Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T05:14:36.946Z Has data issue: false hasContentIssue false

Lowermost Cambrian acritarchs from the Yanjiahe Formation, South China: implication for defining the base of the Cambrian in the Yangtze Platform

Published online by Cambridge University Press:  13 February 2017

SOO YEUN AHN*
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 Beijing East Road, Nanjing 210008, China
MAOYAN ZHU
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 Beijing East Road, Nanjing 210008, China College of Earth Sciences, University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijinshang District, Beijing 100049, China
*
Author for correspondence: [email protected]

Abstract

The Asteridium–Heliosphaeridium–Comasphaeridium (AHC) acritarch assemblage is composed of common organic-walled microfossils in the basal Cambrian chert–phosphorite units in South China, indicating that the AHC assemblage can be a useful biostratigraphic tool for the EdiacaranCambrian boundary successions in the Yangtze Platform. To test the validity of the AHC acritarch assemblage as a biostratigraphic tool, the stratigraphic range of the AHC acritarch assemblage was confirmed, and its spatial and temporal relationships to other bio- and chemostratigraphic tools were analysed in the Yanjiahe Formation, Yangtze Gorges area, South China. The result shows that the AHC assemblage temporally correlates to the Anabarites trisulcatus–Protohertzina anabarica Assemblage Zone, and spatially correlates to the large negative carbon isotope anomaly of the lowermost Cambrian (BACE) in the Yanjiahe Formation. This implies that the radiation of phytoplankton occurred slightly before the radiation of the small shelly fossils, and the AHC acritarch assemblage can be another important chronological reference to the lowermost Cambrian successions in South China, and potentially to global correlations.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, L. E., Peng, S. C., Geyer, G. & Shergold, J. H. 2005. Changing perspectives on Cambrian chronostratigraphy and progress toward subdivision of the Cambrian System. Geosciences Journal 9, 101106.CrossRefGoogle Scholar
Babcock, L. E., Peng, S., Zhu, M., Xiao, S. & Ahlberg, P. 2014. Proposed reassessment of the Cambrian GSSP. Journal of African Earth Sciences 98, 310.Google Scholar
Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today 10, 17.Google Scholar
Brasier, M. D., Cowie, J. W. & Taylor, M. 1994. Decision on the Precambrian-Cambrian boundary stratotype. Episodes 17, 38.Google Scholar
Brasier, M. D., Magaritz, M., Corfield, R., Luo, H., Wu, X., Ouyang, L., Jiang, Z., Hamadi, B., He, T. & Frazier, A. G. 1990. The carbon- and oxygen-isotopic record of the Precambrian–Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 319332.Google Scholar
Brasier, M. D., Shields, G., Kuleshov, V. N. & Zhegallo, E. A. 1996. Integrated chemo- and biostratigraphy calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia. Geological Magazine 133, 445–85.Google Scholar
Braun, A. & Chen, J. 2003. Plankton from Early Cambrian black shale series on the Yangtze Platform, and its influences on lithologies. Progress in Natural Science 13, 777–81.Google Scholar
Carbone, C. & Narbonne, G. M. 2014. When life got smart: the evolution of behavioral complexity through the Ediacaran and early Cambrian of NW Canada. Journal of Paleontology 88, 309–30.Google Scholar
Chang, S., Feng, Q., Clausen, S. & Zhang, L. 2016. Sponge spicules from the lower Cambrian in the Yanjiahe formation, South China: the earliest biomineralizing sponge. Palaeogeography, Palaeoclimatology, Palaeoecology, published online 22 June 2016. doi: 10.1016/j.palaeo.2016.06.032.Google Scholar
Chen, P. 1984. Discovery of lower Cambrian small shelly fossils from Jijiapo, Yichang, West Hubei and its significance. Professional Papers of Stratigraphy and Palaeontology 13, 4966 (in Chinese with English summary).Google Scholar
Chen, P. 1987. The Sinian System. In Stratigraphic Excursion Guidebook in the Yangtze Gorge Area (ed. Wang, X.), pp. 27. Beijing: Geological Publishing House.Google Scholar
Chen, X., Ling, H. F., Vance, D., Shields-Zhou, G. A., Zhu, M., Poulton, S. W., Och, L. M., Jiang, S. Y., Li, D., Cremonese, L. & Archer, C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications 6, 7142. doi: 10.1038/ncomms8142.Google Scholar
Crimes, T. P. 1987. Trace fossils and correlation of late Precambrian–Early Cambrian strata. Geological Magazine 124, 97119.Google Scholar
Ding, L. F., Li, Y. & Chen, H. X. 1992. Discovery of Micrhystridium regulare from Sinian–Cambrian boundary strata in Yichang, Hubei, and its stratigraphic significance. Acta Micropalaeontologica Sinica 9, 303–9.Google Scholar
Ding, L., Li, Y., Hu, X., Xiao, Y., Su, C. & Huang, J. 1996. Sinian Miaohe Biota of China. Beijing: Geological Publishing House, 261 pp.Google Scholar
Ding, W. & Qian, Y. 1988. Late Sinian to Early Cambrian small shelly fossils from Yangjiaping, Shimen, Hunan. Acta Micropalaeontologica Sinica 5, 3955 (in Chinese with English summary).Google Scholar
Dong, L., Xiao, S., Shen, B., Zhou, C., Li, G. & Yao, J. 2009. Basal Cambrian microfossils from the Yangtze Gorges area (south China) and the Aksu area (Tarim block, northwestern China). Journal of Paleontology 83, 3044.Google Scholar
Droser, M. L., Gehling, J. G. & Jensen, S. 1999. When the worm turned; concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia. Geology 27, 625–8.2.3.CO;2>CrossRefGoogle Scholar
Droser, M. L., Jensen, S. & Gehling, J. G. 2002. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences of the United States of America 99, 12572–6.Google Scholar
Erwin, D. H. 2015. Was the Ediacaran-Cambrian radiation a unique evolutionary event? Palaeobiology 41, 115.CrossRefGoogle Scholar
Erwin, D. H. & Tweedt, S. 2012. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evolutionary Ecology Research 26, 417–33.Google Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs. Proceedings of the National Academy of Sciences 49, 158–64.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z. & Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270, 598604.CrossRefGoogle Scholar
Guo, J. F., Li, Y., Han, J., Zhang, X. L., Zhang, Z. F., Ou, Q., Liu, J. N., Shu, D. G., Maruyama, S. & Komiya, T. 2008. Fossil association from the lower Cambrian Yanjiahe Formation in the Yangtze Gorges area, Hubei, South China. Acta Geologica Sinica 82, 1124–32.Google Scholar
Guo, J., Li, Y. & Li., G. 2014. Small shelly fossils from the early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research 25, 9991007.CrossRefGoogle Scholar
Ishikawa, T., Ueno, Y., Komiya, T., Sawaki, Y., Han, J., Shu, D. G., Li, Y., Maruyama, S. & Yoshida, N. 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Yangtze Gorges area, South China: prominent global-scale isotope excursions just before the Cambrian explosion. Gondwana Research 14, 193208.CrossRefGoogle Scholar
Ishikawa, T., Ueno, Y., Shu, D., Li, Y., Han, J., Guo, J., Yoshida, N. & Komiya, T. 2013. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: high-resolution organic and inorganic carbon chemostratigraphy in the Yangtze Gorges area, South China. Precambrian Research 225, 190208.Google Scholar
Jensen, S., 1997. Trace fossils from the Lower Cambrian Mickwitzia Sandstone, south-central Sweden. Fossils and Strata 42, 1110.Google Scholar
Jensen, S., 2003. The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integrative and Comparative Biology 43, 219–28.Google Scholar
Jiang, G. Q., Wang, X. Q., Shi, X. Y., Xiao, S. H., Zhang, S. H. & Dong, J. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze platform. Earth and Planetary Science Letters 317–318, 96–110.Google Scholar
Knoll, A. H. & Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–37.Google Scholar
Kouchinsky, A., Bengtson, S., Pavlov, V., Runnegar, B., Torssander, P., Young, E. & Ziegler, K. 2007. Carbon isotope stratigraphy of the Precambrian–Cambrian Sukharikha River section, northwestern Siberian platform. Geological Magazine 144, 609–18.Google Scholar
Kouchinsky, A., Bengtson, S., Runnegar, B., Skovsted, C., Steiner, M. & Vendrasco, M. 2012. Chronology of early Cambrian biomineralization. Geological Magazine 149, 221–51.Google Scholar
Landing, E. 1994. Precambrian–Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology 22, 179–82.Google Scholar
Landing, E., Geyer, G., Brasier, M. D. & Bowring, S. A. 2013. Cambrian Evolutionary Radiation: context, correlation, and chronostratigraphy – overcoming deficiencies of the First Appearance Datum (FAD) concept. Earth Science Reviews 123, 133–72.Google Scholar
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7, 257–65.Google Scholar
Li, D., Ling, H. F., Jiang, S. Y., Pan, J. Y., Chen, Y. Q., Cai, Y. F. & Feng, H. Z., 2009. New carbon isotope stratigraphy of the Ediacaran–Cambrian boundary interval from SW China: implications for global correlation. Geological Magazine 146, 465–84.CrossRefGoogle Scholar
Li, D., Ling, H. F., Shields-Zhou, G. & Thirlwall, M. 2013. Carbon and strontium isotope evolution of seawater across the Ediacaran–Cambrian transition: evidence from the Xiaotan section, NE Yunnan South China. Precambrian Research 225, 128–47.Google Scholar
Li, G. X., Steiner, M., Zhu, X. J., Yang, A. H., Wang, H. F. & Erdtmann, B.D. 2007. Early Cambrian metazoan fossil record of South China: generic diversity and radiation patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 229–49.CrossRefGoogle Scholar
Li, G. X., Zhang, J. M. & Zhu, M. Y. 2001. Litho- and biostratigraphy of the lower Cambrian Meishucunian Stage in the Xiaotan section, eastern Yunnan. Acta Palaeontologica Sinica 40 (Supplement), 4053.Google Scholar
Li, G. X., Zhao, X., Gubanov, A., Zhu, M. Y. & Na, L. 2011. Early Cambrian Mollusc Watsonella crosbyi: a potential GSSP index fossil for the base of the Cambrian Stage 2. Acta Geologica Sinica 85, 309–19.Google Scholar
Lindsay, J. F., Brasier, M. D., Dorjnamjaa, D., Goldring, R., Kruse, P. D. & Wood, R. A. 1996. Facies and sequence controls on the appearance of the Cambrian biota in southwestern Mongolia: implications for the Precambrian–Cambrian boundary. Geological Magazine 133, 417–28.Google Scholar
Loeblich, A. R. 1970. Morphology, ultrastructure and distribution of Paleozoic acritarchs. Proceedings of the North American Paleontological Convention Part G 33, 705–88.Google Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins, J. A., Fike, D. A. & Eddy, M. P. 2010a. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.Google Scholar
Maloof, A. C., Ramezani, J., Bowring, S. A., Fike, D. A., Porter, S. M. & Mazouad, M. 2010b Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian–Tommotian boundary δ13C shift, Morocco. Geology 38, 623–6.Google Scholar
Mángano, M. G. & Buatois, L. A. 2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks. Proceedings of the Royal Society B 281, 20140038. doi: 10.1098/rspb.2014.0038.Google Scholar
Moczydłowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian–Cambrian boundary in southeastern Poland. Fossils and Strata 29, 1127.CrossRefGoogle Scholar
Moczydłowska, M. 1998. Cambrian acritarchs from Upper Silesia, Poland; biochronology and tectonic implications. Fossils and Strata 46, 1121.CrossRefGoogle Scholar
Moczydłowska, M. 2001. Early Cambrian phytoplankton radiations and appearance of metazoans. In Cambrian System of South China (Palaeoworld No. 13) (eds Peng, S., Babcock, L. E. & Zhu, M.), pp. 293–6. Hefei: University of Science and Technology of China Press.Google Scholar
Moczydłowska, M. 2002. Early Cambrian phytoplankton diversification and appearance of trilobites in the Swedish Caledonides with implications for coupled evolutionary events between primary producers and consumers. Lethaia 35, 191214.Google Scholar
Moczydłowska, M. & Zang, W. L. 2006. The Early Cambrian acritarch Skiagia and its significance for global correlation. Palaeoworld 15, 328–47.Google Scholar
Narbonne, G. M., Kaufman, A. J. & Knoll, A.H. 1994. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. Geological Society of America Bulletin 106, 1281–92.Google Scholar
Och, L. M., Cremonese, L., Shields-Zhou, G. A., Poulton, S. W., Struck, U., Ling, H., Li, D., Chen, X., Manning, C., Thirlwall, M., Strauss, H. & Zhu, M. 2015. Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran-Cambrian transition. Sedimentology 63, 378410.Google Scholar
Okada, Y., Sawaki, Y., Komiya, T., Hirata, T., Takahata, N., Sano, Y., Han, J. & Maruyama, S. 2014. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng'an and Chengjiang areas, China. Gondwana Research 25, 1027–44.Google Scholar
Palacios, T. & Moczydłowska, M. 1998. Acritarch biostratigraphy of the Lower-Middle Cambrian boundary in the Iberian Chains, Province of Soria, northeastern Spain. Revista Española de Paleontologia numero extraorinario Homenaje al Prof. Gonzalo Vidal, 65–82.Google Scholar
Palacios, T., Jensen, S., Barr, S. M., White, C. E. & Miller, R. F. 2011. New biostratigraphical constraints on the lower Cambrian Ratcliffe Brook Formation, southern New Brunswick, Canada, from organic-walled microfossils. Stratigraphy 8, 4560.Google Scholar
Palacios, T. & Vidal, G. 1992. Lower Cambrian acritarchs from northern Spain: the Precambrian–Cambrian boundary and biostratigraphic implications. Geological Magazine 129, 421–36.Google Scholar
Peng, S. C., Babcock, L. E. & Cooper, R. A. 2012. The Cambrian Period. In The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmidtz, M. D. & Ogg, G. M.), pp. 437–88. Amsterdam: Elsevier BV.Google Scholar
Qian, Y. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in central and southwestern China. Acta Palaeontologica Sinica 16, 255–75 (in Chinese with English summary).Google Scholar
Qian, Y. 1978. The Early Cambrian hyolithids in central and southwest China and their stratigraphical significance. Memoir of the Nanjing Institute of Geology and Palaeontology, Academia Sinica 11, 138 (in Chinese with English summary).Google Scholar
Qian, Y. & Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata 24, 1156.Google Scholar
Qian, Y., Li, G. X. & Zhu, M. Y. 2001. The Meishucunian stage and its small shelly fossil sequence in China. Acta Palaeontologica Sinica 40, 5462.Google Scholar
Qian, Y., Zhu, M. Y., He, T. G. & Jiang, Z.W. 1996. New investigation of Precambrian–Cambrian boundary sections in eastern Yunnan. Acta Micropalaeontologica Sinica 13, 225–40 (in Chinese with English summary).Google Scholar
Shang, X., Liu, P., Yang, B. & Chen, S. 2015. Ecology and Phylogenetic affinity of the early Cambrian tubular microfossil Megathrix Longus. Palaeontology 59, 1328.Google Scholar
Shen, Y. & Schidlowski, M. 2000. New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian–Cambrian boundary on the Yangtze Platform and global correlations. Geology 28, 623–36.Google Scholar
Shields-Zhou, G. & Zhu, M., 2013. Biogeochemical changes across the Ediacaran-Cambrian transition in South China. Precambrian Research 225, 16.Google Scholar
Shu, D., Isozaki, Y., Zhang, X., Han, J. & Maruyama, S. 2014. Birth and early evolution of metazoans. Gondwana Research 25, 884–95.Google Scholar
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A. & Knoll, A. H. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences of the United States of America 110, 13446–51.Google Scholar
Staplin, F. L., Jansonius, J. & Pocock, A. J. 1965. Evaluation of some acritarchous hystrichosphere genera. Neues Jahrbuch für Geologie und Palaöntologie, Abhandlungen 123, 167201.Google Scholar
Steiner, M., Li, G., Qian, Y., Zhu, M. & Erdtmann, B. D. 2003. Lower Cambrian small shelly faunas from Zhejiang (China) and their biostratigraphic implications. Progress in Natural Science 13, 852–60.CrossRefGoogle Scholar
Steiner, M., Li, G., Qian, Y., Zhu, M. & Erdtmann, B. D. 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology 254, 6799.Google Scholar
Tiwari, M. 1999. Organic-walled microfossils from the Chert–phosphorite Member, Tal Formation, Precambrian–Cambrian Boundary, India. Precambrian Research 97, 99113.Google Scholar
Valensi, L. 1948. Sur quelques microorganisms planctoniques des silex du Jurassique moyen du poitou et de Normandie. Bulletin de la Société Géologique de France 5 série 18, 537–50.Google Scholar
Vidal, G. & Moczydłowska-Vidal, M. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology 23, 230–46.Google Scholar
Volkova, N. A. 1968. Acritarchs from the Precambrian and Lower Cambrian deposits of Estonia. In Problematics of Riphean and Cambrian Strata of the Russian Platform, Urals and Kazakhstan (eds Volkova, N. A., Zhuravleva, Z. A., Zabrodin, V. E., & Klinger, B. S.), pp. 836. Nauka, Moscow.Google Scholar
Volkova, N. A. 1969. Acritarchs of the northwestern Russian platform. In The Tommotian Stage and the Cambrian Lower Boundary Problem (eds Rozanov, A. Y., Missarzhevskii, V. V., Volkova, N. A., Voronova, L. C., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., & Sidarov, A. D.), pp. 224–36. Nauka, Moscow.Google Scholar
Volkova, N. A. 1968. Acritarchs from the Precambrian and Lower Cambrian deposits of Estonia. In: Volkova, N. A., Zhuravleva, Z. A., Zabrodin, V. E., Klinger, B. S. (Eds.), Problematics of Riphean and Cambrian Strata of the Russian Platform, Urals and Kazakhstan. Nauka, Moscow, pp. 836.Google Scholar
Volkova, N. A. 1969. Acritarchs of the northwestern Russian Platform. In: Rozanov, A. Y., Missarzhevskii, V. V., Volkova, N. A., Voronova, L. C., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., Sidarov, A. D. (Eds.), The Tommotian Stage and the Cambrian Lower Boundary Problem. Nauka, Moscow, pp. 224–36.Google Scholar
Wang, F. 1985. Middle-upper Proterozoic and lowest Phanerozoic microfossil assemblages from SW China and contiguous areas. Precambrian Research 29, 3343.Google Scholar
Wang, F., Zhang, X. & Guo, R. 1983. The Sinian microfossils from Jinning, Yunnan, southwest China. Precambrian Research 23, 133–75.Google Scholar
Xie, X., Tenger, G., Qian, J., Zhang, Q., Bian, L. & Yin, L. 2015. Depositional environment, organism components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou. Acta Geologica Sinica 89, 425–39 (in Chinese with English summary).Google Scholar
Yang, B., Steiner, M., Li, G. & Keupp, H. 2014. Terreneuvian small shelly faunas of East Yunnan (South China) and their biostratigraphic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 398, 2858.Google Scholar
Yang, B., Steiner, M., Zhu, M., Li, G., Liu, J. & Liu, P. 2016. Transitional Ediacaran-Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implication for chronostratigraphy and metazoan evolution. Precambrian Research 285, 202–15.Google Scholar
Yao, J., Xiao, S., Yin, L., Li, G. X. & Yuan, X. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, north-west China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China. Palaeontology 48, 687708.Google Scholar
Yin, L. 1985. Microfossils of the Doushantuo Formation in the Yangtze Gorge district, western Hubei. Palaeontologia Cathayana 2, 229249.Google Scholar
Yin, C. 1990. Microfossils from the Zhongyicun Member of Yuhuchun Formation (Lower Cambrian) in Jinning, Yunnan Province, China. Professional Papers of Stratigraphy and Palaeontology 23, 131–40 (in Chinese with Englishsummary).Google Scholar
Yin, C. 1995. New data on microfossils from the Shuijingtuo Formation (Lower Cambrian) in Hefeng, Hubei Province. Acta Micropalaeontologica Sinica 12, 299306 (in Chinese with English summary).Google Scholar
Yin, C., Gao, L. & Xing, Y. 2003. Silicified microfossils from the Early Cambrian Tianzhushan Member near Miaohe village, Zigui, west Hubei, China. Acta Palaeontologica Sinica 42, 7688.Google Scholar
Yin, C., Yue, Z., Gao, L. & Ding, Q. 1992. Microfossils from the cherts of the Lower Cambrian Shuijingtuo Formation at Miaohe, Zigui, Hubei Province. Acta Geologica Sinica 66, 371–80 (in Chinese with Englishsummary).Google Scholar
Yin, L. 1985. Microfossils of the Doushantuo Formation in the Yangtze Gorge district, western Hubei. Palaeontologia Cathayana 2, 229–49.Google Scholar
Yin, L. 1987a. Microbiotas of latest Precambrian sequences in China. In Stratigraphy and Palaeontology of Systemic Boundaries in China: Precambrian–Cambrian Boundary (1) (ed. Nanjing Institute of Geology and Palaeontology Academica Sinica), pp. 415–94. Nanjing: Nanjing University Press.Google Scholar
Yin, L. 1987b. New data of microfossils from Precambrian–Cambrian cherts in Ningqiang, southern Shaanxi. Acta Palaeontologica Sinica 26, 187–95.Google Scholar
Yin, L. 1995. Microflora from the Precambrian–Cambrian boundary strata in the Yangtze Platform. Journal of Stratigraphy 19, 299307 (in Chinese with English summary).Google Scholar
Yin, L. 1997. Precambrian–Cambrian transitional acritarch biostratigraphy of the Yangtze Platform. Bulletin of National Museum of Natural Science (Taipei) 10, 217–31.Google Scholar
Yin, L., Wang, C., Zhao, Y. & Ou, Z. 2016. Early-Middle Cambrian palynomorph microfossils and related geochemical events in South China. Journal of Earth Science 27,180–6.Google Scholar
Zang, W. L. 1992. Sinian and Early Cambrian floras and biostratigraphy on the South China Platform. Palaeontographica Abteilung B 224, 75119.Google Scholar
Zhang, J. M., Li, G. X., Zhou, C. M. & Zhu, M. Y. 1997. Carbon isotope profiles and their correlations across the Neoproterozoic–Cambrian boundary interval on the Yangtze platform, China. Bulletin of the National Museum of Natural Science 10, 107–16.Google Scholar
Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhao, Y., Zhang, S., Meng, X., Yin, C., Ning, B. & Han, P. 1988. The Sinian System of Hubei. Wuhan: China University of Geosciences Press, 205 pp.Google Scholar
Zhou, C., Zhang, J., Li, G. & Yu, Z. 1997. Carbon and oxygen isotopic record of the early Cambrian from the Xiaotan section, Yunnan, South China. Scientica Geologica Sinica, 201–11.Google Scholar
Zhu, M. 1997. Precambrian–Cambrian trace fossils from eastern Yunnan, China: implications for Cambrian explosion. Bulletin of National Museum of Natural Science 10, 275312.Google Scholar
Zhu, M. Y., Babcock, L. E. & Peng, S. C. 2006. Advances in Cambrian stratigraphy and paleontology: integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–22.CrossRefGoogle Scholar
Zhu, M. Y., Li, G. X., Zhang, J. M., Steiner, M., Qian, Y. & Jiang, Z. W. 2001. Early Cambrian stratigraphy of east Yunnan, southwestern China: a synthesis. Acta Palaeontologica Sinica 40 (Supplement), 439.Google Scholar
Zhu, M., Strauss, H. & Shields, G. A. 2007. From snowball earth to the Cambrian bioradiation: calibration of Ediacaran–Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 16.CrossRefGoogle Scholar
Zhu, M. Y., Zhang, J. M., Steiner, M., Yang, A. H., Li, G. X. & Erdtmann, B. D. 2003. Sinian–Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: an integrated approach. Progress in Natural Science 13, 951–60.Google Scholar
Zhu, M., Zhang, J. & Yang, A. 2007b. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 761.Google Scholar