Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T05:33:09.656Z Has data issue: false hasContentIssue false

Mass transport deposits overprinted by contractional tectonics: a case study from the southern Apennines of Italy

Published online by Cambridge University Press:  16 April 2018

GIUSEPPE PALLADINO*
Affiliation:
Geology and Petroleum Geology, University of Aberdeen, Aberdeen, UK
GIACOMO PROSSER
Affiliation:
Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
MARIO BENTIVENGA
Affiliation:
Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
G. IAN ALSOP
Affiliation:
Geology and Petroleum Geology, University of Aberdeen, Aberdeen, UK
*
Author for correspondence: [email protected]

Abstract

Mass transport deposits (MTDs), created by gravity-driven deformation of unlithified sediments, and tectonic mélanges produced by contractional deformation are characterized by a similar chaotic appearance. It follows that distinguishing structures formed by soft-sediment deformation during mass transport from those produced by contractional tectonics can be problematic. In fact, deformation occurring along detachment levels may completely obliterate the original sedimentary fabric. Although a number of advances have been made during recent decades, field criteria for discriminating structures within MTDs that are overprinted by later regional contraction are not readily applicable to all the exposed examples. We address some of these general issues through a detailed case study of the Monte Facito Formation in Italy. This Triassic unit was formed during the Africa–Europe continental separation and, since the Miocene, has been involved in contractional deformation during the construction of the Apennines. The Monte Facito Formation consists of a series of stratigraphically coherent units, separated by chaotic and often deformed intervals, whose origin has been previously attributed to either tectonic or sedimentary processes. An example is provided by a characteristic pebbly mudstone (or ‘paraconglomerate’) which has been interpreted as either a Triassic gravity-flow deposit, or alternatively, as a product of shearing along regional contractional detachments during the Miocene. This detailed field-based study allows us to recognize structures related to the depositional processes that created these chaotic intervals, and which can therefore be interpreted as MTDs. We also discriminate structures connected to later contractional tectonics that locally produced intense reworking of the MTDs.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1982. Sedimentary Structures: Their Character and Physical Basis, II. Amsterdam: Elsevier, 593 pp.Google Scholar
Alonso, J. L., Gallastegui, J., García-Sansegundo, J., Farias, P., Rodríguez Fernández, L. R. & Ramos, V. A. 2008. Extensional tectonics and gravitational collapse in an Ordovician passive margin: the Western Argentine Precordillera. Gondwana Research 13, 204–15.Google Scholar
Alsop, G. I. & Marco, S. 2012. A large-scale radial pattern of seismogenic slumping towards the Dead Sea Basin. Journal of the Geological Society, London 169, 99110.Google Scholar
Alsop, G. I. & Marco, S. 2013. Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope. Tectonophysics 605, 4869.Google Scholar
Alsop, G. I. & Marco, S. 2014. Fold and fabric relationships in temporally and spatially evolving slump systems: a multi-cell flow model. Journal of Structural Geology 63, 2749.Google Scholar
Alsop, G. I., Marco, S., Levi, T. & Weinberger, R. 2017. Fold and thrust systems in Mass Transport Deposits. Journal of Structural Geology 94, 98115.Google Scholar
Alvarez, W., Colacicchi, R. & Montanari, A. 1985. Synsedimentary slides and bedding formation in Apennine pelagic limestones. Journal of Sedimentary Petrology 55, 720–34.Google Scholar
Alves, T. M. 2015. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: a review. Marine and Petroleum Geology 67, 262–85.Google Scholar
Alves, T. M. & Lourenço, S. D. N. 2010. Geomorphologic features related to gravitational collapse: submarine landsliding to lateral spreading on a Late Miocene-Quaternary slope (SE Crete, eastern Mediterranean). Geomorphology 123, 1333.Google Scholar
Armitage, D. A., Romans, B. W., Covault, J. A. & Graham, S. A. 2009. The influence of mass-transport-deposit surface topography on the evolution of turbidite architecture: the Sierra Contrera, Tres Pasos Formation (Cretaceous), southern Chile. Journal of Sedimentary Research 79, 287301.Google Scholar
Auchter, N. C., Romans, B. W. & Hubbard, S. M. 2016. Influence of deposit architecture on intrastratal deformation, slope deposits of the Tres Pasos Formation, Chile. Sedimentary Geology 341, 1326.Google Scholar
Bailey, R. H., Skehan, J. W., Dreier, R. B. & Webster, M. J. 1989. Olistostromes of the Avalonian terrane of southeastern New England. In Mélanges and Olistostromes of the Appalachians (eds Horton, J. W. Jr. & Rast, N.), pp. 93112. Geological Society of America, Special Paper no. 228.Google Scholar
Blewett, R. S. 1991. Slump folds and early structures, northeastern Newfoundland Appalachians: re-examined. Journal of Geology 99, 547–57.Google Scholar
Bosellini, A. 2002. Dinosaurs ‘‘re-write’’ the geodynamics of the eastern Mediterranean and the paleogeography of the Apulia Platform. Earth-Science Reviews 59, 211–34.Google Scholar
Brandon, M. T. 1989. Deformational styles in a sequence of olistostromal mélanges, Pacific Rim Complex, western Vancouver Island, Canada. Geological Society of America Bulletin 101, 1520–42.Google Scholar
Bryn, P., Berg, K., Forsberg, C. F., Solheim, A. & Kvalstad, T. J. 2005. Explaining the Storegga Slide. Marine and Petroleum Geology 22, 11–9.Google Scholar
Bull, S., Cartwright, J. & Huuse, M. 2009. A review of kinematic indicators from mass-transport complexes using 3D seismic data. Marine and Petroleum Geology 26, 1132–51.Google Scholar
Burg, J. P., Bernoulli, D., Smit, J., Dolati, A. & Bahroudi, A. 2008. Giant catastrophic mud-and-debris flow in the Miocene Makran. Terra Nova 20, 188–93.Google Scholar
Butler, R. W. H., Mazzoli, S., Corrado, S., De Donatis, M., Di Bucci, D., Gambini, R., Naso, G., Nicolai, C., Scrocca, D., Shiner, P. & Zucconi, V. 2004. Applying thick-skinned tectonic model to the Apennine thrust belt of Italy: limitations and implications. In Thrust Tectonic and Hydrocarbon Systems (ed. McClay, K. R.), pp. 647–67. American Association of Petroleum Geologists, AAPG Memoir no. 82.Google Scholar
Callot, P., Sempere, T., Odonne, F. & Robert, E. 2008. Giant submarine collapse of a carbonate platform at the Turonian-Coniacian transition: the Ayabacas Formation, southern Peru. Basin Research 20, 333–57.Google Scholar
Camerlenghi, A. & Pini, G. A. 2009. Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region. Sedimentology 56, 319–65.Google Scholar
Canals, M., Lastras, G., Urgeles, R., Casamor, J. L., Mienert, J., Cattaneo, A., De Batist, M., Haflidason, H., Imbo, Y., Laberg, J. S., Locat, J., Long, D., Longva, O., Masson, D. G., Sultan, N., Trincardi, F. & Bryn, P. 2004. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Marine Geology 213, 972.Google Scholar
Carter, R. M. 1975. A discussion and classification of subaqueous mass-transport with particular application to grain flow, slurry-flow, and fluxoturbidites. Earth-Science Reviews 11, 145–77.Google Scholar
Casero, P., Roure, F., Endignoux, L., Moretti, I., Muller, C., Sage, L. & Vially, R. 1988. Neogene geodynamic evolution of the Southern Apennines. Memorie della Società Geologica Italiana 41, 109–20.Google Scholar
Catalano, S., Monaco, C. & Tortorici, L. 1993. Pleistocene strike-slip tectonics in the Lucanian Apennine (southern Italy). Tectonics 12, 656–65.Google Scholar
Cello, G. & Mazzoli, S. 1999. Apennine tectonics in southern Italy: a review. Journal of Geodynamics 27, 191211.Google Scholar
Channell, J. E. T., D'Argenio, B. & Horvath, F. 1979. Adria, the African Promontory, in Mesozoic Mediterranean palaeogeography. Earth-Science Reviews 15, 213–92.Google Scholar
Ciarapica, G., Cirilli, S., Martini, R., Panzanelli Fratoni, R., Zaninetti, L. & Salvini Bonnard, G. 1990a. Reworked foraminifera in the Triassic Monte Facito Formation Auctt., Lagonegro Basin (Southern Apennines, Italy). Bollettino della Società Geologica Italiana 109, 143–9.Google Scholar
Ciarapica, G., Cirilli, S., Panzanelli Fratoni, R., Passeri, L. & Zaninetti, L. 1990b. The Monte Facito Formation (Southern Apennines). Bollettino della Società Geologica Italiana 109, 135–42.Google Scholar
Ciarapica, G. & Passeri, L. 2000. Le facies del Triassico inferiore e medio (fm. di Monte Facito Auctt.) nelle aree di Sasso di Castalda e di Moliterno (Basilicata). Bollettino della Società Geologica Italiana 119, 339–78.Google Scholar
Cieszkowski, M., Golonka, J., Ślączka, A. & Waśkowska, A. 2012. Role of the olistostromes and olistoliths in tectonostratigraphic evolution of the Silesian Basin in the Outer West Carpathians. Tectonophysics 568–569, 248–65.Google Scholar
Codegone, G., Festa, A., Dilek, Y. & Pini, G. A. 2012. Small-scale polygenetic mélanges in the Ligurian accretionary complex, Northern Apennines, Italy, and the role of shale diapirism in superposed mélange evolution in orogenic belts. Tectonophysics 568–569, 170–84.Google Scholar
Collinson, J. D. & Thompson, D. B. 1989. Sedimentary Structures. London: Unwin Hyman, 207 pp.Google Scholar
Comeau, F. A., Kirkwood, D., Malo, M., Asselin, E. & Bertrand, R. 2004. Taconian mélanges in the parautochthonous zone of the Quebec Appalachians revisited: implications for foreland basin and thrust belt evolution. Canadian Journal of Earth Sciences 41, 1473–90.Google Scholar
Cook, H. E. 1979. Ancient continental slope sequences and their value in understanding modern slope development. In Geology of Continental Slopes (eds Doyle, L. & Pilkey, O. H.), pp. 287305. SEPM Special Publication no. 27.Google Scholar
Cook, H. E. & Taylor, M. E. 1977. Comparison of continental slope and shelf environments in the Upper Cambrian and lowest Ordovician of Nevada. In Deep Water Carbonate Environments (eds Cook, H. E. & Enos, P.), pp. 5181. SEPM Special Publication no. 25.Google Scholar
Cowan, D. S. 1985. Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America. Geological Society of America Bulletin 96, 451–62.Google Scholar
D'Argenio, B. & Alvarez, W. 1980. Stratigraphic evidence for crustal thickness changes on the southern Tethyan margin during the Alpine cycle. Geological Society of America Bulletin 91, 681–9.Google Scholar
D'Argenio, B., Pescatore, T. & Scandone, P. 1973. Schema geologico dell'Appennino Meridionale (Campania e Lucania). Accademia Nazionale dei Lincei, Quaderno 183, 4972.Google Scholar
Debacker, T. N., Dumon, M. & Matthys, A. 2009. Interpreting fold and fault geometries from within the lateral to oblique parts of slumps: a case study from the Anglo-Brabant Deformation Belt (Belgium). Journal of Structural Geology 31, 1525–39.Google Scholar
De Capoa Bonardi, P. 1970. Le Daonelle e le Halobie della serie calcareo-silico-marnosa della Lucania (Appennino meridionale). Studio paleontologico e biostratigrafico. Memorie della Società Naturalisti in Napoli 78, 1127.Google Scholar
De Wever, P., Martini, R. & Zaninetti, L. 1990. Datation paléontologique des radiolarites du Lagonegro (Formation du Monte Facito, Italie méridionale). Individualisation dès le Trias moyen de bassins pélagiques en Téthys occidentale. Comptes Rendus de l'Académie des Sciences, Paris 310, 583–9.Google Scholar
Di Leo, P., Dinelli, E., Mongelli, G. & Schiattarella, M. 2002. Geology and geochemistry of Jurassic pelagic sediments, Scisti silicei Formation, southern Apennines, Italy. Sedimentary Geology 150, 229–46.Google Scholar
Donzelli, G. & Crescenti, U. 1970. Segnalazione di una microbio-facies permiana, probabilmente rimaneggiata, nella Formazione di M. Facito (Lucania Occidentale). Bollettino della Società Naturalisti in Napoli 79, 13–9.Google Scholar
Dott, R. H. 1963. Dynamics of subaqueous gravity depositional processes. AAPG Bulletin 47, 104–28.Google Scholar
Drzewiecki, P. A. & Simȯ, J. A. 2002. Depositional processes, triggering mechanisms and sediment composition of carbonate gravity flow deposits: examples from the Late Cretaceous of the southcentral Pyrenees, Spain. Sedimentary Geology 146, 155–89.Google Scholar
Dunlap, D. B., Wood, L. J., Weisenberger, C. & Jabour, H. 2010. Seismic geomorphology of offshore Morocco's east margin, Safi Haute Mer area. AAPG Bulletin 94, 615–42.Google Scholar
Dykastra, M., Garyfalou, K., Kertznus, V., Kneller, B., Milana, J.P., Molinaro, M., Szuman, M. & Thompson, P. 2011. Mass transport deposits: combining outcrop studies and seismic forward modeling to understand lithofacies distributions, deformation, and their seismic stratigraphic expression. In Mass-Transport Deposits in Deepwater Settings (eds Shipp, R. C., Weimer, P. & Posamentier, H. W.), pp. 293310. SEPM Special Publication no. 96.Google Scholar
Eberli, G. P. 1987. Carbonate turbidite sequence deposited in rift-basins of the Jurassic Thethys Ocean (eastern Alps, Switzerland). Sedimentology 34, 363–88.Google Scholar
Elliott, C. G. & Williams, P. F. 1988. Sediment slump structures: a review of diagnostic criteria and application to an example from Newfoundland. Journal of Structural Geology 10, 171–82.Google Scholar
Fallgatter, C., Kneller, B., Paim, P. S. G. & Milana, J. P. 2017. Transformation, partitioning and flow–deposit interactions during the run-out of megaflows. Sedimentology 64, 359–87.Google Scholar
Farrell, S. G. 1984. A dislocation model applied to slump structures, Ainsa Basin, South Central Pyrenees. Journal of Structural Geology 6, 727–36.Google Scholar
Festa, A., Dilek, Y., Pini, G. A., Codegone, G. & Ogata, K. 2012. Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: redefining and classifying mélanges. Tectonophysics 568–569, 724.Google Scholar
Festa, A., Pini, G. A., Dilek, Y. & Codegone, G. 2010. Mélanges and mélange-forming processes: a historical overview and new concepts. International Geological Review 52, 1040–105.Google Scholar
Fossen, H. 2016. Structural Geology. Cambridge, Cambridge University Press, 524 pp.Google Scholar
Gawthorpe, R. L. & Clemney, H. 1985. Geometry of submarine slides in the Bowland Basin (Dinantian and their relation to debris flow). Journal of the Geological Society 142, 555–65.Google Scholar
Golonka, J., Krobicki, M., Waśkowska, A., Cieszkowski, M. & Ślaczka, A. 2015. Olistostromes of the Pieniny Klippen Belt, Northern Carpathians. Geological Magazine 152 (2), 269–86.Google Scholar
Greenly, E. 1919. The Geology of Anglesey. Memoirs of the Geological Survey of Great Britain. London: HM Stationery Office, 980 pp.Google Scholar
Gueguen, E., Doglioni, C. & Fernandez, M. 1998. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 298, 259–69.Google Scholar
Haas, J. 1999. Genesis of Late Cretaceous toe-of-slope breccias in the Bakony Mts, Hungary. Sedimentary Geology 128, 5166.Google Scholar
Hampton, M. A. 1972. The role of subaqueous debris flow in generating turbidity currents. Journal of Sedimentary Petrology 42, 775–93.Google Scholar
Hampton, M. A., Lee, H. J. & Locat, J. 1996. Submarine landslides. Review of Geophysics 34, 3359.Google Scholar
Hine, A. C., Locker, S. D., Tedesco, L. P., Mullins, H. T., Hallock, P., Belknap, D. F., Ingeominas, J. L. G., Neumann, A. C. & Snyder, S. W. 1992. Megabreccia shedding from modern, low-relief carbonate platforms, Nicaraguan Rise. Geological Society of America Bulletin 104, 928–43.Google Scholar
Hippolyte, J. C., Angelier, J. & Barrier, E. 1995. Compressional and extensional tectonics in an arc system: example of the Southern Apennines. Journal of Structural Geology 17, 1725–40.Google Scholar
Hsü, K. J. 1968. Principles of mélanges and their bearing on the Franciscan-Knoxville Paradox. Geological Society of America Bulletin 79, 1063–74.Google Scholar
Jablonska, D., Di Celma, C., Korneva, I., Tondi, E. & Alsop, I. 2016. Mass-transport deposits within basinal carbonates from southern Italy. Italian Journal of Geosciences 135, 3040.Google Scholar
Jackson, C. A. L. 2011. Three-dimensional seismic analysis of megaclast deformation within a mass transport deposit: implications for debris flow kinematics. Geology, 39, 203–6.Google Scholar
Kim, S. B., Chough, S. K. & Chun, S. S. 2003. Tectonic controls on spatio-temporal development of depositional systems and generation of fining-upward basin fills in a strike-slip setting: Kyokpori Formation (Cretaceous), south-west Korea. Sedimentology 50, 639–65.Google Scholar
Knott, S. D. 1994. Structure, kinematics and metamorphism in the Liguride Complex, Southern Apennines Italy. Journal of Structural Geology 16, 1107–20.Google Scholar
Korneva, I., Tondi, E., Jablonska, D., Di Celma, C., Alsop, I. & Agosta, F. 2016. Distinguishing tectonically- and gravity-driven synsedimentary deformation structures along the Apulian platform margin (Gargano Promontory, southern Italy). Marine and Petroleum Geology 73, 479–91.Google Scholar
Leitch, E. C. & Cawood, P. A. 1980. Olistoliths and debris flow deposits at ancient consuming plate margins: an eastern Australian example. Sedimentary Geology 25, 522.Google Scholar
Lentini, F., Carbone, S., Di Stefano, A. & Guarnieri, P. 2002. Stratigraphical and structural constraints in the Lucanian Apennines (southern Italy): tools for reconstructing the geological evolution. Journal of Geodynamics 34, 141–58.Google Scholar
Lewis, K. B. 1971. Slumping on a continental slope inclined at 1°–4°. Sedimentology 16, 97110.Google Scholar
López-Gamundí, O. R. 1993. Pebbly mudstones in the Cretaceous Pigeon Point Formation, western California: a study in the transitional stages from submarine slumps to cohesive debris flows. Sedimentary Geology 84, 3750.Google Scholar
Lowe, R. D. 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52, 279–97.Google Scholar
Lucente, C. C. & Pini, G. A. 2003. Anatomy and emplacement mechanism of a large submarine slide within the Miocene foredeep in the Northern Apennines, Italy: a field perspective. American Journal of Science 303, 565602.Google Scholar
Malinverno, A. & Ryan, W. B. F. 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of the lithosphere. Tectonics 5, 227–45.Google Scholar
Maltman, A. J. 1994. Introduction and overview. In The Geological Deformation of Sediments (ed. Maltman, A. J.), pp. 135. London: Chapman & Hall.Google Scholar
Marsella, E., Kozur, H. & D'Argenio, B. 1993. Monte Facito Formation (Schitian–middle Carnian). A deposit of the ancestral Lagonegro Basin in the Southern Apennines. Bollettino del Servizio Geologico d'Italia 110, 225–48.Google Scholar
Martini, R., De Wever, P., Zaninetti, L., Denelian, T. & Kito, N. 1989. Les radiolarites triasique de la Formation du M. Facito Auctt (Bassin de Lagonegro, Italie méridionale). Revue de Paléobiologie 8 (1), 143–61.Google Scholar
Martinsen, O. J. 1989. Styles of soft-sediment deformation on a Namurian (Carboniferous) delta slope, Western Irish Namurian Basin, Ireland. In Deltas: Sites and Traps for Fossil Fuels (eds Whateley, M. K. G. & Pickering, K. T.), pp. 167–77. Geological Society, Special Publication no. 41.Google Scholar
Martinsen, O. J. & Bakken, B. 1990. Extensional and compressional zones in slumps and slides in the Namurian of County Clare, Ireland. Journal of the Geological Society, London 147, 153–64.Google Scholar
Mazzoli, S. 1992. Structural analysis of the Mesozoic Lagonegro Unit in SW Lucania (Southern Italian Apennines). Studi Geologici Camerti 12, 117–46.Google Scholar
Mazzoli, S., Barkham, S., Cello, G., Gambini, R., Mattioni, L., Shiner, P. & Tondi, E. 2001. Reconstruction of continental margin architecture deformed by the contraction of the Lagonegro Basin, southern Apennines, Italy. Journal of the Geological Society, London 158, 309–19.Google Scholar
McDonald, D. I. M., Moncrieff, A. C. M. & Butterworth, P. J. 1993. Giant slide deposits from a Mesozoic forearc basin, Alexander Island, Antarctica. Geology 21, 1047–50.Google Scholar
Menardi Noguera, A. & Rea, G. 2000. Deep structure of the Campanian-Lucanian Arc (Southern Apennines, Italy). Tectonophysics 324, 239–65.Google Scholar
Miconnet, P. 1988. Evolution mésozoïque du secteur de Lagonegro. Memorie della Società Geologica Italiana 41, 321–30.Google Scholar
Mietto, P. & Panzanelli Fratoni, R. 1990. Conodonts from the Monte Facito Formation and from the base of the Monte Sirino Formation (Lagonegro Sequence). Bollettino della Società Geologica Italiana 109, 165–9.Google Scholar
Monaco, C., Tortorici, L. & Paltrinieri, W. 1998. Structural evolution of the Lucanian Apennines, southern Italy. Journal of Structural Geology 20, 617–38.Google Scholar
Montenat, C., Barrier, P., Ott D'Estevou, P. & Hibsch, C. 2007. Seismites: an attempt at critical analysis and classification. Sedimentary Geology 196, 530.Google Scholar
Moscardelli, L. & Wood, L. 2008. New classification system for mass transport complexes in offshore Trinidad. Basin Research 20, 7398.Google Scholar
Moscardelli, L. & Wood, L. 2015. Morphometry of mass-transport deposits as a predictive tool. GSA Bulletin 128, 4780.Google Scholar
Mostardini, F. & Merlini, S. 1986. Appennino centro meridionale. Sezioni geologiche e proposta di modello strutturale. Memorie della Società Geologica Italiana 35, 177202.Google Scholar
Mulder, T. & Cochonat, P. 1996. Classification of offshore mass movements. Journal of Sedimentary Research 66, 4357.Google Scholar
Nardin, T. R., Hein, F. J., Gorsline, D. S. & Edwards, B. D. 1979. A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope system versus canyon-fan-basin floor systems. In Geology of Continental Slopes (eds Doyle, L. & Pilkey, O. H.), pp. 6173. SEPM Special Publication no. 27.Google Scholar
Nemec, W. 1990. Aspect of sediment movement on steep delta slopes. In Coarse-Grained Deltas (eds Colella, A. & Prior, D. B.), pp. 2973. International Association of Sedimentologists, Special Publication no. 10.Google Scholar
Nemec, W. & Steel, R. J. 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In Sedimentology of Gravel and Conglomerates (eds Koster, E. H. & Steel, R. J.), pp. 131. Memoirs of the Canadian Society of Petroleum Geology, no. 10.Google Scholar
Novellino, R., Prosser, G., Spiess, R., Viti, C., Agosta, F., Tavarnelli, E. & Bucci, F. 2015. Dynamic weakening along incipient low-angle normal faults in pelagic limestones (Southern Apennines, Italy). Journal of the Geological Society 172, 283–6.Google Scholar
Odonne, F., Callot, P., Debroas, E. J., Sempere, T., Hoareau, G. & Maillerd, A. 2011. Soft-sediment deformation from submarine sliding: favourable conditions and triggering mechanisms in examples from the Eocene Sobrarbe delta (Ainsa, Spanish Pyrenees) and the mid-Cretaceous Ayabacas Formation (Andes of Peru). Sedimentary Geology 235, 234–48.Google Scholar
Ogata, K., Mutti, E., Pini, G. A. & Tinterri, R. 2012. Mass transport-related stratal disruption within sedimentary mélanges: examples from the northern Apennines (Italy) and south-central Pyrenees (Spain). Tectonophysics 568–569, 185–99.Google Scholar
Onderdonk, N. & Midtkandal, I. 2010. Mechanisms of collapse of the Cretaceous Helvetiafjellet Formation at Kvalvågen, eastern Spitsbergen. Marine and Petroleum Geology 27, 2118–40.Google Scholar
Ortner, H. 2007. Styles of soft-sediment deformation on top of a growing fold system in the Gosau Group at Muttekopf, Northern Calcareous Alps, Austria: slumping versus tectonic deformation. Sedimentary Geology 196, 99118.Google Scholar
Ortner, H. & Kilian, S. 2016. Sediment creep on slopes in pelagic limestones: Upper Jurassic of Northern Calcareous Alps, Austria. Sedimentary Geology 344, 350–63.Google Scholar
Osozawa, S., Pavlis, T. & Flowers, M. F. J. 2011. Sedimentary block-in-matrix fabric affected by tectonic shear, Miocene Nabae complex, Japan. In Mélanges: Processes of Formation and Societal Significance (eds Wakabayashi, J. & Dilek, Y.), pp. 189206. Geological Society of America Special Paper no. 480.Google Scholar
Palladino, G. 2011. Tectonic and eustatic controls on Pliocene accommodation space along the front of the southern Apennine thrust-belt (Basilicata, southern Italy). Basin Research 23, 591614.Google Scholar
Palladino, G. 2015. Determining the way-up of the Monte Facito Formation using new sedimentological data from the ‘La Cerchiara’ succession, Southern Apennines. Italian Journal of Geosciences 134, 120–33.Google Scholar
Panzanelli Fratoni, R. 1991. Analisi stratigrafica della «Formazione del M. Facito» Auctt. (serie di Lagonegro-Appennino Meridionale). Proposta di istituzione del Gruppo di Monte Facito. Unpublished thesis, Università degli Studi di Perugia, Perugia, Italy.Google Scholar
Pasini, M. 1982. Fusulinidi Permiani nel Trias medio dell'Appennino meridionale (Formazione di Monte Facito). Memorie della Società Geologica Italiana 24 (2), 169–82.Google Scholar
Passeri, L. & Ciarapica, G. 2010. Le litofacies permiane e triassiche della formazione di M. Facito auctt. nell'area di M. Facito (successione di Lagonegro, Appennino meridionale). Italian Journal of Geosciences 129 (1), 2950.Google Scholar
Patacca, E. & Scandone, P. 2007. Geology of the Southern Apennines. In Results of the CROP Project Sub-project CROP-04 Southern Apennines (Italy) (eds Mazzotti, A., Patacca, E. & Scandone, P.), pp. 75119. Italian Journal of Geoscience, special issue no. 7.Google Scholar
Paterson, S. R. & Tobisch, O. T. 1993. Pre-lithification structures, deformation mechanisms, and fabric ellipsoids in slumped turbidites from the Pigeon Point Formation, California. Tectonophysics 222, 135–49.Google Scholar
Pescatore, T., Renda, P., Schiattarella, M. & Tramutoli, M. 1999. Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy. Tectonophysics 315, 269–86.Google Scholar
Piedilato, S. & Prosser, G. 2005. Thrust sequences and evolution of the external sector of a fold and thrust belt: an example from the Southern Apennines (Italy). Journal of Geodynamics 39, 386402.Google Scholar
Pini, G. A. 1999. Tectonosomes and Olistostromes in the Argille Scagliose of the Northern Apennines, Italy. Geological Society of America, Special Paper no. 335.Google Scholar
Pini, G. A., Ogata, K., Camerlenghi, A., Festa, A., Lucente, C. C. & Codegone, G. 2012. Sedimentary mélanges and fossil mass-transport complexes: a key for better understanding submarine mass movements? In Submarine Mass Movements and Their Consequences (eds Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J. & Strasser, M.). Advances in Natural and Technological Hazards Research no. 31. Dordrecht, Springer.Google Scholar
Posamentier, H. W. & Martinsen, O. J. 2011. The character and genesis of submarine mass-transport deposits: insights from outcrop and 3D seismic data. In Mass-Transport Deposits in Deepwater Settings (eds Shipp, R. C., Weimeir, P. & Posamentier, H. W.). SEPM Special Publication no. 96.Google Scholar
Postma, G. 1986. Classification for sediment gravity-flow deposits based on flow conditions during sedimentation. Geology 14, 291–4.Google Scholar
Prosser, G., Schiattarella, M., Tramutoli, M., Doglioni, C., Harabaglia, P. & Bigozzi, A. 1996. Una sezione rappresentativa dell'Appennino meridionale. In Conferenza sulla Ricerca Scientifica in Basilicata, Università della Basilicata – Regione Basilicata. https://issuu.com/geobasilicata/docs/p.081-g.prosser.Google Scholar
Raymond, L. A. 1975. Tectonite and mélange – a distinction. Geology 3, 79.Google Scholar
Rettori, R., Ciarapica, G., Cirilli, S., Martini, R., Salvini Bonnard, G. & Zaninetti, L. E. 1988. Build-ups ladinici e facies associate nella Formazione di M. Facito (Appennino Meridionale). In Atti del 74° Congresso della Società Geologica Italiana, Sorrento, pp. 346–9. https://archive-ouverte.unige.ch/unige:23010.Google Scholar
Rigo, M., Preto, N., Roghi, G., Tateo, F. & Mietto, P. 2007. A rise in the Carbonate Compensation Depth of western Tethys in the Carnian (Late Triassic): deep-water evidence for the Carnian pluvial event. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 188205.Google Scholar
Roure, F., Casero, P. & Vially, R. 1991. Growth processes and melanges formation in the southern Apennines accretionary wedge. Earth and Planetary Science Letters 102, 395412.Google Scholar
Scandone, P. 1965. Osservazioni su una località fossilifera a brachiopodi nel Ladinico della serie calcareo-silico-marnosa lucana al M. Facito. Bollettino della Società dei Naturalisti in Napoli 74, 311–6.Google Scholar
Scandone, P. 1967. Studi di geologia lucana: la serie calcareo-silico-marnosa. Bollettino della Società dei Naturalisti in Napoli 76, 1175.Google Scholar
Scandone, P. 1972. Studi di geologia Lucana: carta dei terreni della serie calcareo-silico-marnosa e note illustrative. Bollettino della Società dei Naturalisti in Napoli 81, 225300.Google Scholar
Schettino, A. & Turco, E. 2011. Tectonic history of the western Tethys since the late Triassic. Geological Society of America Bulletin 123 (1/2), 89105.Google Scholar
Sengör, A. M. C. 2003. The repeated discovery of mélanges and its implication for the possibility and the role of objective evidence in the scientific enterprise. In Ophiolite Concept and the Evolution of Geological Thought (eds Dilek, Y. & Newcomb, S.), pp. 385445. Geological Society of America, Special Paper no. 373.Google Scholar
Shiner, P., Beccacini, A. & Mazzoli, S. 2004. Thin-skinned versus thick-skinned structural model for Apulian carbonate reservoirs: constraints from the Val d'Agri fields, Southern Apennines, Italy. Marine and Petroleum Geology 21, 805–27.Google Scholar
Shipp, R. C., Weimeir, P. & Posamentier, H. W. 2011. Mass-Transport Deposits in Deepwater Settings. SEPM Special Publication no. 96.Google Scholar
Silver, E. A. & Beutner, E. C. 1980. Melange. Geology 8, 32–4.Google Scholar
Sobiesiak, M. S., Alsop, I., Kneller, B. & Milana, J. P. 2017. Sub-seismic scale folding and thrusting within an exposed mass transport deposit: a case study from NW Argentina. Journal of Structural Geology 96, 176–91.Google Scholar
Sobiesiak, M. S., Kneller, B., Alsop, G. I. & Milana, J. P. 2016. Internal deformation and kinematic indicators within a tripartite mass transport deposit, NW Argentina. Sedimentary Geology 344. 364–81.Google Scholar
Spence, G. H. & Tucker, M. E. 1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sedimentary Geology 112, 163–93.Google Scholar
Stampfli, G. M. & Borel, G. D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196, 1733.Google Scholar
Steen, Ø. & Andresen, A. 1997. Deformational structures associated with gravitational block gliding: examples from sedimentary olistoliths in the Kalvåg Melange, western Norway. American Journal of Science 297, 5697.Google Scholar
Strachan, L. J. & Alsop, G. I. 2006. Slump folds as estimators of palaeoslope: a case study from the Fisherstreet Slump of County Clare, Ireland. Basin Research 18, 451–70.Google Scholar
Taddei Ruggiero, E. 1968. Brachiopodi triassici della Pietra Maura (Lucania). Bollettino della Società dei Naturalisti in Napoli 77, 349–92.Google Scholar
Tavarnelli, E. & Prosser, G. 2003. The complete Apennines orogenic cycle preserved in a transient single outcrop near San Fele, Lucania, southern Italy. Journal of the Geological Society, London 160, 429–34.Google Scholar
Torrente, M. M. 1990. Folding and thrusting in the calcareo-silico-marnosa sequence (Lagonegro area, southern Apennine). Memorie della Società Geologica Italiana 45, 511–7.Google Scholar
Tripsanas, E. K., Piper, D. J. W., Jenner, K. A. & Bryant, W. R. 2008. Submarine mass-transport facies: new perspectives on flow processes from cores on the eastern North American margin. Sedimentology 55, 97136.Google Scholar
Waldron, J. W. F. & Gagnon, J. F. 2011. Recognizing soft-sediment structures in deformed rocks of orogens. Journal of Structural Geology 33, 271–9.Google Scholar
Waldron, J. W. F., Jamieson, R. A., Pothier, H. D. & White, C. E. 2015. Sedimentary and tectonic setting of a mass-transport slope deposit in the Halifax Group, Halifax Peninsula, Nova Scotia, Canada. Atlantic Geology 51, 84104.Google Scholar
Williams, P. F. 1983. Timing of deformation and the mechanism of cleavage development in a Newfoundland mélange. Maritime Sediments and Atlantic Geology 19, 3148.Google Scholar
Wood, A. W. 1981. Extensional tectonics and the birth of the Lagonegro Basin (Southern Italian Apennines). Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen 161 (1), 93131.Google Scholar
Woodcock, N. H. 1976. Structural style in slump sheets: Ludlow Series, Powys, Wales. Journal of the Geological Society, London 132, 399415.Google Scholar
Woodcock, N. H. 1979. The use of slump structures as palaeoslope orientation estimators. Sedimentology 26, 8399.Google Scholar
Yamamoto, Y., Tonogai, K. & Anma, R. 2012. Fabric-based criteria to distinguish tectonic from sedimentary mélanges in the Shimanto accretionary complex, Yakushima Island, SW Japan. Tectonophysics 568–569, 6573.Google Scholar
Zagorevski, A., Van Staal, C. R., McNicoll, V. J., Hartree, L. & Rogers, N. 2012. Tectonic evolution of the Dunnage Mélange tract and its significance to the closure of Iapetus. Tectonophysics 568–569, 371–87.Google Scholar