotropic compressional and shear wave velocities (Vp, Vs) and densities calculated from modal proportions and single-crystal elastic properties at given pressure–temperature (PT) conditions are compared to respective experimental data including the directional dependence (anisotropy) of wave velocities. Compared to the calculated isotropic velocities, which are similar for all of the investigated mylonites (average values: Vp ~ 5.87 km s−1, Vs ~ 3.4 km s−1, Vp/Vs = 1.73 and density = 2.65 g cm−3), the seismic measurements give evidence for marked P-wave velocity anisotropy up to 6.92% (at 400 MPa) in the most deformed rock due to marked microstructural changes with progressive strain, as highlighted by the alignment of mica, chlorite minerals and quartz ribbons. The highest P- and S-wave velocities are parallel to the foliation plane and lowest normal to the foliation plane. Importantly, Vp remains constant within the foliation with progressive strain, but decreases normal to foliation. The potential of the observed seismic anisotropy of the KSZ mylonites with respect to detectable seismic reflections is briefly discussed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almqvist, B. S. G., Hirt, A. M., Herwegh, M., Ebert, A., Walter, J. M., Leiss, B. & Burlini, L. 2013. Seismic anisotropy in the Morcles nappe shear zone: Implications for seismic imaging of crustal scale shear zones. Tectonophysics 603, 162–78.CrossRefGoogle Scholar
Baker, J. H. & Liati, A. 1991. The Oligocene volcano-sedimentary sequence of the Dipotama Basin, N. Greece: temporal relationships between Tertiary granites and volcanics, and implications for the regional tectonic evolution. Geologie en Mijnbouw 70, 7583.Google Scholar
Barruol, G., Mainprice, D., Kern, H., de Saint Blanquat, M. & Compte, P. 1993. 3D seismic study of a ductile shear zone from laboratory and petrofabric data (Saint Barthélémy Massif, Northern Pyrénées, France). Terra Nova 4, 6376.Google Scholar
Bonchev, E. 1988. Notes on the alpine tectonics of the balkans. [Notes sur la tectonique alpine des Balkans] Bulletin de la Société Géologique de France 4 (2), 241–9.Google Scholar
Brown, D., Zhang, X., Palomeras, I., Simancas, F., Carbonell, R., Juhlin, C. & Salisbury, M. 2012. Petrophysical analysis of a mid-crustal reflector in the IBERSEIS profile, SW Spain. Tectonophysics, 550–3, 3546.Google Scholar
Brun, J.-P. & Sokoutis, D. 2007. Kinematics of the Southern Rhodope Core Complex (North Greece). International Journal of Earth Sciences 96 (6), 1079–99.Google Scholar
Burg, J. 2012. Rhodope: From Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame. In The Geology of Greece (eds Skourtsos, E. & Lister, G. S.). Journal of the Virtual Explorer 42, paper 1; electronic edition ISSN .CrossRefGoogle Scholar
Burg, J. P., Ricou, L. E., Ivanov, Z., Godfriaux, I., Dimov, D. & Klain, L. 1996. Syn-metamorphic nappe complex in the Rhodope massif: structure and kinematics. Terra Nova 8 (1), 615.Google Scholar
Burlini, L. & Kunze, K. 2000. Fabric and seismic properties of Carrara marble mylonites. Physics and Chemistry of the Earth 25, 133–9.Google Scholar
Caracciolo, L., Critelli, S., Innocenti, F., Kolios, N. & Manetti, P. 2011. Unraveling provenance from Eocene–Oligocene sandstones of the Thrace Basin, North-east Greece. Sedimentology 58, 19882011.CrossRefGoogle Scholar
Caracciolo, L., Critelli, S., Innocenti, F., Kolios, N. & Manetti, P. 2013. Reply to the Discussion by Maravelis and Zelilidis on ‘Unravelling provenance from Eocene–Oligocene sandstones of the Thrace Basin, North-east Greece’ by Caracciolo et al. (2011), Sedimentology 58, 19882011. Sedimentology 60(3), 865–9.Google Scholar
Caracciolo, L., Von Eynatten, H., Tolosana-Delgado, R., Critelli, S., Manetti, P. & Marchev, P. 2012. Petrological, geochemical, and statistical analysis of Eocene-Oligocene sandstones of the Western Thrace Basin, Greece and Bulgaria. Journal of Sedimentary Research 82, 482–98.Google Scholar
Cirrincione, R., Fazio, E., Fiannacca, P., Ortolano, G. & Punturo, R. 2009. Microstructural investigation of naturally deformed leucogneiss from an Alpine shear zone (southern Calabria, Italy). Pure and Applied Geophysics 166, 9951010.Google Scholar
Cirrincione, R., Fazio, E., Heilbronner, R., Kern, H., Mengel, K., Ortolano, G., Pezzino, A. & Punturo, R. 2010. Microstructure and elastic anisotropy of naturally deformed leucogneiss from a shear zone in Montalto (southern Calabria, Italy). Journal of The Geological Society 332, 4968.Google Scholar
Cirrincione, R., Fazio, E., Ortolano, G., Pezzino, A. & Punturo, R. 2012. Fault-related rocks: deciphering the structural-metamorphic evolution of an accretionary wedge in a collisional belt, NE Sicily. International Geology Review 54 (8), 940–56.CrossRefGoogle Scholar
Davis, G. A. & Coney, P. J. 1979. Geological development of metamorphic core complexes. Geology 7, 120–4.Google Scholar
Del Moro, A., Kyriakopoulos, K., Pezzino, A., Atzori, P. & Lo Giudice, A. 1990. The metamorphic complex associated to the Kavala plutonites: a Rb–Sr geochronological, structural and petrological study. Geologica Rhodopica 2, 143–56.Google Scholar
Dewey, J. F. 1988. Extensional collapse of orogens. Tectonics 7, 1123–39.Google Scholar
Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonnin, J. 1973. Plate tectonics and the evolution of the alpine system. Bulletin of the Geological Society of America 84 (10), 3137–80.Google Scholar
Dimadis, E. & Zachos, S. 1989. Geological and tectonic structure of the metamorphic basement of the Greek Rhodope. Geologica Rhodopica 1, 122–30.Google Scholar
Dinter, D. A., MacFarlane, A., Hames, W., Isachsen, C., Bowring, S. & Royden, L. 1995. U–Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece. Tectonics 14, 886908.Google Scholar
Dinter, D. A. & Royden, L. 1993. Late Cenozoic extension in northeastern Greece: Strymon Valley detachment system and Rhodope metamorphic core complex. Geology 21 (1), 45–8.Google Scholar
Durr, S., Altherr, R., Keller, J., Okrusch, M. & Seidel, E. 1978. The median Aegean crystalline belt: structure, metamorphism, magmatism. In Alps, Appenines, Hellenides – Geodynamic Investigation Along Geotraverses by an International Group of Scientists (eds Closs, H., Roeder, D. & Schmidt, K.), pp. 445–77. IUGS, Stuttgart, Scientific Report 38.Google Scholar
Eleftheriadis, G. & Koroneos, A. 2003. Geochemistry and petrogenesis of post-collision pangeon granitoids in central macedonia, northern greece. Chemie Der Erde: Geochemistry 63 (4), 364–89.Google Scholar
Fazio, E., Punturo, R. & Cirrincione, R. 2010. Quartz c-axis texture mapping of mylonitic metapelite with rod structures (Calabria, southern Italy): clues for hidden shear flow direction. Journal of the Geological Society of India 75 (1), 171–82.Google Scholar
Foster, D. A., Schafer, C., Fanning, C. M. & Hyndman, D. W. 2001. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-bitterroot batholith. Tectonophysics 342 (3–4), 313–50.Google Scholar
Fountain, D. M., Hurich, C. A. & Smithson, S. B. 1984. Seismic reflectivity of mylonite zones in the crust. Geology 12, 195–98.Google Scholar
Franzini, M., Leoni, L. & Saitta, M. 1975. Revisione di una metodologia analitica per fluorescenza-X, basata sulla correzione completa degli effetti di matrice. Rendiconti della Società Italiana di Mineralogia e Petrologia 31, 365–78.Google Scholar
Gapais, D. 1989. Shear structures within deformed granites: thermal and mechanical indicators. Geology 17, 1144–7.Google Scholar
Gueydan, F., Mehl, C. & Parra, T. 2005. Stress-strain rate history of a midcrustal shear zone and the onset of brittle deformation inferred from quartz recrystallized grain size. In Deformation Mechanisms, Rheology and Tectonics: From Minerals to Lithosphere (eds Gapais, D., Brun, J. P. & Cobbold, P. R.), pp. 127–42. Geological Society of London, Special Publication no. 243.Google Scholar
Hacker, B. R. & Abers, G. A. 2004. Subduction Factory 3. An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochemistry, Geophysics, Geosystems 5, Q01005, doi: 10.1029/2003GC000614.Google Scholar
Hurich, C. A., Deemer, S. J. & Indares, A. 2001. Compositional and metamorphic controls on velocity and reflectivity in the continental crust: an example from the Grenville Province of eastern Quebec. Journal of Geophysical Research 106, 665–82.CrossRefGoogle Scholar
Hurich, C. A. & Smithson, S. B. 1987. Compositional variation and the origin of deep crustal reflections. Earth Planetary Science Letters 85 (4), 416–26.Google Scholar
Jackson, J. A. & White, N. J. 1989. Normal faulting in the upper continental crust: observations from regions of active extension. Journal of Structural Geology 11, 1536.CrossRefGoogle Scholar
Jones, C. E., Tarney, J., Baker, J. H. & Gerouki, F. 1992. Tertiary granitoids of Rhodope, northern Greece: magmatism related to extensional collapse of the Hellenic orogen? Tectonophysics 210, 295314.Google Scholar
Kern, H. 1982. Elastic-wave velocity in crustal and mantle rocks at high pressure and temperature: the role of the high-low quartz transition and of dehydration reactions. Physics of the Earth and Planetary Interiors 29 (1), 1223.Google Scholar
Kern, H., Liu, B. & Popp, T. 1997. Relationship between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite. Physics of the Earth and Planetary Interiors 175, 151–66.Google Scholar
Kern, H. & Wenk, H.-R. 1990. Fabric-related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa Mylonite Zone, California. Journal of Geophysical Research 95, 11213–23.Google Scholar
Khazanehdari, J., Rutter, E. H., Casey, M. & Burlini, L. 1998. The role of crystallographic fabric in the generation of seismic anisotropy and reflectivity of high strain zones in calcite rocks. Journal of Structural Geology 20, 293–9.Google Scholar
Kilias, A., Falalakis, G. & Mountrakis, D. 1999. Cretaceous-tertiary structures and kinematics of the serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece). International Journal of Earth Sciences 88 (3), 513–31.Google Scholar
Kilias, A., Frisch, W., Avgerinas, A., Dunkl, I., Falalakis, G. & Gawlick, H. 2010. Alpine architecture and kinematics of deformation of the northern pelagonian nappe pile in the Hellenides. Austrian Journal of Earth Sciences 103 (1), 428.Google Scholar
Kilias, A. & Mountrakis, D. 1990. Kinematics of the crystalline sequences in the western Rhodope massif. Geologica Rhodopica 2, 100–16.Google Scholar
Kolocotroni, C. & Dixon, J. E. 1991. The origin and emplacement of the Vrondou granite, Serres, NE Greece. Bulletin of the Geological Society of Greece 25 (1), 469–83.Google Scholar
Kyriakopoulos, K., Pezzino, A. & Del Moro, A. D. 1989. Rb–Sr geochronological, petrological and structural study of the Kavala plutonic complex (N. Greece). Bulletin of the Geological Society of Greece 23, 545–60.Google Scholar
Le Maitre, R. W. 1979. A new generalised petrological mixing model. Contributions to Mineralogy and Petrology 71 (2), 133–7.Google Scholar
Liati, A. 1988. Corundum- and zoisite-bearing marbles in the rhodope zone, xanthi area (N. Greece): estimation of the fluid phase pomposition. Mineralogy and Petrology 38 (1), 5360.Google Scholar
Liati, A. & Kreuzer, H. 1990. K–Ar dating of metamorphic and magmatic rocks from the Xanthi and Drama areas, Greek part of the Rhodope zone, Beih. z. European Journal of Mineralogy 2 (1), 161.Google Scholar
Lips, A. L. W., White, S. H. & Wijbrans, J. R. 2000. Middle–Late Alpine thermotectonic evolution of the southern Rhodope Massif, Greece. Geodinamica Acta 13, 281–92.Google Scholar
Lister, G. S., Banga, G. & Feenstra, A. 1984. Metamorphic core complexes of cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12 (4), 221–5.Google Scholar
Mposkos, E. & Perdikatsis, V. 1987. High-pressure metamorphism in East Rhodope Massif (Greece). Fonschritte der Mineralogie 65 (1), 140.Google Scholar
Neiva, A. M. R., Christofides, G., Eleftheriadis, G. & Soldatos, T. 1996. Geochemistry of granitic rocks and their minerals from the Kavala pluton, Northern Greece. Chemie der Erde 56, 117–42.Google Scholar
Papanikolaou, D. & Panagopoulos, A. 1981. On the structural style of southern Rhodope, Greece. Geologica Balcanica 11, 1322.Google Scholar
Parsons, T., Howie, J. M. & Thompson, G. A. 1992. Seismic constraints on the nature of lower crustal reflectors beneath the extending southern transition zone of the Colorado Plateau, Arizona. Journal of Geophysical Research 97, 12391–407.CrossRefGoogle Scholar
Passchier, C. W., Zhang, J. S. & Konopasek, J. 2005. Geometric aspects of synkinematic granite intrusion into a ductile shear zone-an example from the Yunmengshan core complex, northern China. Journal of the Geological Society, London 245, 6580.CrossRefGoogle Scholar
Pe-Piper, G., Piper, D. J. W. & Matarangas, D. 2002. Regional implications of geochemistry and style of emplacement of miocene I-type diorite and granite, Delos, Cyclades, Greece. Lithos 60 (1–2), 4766.Google Scholar
Petrelli, M., Poli, G., Perugini, D. & Peccerillo, A. 2005. PetroGraph: A new software to visualize, model, and present geochemical data in igneous petrology. Geochemistry, Geophysics, Geosystems 6 (7), Q07011.Google Scholar
Punturo, R., Cirrincione, R., Fazio, E., Fiannacca, P., Kern, H., Mengel, K., Ortolano, G. & Pezzino, A. 2012. Quartz deformation mechanisms in shear zones inferred by quantitative microstructural investigation: the case study of Kavala (Rhodope massif, north-eastern Greece). Rendiconti Online Societa Geologica Italiana 21 (1), 146–7.Google Scholar
Rey, P. F., Fountain, D. M. & Clement, W. P. 1994. P-wave velocity across a non-coaxial ductile shear zone and its associated strain gradient: consequences for upper crustal reflectivity. Journal of Geophysical Research 99 (B3), 4533–48.CrossRefGoogle Scholar
Ross, A. R., Brown, L. D., Pananont, P., Nelson, K. D., Klemperer, S., Haines, S., Wenjin, Z. & Jingru, G. 2004. Deep reflection surveying in central Tibet: lower crust layering and crustal flow. Geophysical Journal International 156 (1), 115–28.Google Scholar
Siivola, J. & Schmid, R. A. 2007. List of mineral abbreviations. In Metamorphic Rocks: A Classification and Glossary of Terms (eds Fettes, D. and Desmons, J.), pp. 93110. Cambridge: Cambridge University Press.Google Scholar
Sokoutis, D., Brun, J. P., Van Den Driessche, J. & Pavlides, S. 1993. A major Oligo-Miocene detachment in southern Rhodope controlling North Aegean extension. Journal of the Geological Society, London 150, 243–6.Google Scholar
Streckeisen, A. & Le Maitre, R. W. 1979. A chemical approximation to the modal QAPF classification of igneous rocks. Neues Jahrbuch fur Mineralogie, Abhandlungen 136, 169206.Google Scholar
Turner, F. J. & Weiss, L. E. 1963. Structural Analysis of Metamorphic Tectonites. New York: McGraw-Hill, 545 pp.Google Scholar
Turpaud, P. & Reischmann, T. 2010. Characterisation of igneous terranes by zircon dating: implications for UHP occurrences and suture identification in the Central Rhodope, northern Greece. International Journal of Earth Sciences 99, 567–91.Google Scholar
Vernon, R. H. 1986. K-feldspar megacrysts in granites – phenocrysts, not porphyroblasts. Earth-Science Reviews 23, 163.Google Scholar
Walcott, C. R. & White, S. H. 1998. Constraints on the kinematics of post-orogenic extension imposed by stretching lineations in the aegean region. Tectonophysics 298 (1–3), 155–75.Google Scholar
Wang, Q., Ji, S., Salisbury, M. H., Xia, B., Pan, M. & Xu, Z. 2005. Pressure dependence and anisotropy of P-wave velocities in ultrahigh- pressure metamorphic rocks from the Dabie–Sulu orogenic belt (China): implications for seismic properties of subducted slabs and origin of mantle reflections. Tectonophysics 398, 6799.CrossRefGoogle Scholar
Wernicke, B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences 22, 108–25.Google Scholar
Zachos, S. & Dimadis, E. 1983. The geotectonic position of the Skaloti-Echinos granite and its relationship to metamorphic formations of Greek Western and Central Rhodope. Geologica Balcanica 13 (5), 17–2.Google Scholar
Zagorchev, I. S. 1998. Pre-priabonian Palaeogene formations in southwestern Bulgaria and northern Greece: stratigraphy and tectonic implications. Geological Magazine 135 (1), 101–19.Google Scholar
Zananiri, I., Kondopoulou, D., Dimitriadis, S. & Kilias, A. 2013. Insights into the geotectonic evolution of the southern rhodope as inferred from a combined AMS, microtextural and paleomagnetic study of the tertiary symvolon and vrondou plutons. Tectonophysics 595–596, 106–24.CrossRefGoogle Scholar
Supplementary material: File

Punturo supplementary document1

Punturo supplementary document1

Download Punturo supplementary document1(File)
File 270.3 KB
Supplementary material: File

Punturo supplementary document2

Punturo supplementary document2

Download Punturo supplementary document2(File)
File 218.1 KB
Supplementary material: File

Punturo supplementary document3

Punturo supplementary document3

Download Punturo supplementary document3(File)
File 209.4 KB