Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:00:16.477Z Has data issue: false hasContentIssue false

Meteorite traces on a shatter cone surface from the Agoudal impact site, Morocco

Published online by Cambridge University Press:  19 March 2015

M. SCHMIEDER*
Affiliation:
School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
H. CHENNAOUI AOUDJEHANE
Affiliation:
Hassan II University Casablanca, Faculty of Sciences Ain Chock, GAIA Laboratory, BP 5366 Maârif 20000, Casablanca, Morocco
E. BUCHNER
Affiliation:
HNU – Neu-Ulm University of Applied Sciences, Wileystrasse 1, 89231 Neu-Ulm, Germany Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstraße 18, 70174 Stuttgart, Germany
E. TOHVER
Affiliation:
School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
*
Author for correspondence: [email protected]

Abstract

The recently discovered Agoudal impact site in Morocco is a small, eroded impact structure with well-developed shatter cones. A scanning electron microscopic study of a shatter cone surface has revealed the presence of schreibersite – a phosphide very rare on Earth but common in iron meteorites – and Fe–Ni oxides. This is the first reported evidence for primary meteoritic matter adherent to shatter cones and suggests that the Agoudal crater was formed by the impact of an iron meteorite, probably the Agoudal IIAB iron. Shatter cones from other terrestrial impact structures might also hold valuable information about the nature of the impacting projectiles.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alwmark, C. & Schmitz, B. 2007. Extraterrestrial chromite in the resurge deposits of the early Late Ordovician Lockne crater, central Sweden. Earth and Planetary Science Letters 253, 291303.Google Scholar
Baratoux, D. & Melosh, H. J. 2003. The formation of shatter cones by shock wave interference during impacting. Earth and Planetary Science Letters 216, 4354.Google Scholar
Bender Koch, C. & Buchwald, V. F. 1994. Weathering of iron meteorites from Monturaqui, Chile. Meteoritics 29, 443.Google Scholar
Branco, W. & Fraas, E. 1905. Das kryptovulcanische Becken von Steinheim. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften, Physikalische Abhandlungen 1, 164.Google Scholar
Buchner, E. & Schmieder, M. 2010. Steinheim suevite – a first report of melt-bearing impactites from the Steinheim Basin (SW Germany). Meteoritics & Planetary Science 45, 1093–107.Google Scholar
Buchwald, V. F. 1975. Handbook of Iron Meteorites: Their History, Distribution, Composition, and Structure – volumes 1–3. Berkeley: University of California Press, 2458 pp.Google Scholar
Buchwald, V. F. 1977. The mineralogy of iron meteorites. Philosophical Transactions of the Royal Society London, A 286, 453–91.Google Scholar
Chennaoui Aoudjehane, H., Garvie, L. A. J., Herd, C. D. K., Chen, G. & Aboulahris, M. 2013. Agoudal: the most recent iron meteorite from Morocco. 76th MetSoc Meeting (29 July – 02 August 2013, Edmonton, Canada), Abstract no. 5026.Google Scholar
Chennaoui Aoudjehane, H., Reimold, W. U., Koeberl, C., Bouley, S., Aoudjehane, M., Aboulahris, M., El Kerni, H., Hutzler, A., Bourles, D. & Rochette, P. 2014. Agoudal (High Atlas Mountains): confirmation of remnants of a post Mid-Jurassic impact structure in Morocco. 45th Lunar and Planetary Science Conference (17–21 March 2014, The Woodlands, Texas), Abstract no. 2053.Google Scholar
Clarke, R. S. Jr. & Goldstein, J. I. 1978. Schreibersite Growth and its Influence on the Metallography of Coarse-Structured Iron Meteorites. Smithsonian Contributions to the Earth Sciences 21. Washington, D.C.: Smithsonian Institution Press, 83 pp.Google Scholar
Dietz, R. S. 1947. Meteorite impact suggested by the orientation of shatter-cones at the Kentland, Indiana, disturbance. Science 105, 42–3.Google Scholar
Dietz, R. S. 1959. Shatter cones in cryptoexplosion structures (meteorite impact?). Journal of Geology 67, 496505.Google Scholar
Dietz, R. S. 1960. Meteorite impact suggested by shatter cones in rock. Science 131, 1781–4.Google Scholar
Dominik, B. 1977. Shock and thermal transformations in meteorites from the Morasko crater field. Meteoritics 12, 207–8.Google Scholar
D'Orazio, M., Folco, L., Zeoli, A. & Cordier, C. 2011. Gebel Kamil: the iron meteorite that formed the Kamil crater (Egypt). Meteoritics & Planetary Science 46, 1179–96.Google Scholar
Easton, A. J. 1986. Studies of kamacite, perryite and schreibersite in E-chondrites and aubrites. Meteoritics 21, 7993.Google Scholar
El Kerni, H., Chennaoui Aoudjehane, H., Aboulahris, M., Reimold, W. U., Koeberl, C., Rochette, P., Quesnel, Y., Uehara, M., Hutzler, A., Bourles, D., Bouley, S. & Aoudjehane, A. 2014. Agoudal (High Atlas Mountains): confirmation and first studies of a remnant of a post mid-Jurassic impact structure in Morocco. 77th MetSoc Meeting (September 7–12, 2014, Casablanca, Morocco), Abstract no. 5318.Google Scholar
Essene, E. J. & Fisher, D. C. 1986. Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234, 189–93.CrossRefGoogle ScholarPubMed
Fadile, A. 2003. Carte Géologique du Maroc à 1/100 000, Feuille Imilchil. Notes et mémoires, Service géologique du Maroc, no. 397.Google Scholar
Folco, L., Di Martino, M., El Barkooky, A., D'Orazio, M., Lethy, A., Urbini, S., Nicolosi, I., Hafez, M., Cordier, C., van Ginneken, M., Zeoli, A., Radwan, A. M., El Khrepy, S., El Gabry, M., Gomaa, M., Barakat, A. A., Serra, R. & El Sharkawi, M. 2011. Kamil Crater (Egypt): ground truth for small-scale meteorite impacts on Earth. Geology 39, 179–82.Google Scholar
French, B. M. 1998. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contributions 954. Houston: Lunar & Planetary Institute, 120 pp.Google Scholar
Gay, N. C. 1976. Spherules on shatter cone surfaces from the Vredefort structure, South Africa. Science 194, 724–5.Google Scholar
Gay, N. C., Comins, N. R. & Simpson, C. 1978. The composition of spherules and other features on shatter cone surfaces from the Vredefort structure, South Africa. Earth and Planetary Science Letters 41, 372–80.Google Scholar
Gibson, H. M. & Spray, J. G. 1998. Shock-induced melting and vaporization of shatter cone surfaces: evidence from the Sudbury impact structure. Meteoritics & Planetary Science 33, 329–36.Google Scholar
Goderis, S., Paquay, F. & Claeys, Ph. 2012. Projectile identification in terrestrial impact structures and ejecta material. In Impact Cratering: Processes and Products (eds Osinski, G. R. & Pierazzo, E.), pp. 223–39. Chichester/Hoboken: Wiley-Blackwell.Google Scholar
Goldstein, J. I. & Ogilvie, R. E. 1963. Electron microanalysis of metallic meteorites. Part 1 – Phosphides and sulfides. Geochimica et Cosmochimica Acta 27, 623–37.Google Scholar
Grieve, R. A. F. 2006. Impact Structures in Canada. GeoTEXT 5. St John's: Geological Association of Canada, 210 pp.Google Scholar
Grieve, R. A. F., Palme, H. & Plant, A. G. 1981. Siderophile-rich particles in the melt rocks at the E. Clearwater impact structure, Quebec: their characteristics and relationship to the impacting body. Contributions to Mineralogy and Petrology 75, 187–98.Google Scholar
Haidinger, W. 1848. Berichte über die Mittheilungen von Freunden der Naturwissenschaften in Wien, III (1–6). Vienna: Braumüllerund Seidel, 497 pp.Google Scholar
Heide, F. & Wlotzka, F. 1995. Meteorites. Messengers From Space. Berlin, Heidelberg: Springer, 229 pp.Google Scholar
Hofmann, B. A., Lorenzetti, S., Eugster, O., Krähenbühl, U., Herzog, G., Serefiddin, F., Gnos, E., Eggimann, M. & Wasson, J. T. 2009. The Twannberg (Switzerland) IIG iron meteorites: mineralogy, chemistry, and CRE ages. Meteoritics & Planetary Science 44, 187–99.Google Scholar
Hunter, R. H. & Taylor, L. A. 1981. Rust and schreibersite in Apollo 16 highland rocks – manifestations of volatile-element mobility. Proceedings of the 12th Lunar and Planetary Science Conference (16–20 March 1981), Houston, Texas, USA, pp. 253–9.Google Scholar
Keil, K. 1968. Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research 73, 6945–76.Google Scholar
Koeberl, C. 2014. Chapter 2.5 – The geochemistry and cosmochemistry of impacts. In Treatise on Geochemistry, 2nd ed. (eds Turekian, K. K. & Holland, H.), pp. 73118. Amsterdam, New York: Elsevier.Google Scholar
Kofman, R. S., Herd, C. D., & Froese, D. G. 2010. The Whitecourt meteorite impact crater, Alberta, Canada. Meteoritics & Planetary Science 45, 1429–45.Google Scholar
Krinov, E. L. 1964. Scattered meteoritic matter in the area of fall of the Sikhote-Alin iron meteorite. Annals of the New York Academy of Science 119, 224–34.Google Scholar
Lambert, P. 1976. The meteoritic contamination in the Rochechouart crater: statistical geochemical investigations. LPI Contribution 259. Houston: Lunar & Planetary Institute, pp. 69–71.Google Scholar
Langenhorst, F., Harries, D. & Pack, A. 2012. Jepara – a new main group pallasite from Java, Indonesia. 75th MetSoc Meeting (12–17 August 2012, Cairns, Australia), Abstract no. 5068.Google Scholar
Lhachmi, A., Lorand, J.-P. & Fabries, J. 2001. Pétrologie de l'intrusion alcaline mésozoïque de la région d'Anemzi, Haut Atlas Central, Maroc. Journal of African Earth Science 32, 741–64.Google Scholar
Lorenz, C. A., Ivanova, M. A., Artemieva, N. A., Sadilenko, D. A., Chennaoui Aoudjehane, H., Roschina, I. A., Korochantsev, A. V. & Humayun, M. 2014. Formation of a small impact structure discovered within the Agoudal meteorite strewn field, Morocco. Meteoritics & Planetary Science 50, 112–34.Google Scholar
Maier, W. D., Andreoli, M. A. G., McDonald, I., Higgins, M. D., Boyce, A. J., Shukolyukov, A., Lugmair, G. W., Ashwal, L. D., Gräser, P., Ripley, E. M. & Hart, R. J. 2006. Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441, 203–6.Google Scholar
McCoy, T. J. 2010. Mineralogical evolution of meteorites. Elements 6, 1923.Google Scholar
Meteoritical Bulletin Database. 2014. Entry for Agoudal, available online at http://www.lpi.usra.edu/meteor/metbull.php?code=57354 [Date last accessed: 15 September 2013].Google Scholar
Oxford Instruments. 2011. AZtecEnergy – In Depth, Application Note, 7 pp. Available online at http://www.oxford-instruments.com/OxfordInstruments/media/nanoanalysis/brochuresandthumbs/EDSAppnotes/EDS101.pdf Google Scholar
Pasek, M. A. & Block, K. 2009. Lightning-induced reduction of phosphorus oxidation state. Nature Geoscience 2, 553–6.Google Scholar
Pasek, M. A. & Pasek, V. D. 2007. Experimental and petrologic studies of schreibersite corrosion. 70th MetSoc Meeting (13–17 August 2007, Tucson, Arizona), Abstract no. 5242.Google Scholar
Pauly, H. 1969. White cast iron with cohenite, schreibersite and sulphides from Tertiary basalts on Disko, Greenland. Meddelelser fra Dansk geologisk Forening 19, 826.Google Scholar
Reed, S. J. B. 1969. 61. Phosphorous in meteoritic nickel-iron. In Meteorite Research (ed. Millman, P.), pp. 749–62. Dordrecht: Reidel.Google Scholar
Rochette, P., Chennaoui Aoudjehane, H., El Kerni, H., Quesnel, Y., Uehara, M., Aboulahris, M., Hutzler, A. & Bourles, D. 2014. Reconciling impact evidence and meteorite strewnfield in Agoudal (Morocco): field, geomorphology and geophysical evidences. 77th MetSoc (September 7–12, 2014, Casablanca, Morocco), Abstract no. 5211.Google Scholar
Rubin, A. E. 2002. Mineralogy of meteorite groups. Meteoritics & Planetary Science 32, 231–47.Google Scholar
Sadilenko, D. A., Lorenz, C. A., Ivanova, M. A., Roshina, I. A. & Korochantsev, A. V. 2013. A new small impact crater in the High Atlas, in the Agoudal strewn field. 76th MetSoc Meeting (29 July–02 August 2013, Edmonton, Canada), Abstract no. 5215.Google Scholar
Sagy, A., Fineberg, J. & Reches, Z. 2004. Shatter cones: branched, rapid fractures formed by shock impact. Journal of Geophysical Research 109, B10209, 20 pp, doi: 10.1029/2004/JB003016.Google Scholar
Sagy, A., Reches, Z. & Fineberg, J. 2002. Dynamic fracture by large extraterrestrial impacts as the origin of shatter cones. Nature 418, 310–3.Google Scholar
Schmieder, M. & Buchner, E. 2013. Strahlenkegel in Opalinuston-Konkretionen des Steinheimer Beckens (Baden-Württemberg). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 164, 503–13.Google Scholar
Valter, A. A. & Ryabenko, V. A. 1977. Explosion Craters of the Ukrainian Shield. Kiev: Naukova Dumka, 154 pp.Google Scholar
Wasson, J. T., Huber, H. & Malvin, D. D. 2007. Formation of IIAB iron meteorites. Geochimica et Cosmochimica Acta 71, 760–81.Google Scholar
White, J. S. Jr., Henderson, E. P. & Mason, B. 1967. Secondary minerals produced by weathering of the Wolfe Creek meteorite. American Mineralogist 52, 1190–7.Google Scholar
Yaroshevsky, A. A. & Ivanov, A. V. 2010. Geochemical diversity of meteorite minerals: systematics and nomenclature of phosphides and silicides. Geochemistry International 48, 808–14.Google Scholar