Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T07:16:17.914Z Has data issue: false hasContentIssue false

Lower Palaeozoic convergent plate margin volcanism on Bømlo, southwest Norwegian Caledonides: geochemistry and petrogenesis

Published online by Cambridge University Press:  01 May 2009

Harald Furnes
Affiliation:
Geologisk Institutt, avd. A, Allegt. 41, 5014 Bergen, Norway
Harald Brekke
Affiliation:
Oljedirektoratet, Postboks 600, 4001 Stavanger, Norway
Jan Nordås
Affiliation:
Norsk Hydro, Lars Hillesgt. 30, 5000 Bergen, Norway
Jan Hertogen
Affiliation:
Leuven University, Fysico-chemische geologie, Celestijnenlaan 200C, B-3030 Leuven, Belgium

Abstract

Major and trace element analyses of a Lower Palaeozoic metavolcanic sequence of convergent plate type from Bømlo, southwest Norwegian Caledonides, are presented and discussed. This sequence ranges in age from the Upper Cambrian through the Lower Silurian. Petrogenetic models for the lavas in terms of partial melting and crystal fractionation are discussed. Two models are presented for the metabasalts in order to explain their different trace element abundances and ratios:

(1) REE modelling, assuming a mantle source with REE abundances twice chondritic, suggests progressively more varied sources with time. Thus the metabasalts from the oldest (Upper Cambrian–Lower Ordovician) Geitung Unit of primitive island arc type, and those of the mid-Ordovician Siggjo Complex of ‘Basin and Range’ type can be modelled in terms of high (around 25%) and moderate (around 5%) degrees of partial melting of spinel lherzolite, respectively. The metabasalts of the post-Ashgillian Vikafjord Group of typical continental flood basalts are compatible with moderate (c. 5–10%) degrees of partial melting of spinel- and garnet-lherzolite sources. The supposed Lower Silurian Langevåg Group of calc-alkaline ‘Andean’ type metabasalts, grading into alkaline to tholeiitic metabasalts of early marginal basin (youngest) character, require low (<5%) to moderate degrees of partial melting of amphibole-, garnet- and spinel-lherzolite sources, respectively.

(2) Source heterogeneity, produced by subduction zone-derived enrichment of LIL elements, and contemporaneous stabilization of minor phases which accommodate HFS elements. This process, combined with possible continental contamination, may possibly yield the trace element concentrations and ratios of the different metabasalts by partial melting of modally similar mantle sources.

Type
Articles
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, P. O. & Gibson, I. L. 1977. Rare earth abundances in Deccan trap basalts. Lithos 10, 143–7.Google Scholar
Arth, J. G. & Hanson, G. N. 1975. Geochemistry and origin of the early Precambrian crust of northeastern Minnesota. Geochimica et Cosmochimica Acta 39, 325–62.CrossRefGoogle Scholar
Barberi, F., Civetta, L. & Varet, J. 1980. Sr isotopic composition of Afar volcanics and its implication for mantle evolution. Earth and Planetary Science Letters 50, 247–59.CrossRefGoogle Scholar
Barsdell, M., Smith, I. E. M. & Spørli, K. B. 1982. The origin of reversed geochemical zoning in the northern New Hebrides volcanic arc. Contributions to Mineralogy and Petrology 81, 148–55.CrossRefGoogle Scholar
Brekke, H., Furnes, H., Nordås, J. & Hertogen, J. 1984. Lower Palaeozoic convergent plate margin volcanism on Bømlo, S.W. Norway, and its bearing on the tectonic environments of the Norwegian Caledonides. Journal of the Geological Society of London 141, 1015–32.Google Scholar
Brunfelt, A. O. & Steinnes, E. 1969. Instrumental activation analyses of silicate rocks with epithermal neutrons. Analytica Chimica Acta 48, 1324.Google Scholar
Brunfelt, A. O. & Steinnes, E. 1971. A neutron activation scheme developed for the determination of 42 elements in Lunar material. Talanta 18, 1197–208.Google Scholar
Cameron, K. L. & Hanson, G. L. 1982. Rare earth element evidence concerning the origin of voluminous mid-Tertiary rhyolite ignimbrites and related volcanic rocks, Sierra Madre Occidental, Chihuahua, Mexico. Geochimica et Cosmochimica Acta 46, 14891503.CrossRefGoogle Scholar
Cann, J. R. 1969. Spilites from the Carlsberg Ridge, Indian Ocean. Journal of Petrology 10, 119.CrossRefGoogle Scholar
Cann, J. R. 1970. Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks. Earth and Planetary Science Letters 10, 711.Google Scholar
Coish, R. A. 1977. Ocean floor metamorphism in the Betts Cove ophiolite, Newfoundland. Contributions to Mineralogy and Petrology 60, 255–70.CrossRefGoogle Scholar
Condie, K. C. 1978. Geochemistry of Proterozoic granitic plutons from New Mexico, U.S.A. Chemical Geology 21, 131–49.CrossRefGoogle Scholar
Dawson, J. B. 1981. The nature of the upper mantle. Mineralogical Magazine 44, 118.Google Scholar
Dawson, J. B., Smith, J. V. & Herring, R. L. 1980. Heterogeneity in upper mantle lherzolites and harzburgites. Philosophical Transactions of the Royal Society A297, 323–31.Google Scholar
Donnelly, T. W. 1966. Geology of St Thomas and St John, U.S. Virgin Islands. In Caribbean Geological Investigation (ed. Hess, H. H.), pp. 85176. Geological Society of America, Memoirs no. 98.CrossRefGoogle Scholar
Donnelly, T. W. & Rogers, J. J. W. 1980. Igneous Series in island arcs: the northeastern Caribbean compared with world wide island – acc assemblages. Bulletin Volcanologique 43 (1), 347–82.Google Scholar
Drake, M. J. & Weill, D. F. 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE between plagioclase feldspar and magmatic liquid; an experimental study. Geochimica et Cosmochimica Acta 39, 689712.CrossRefGoogle Scholar
Dungan, M. A., Vance, J. A. & Blanchard, D. P. 1983. Geochemistry of the Shuksan greenschists and blueschists, North Cascades, Washington: variably fractionated and altered metabasalts of oceanic affinity. Contributions to Mineralogy and Petrology 82, 131–46.CrossRefGoogle Scholar
Faure, G., Bowman, J. R., Elliot, D. H. & Jones, L. M. 1974. Strontium isotope composition and petrogenesis of the Kirkpatrick basalts, Queen Alexandra Range, Antarctica. Contributions to Mineralogy and Petrology 48, 153–69.Google Scholar
Flanagan, F. J. 1973. 1972-values for international geological reference standards. Geochimica et Cosmochimica Acta 37, 1189–200.CrossRefGoogle Scholar
Flanagan, F. J. 1976. Description and Analyses of Eight New USGS Rock Standards. Professional Papers of the U.S. Geological Survey no. 840, 192 pp.CrossRefGoogle Scholar
Floyd, P. A. 1976. Geochemical variation in the greenstones of S.W. England. Journal of Petrology 17, 522–45.CrossRefGoogle Scholar
Floyd, P. A. 1977. Rare earth element mobility and geochemical characterisation of spilitic rocks. Nature 269, 134–7.Google Scholar
Frey, F. A., Bryan, W. B., Thompson, G. & Roy, S. 1973. Petrological and geochemical results for basalts from DSDP Legs 2 and 3. Transactions of the American Geophysical Union 54, 1004–6.Google Scholar
Frey, F. A., Green, D. H. & Roy, S. D. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitite from South Eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology 19, 463513.CrossRefGoogle Scholar
Frey, F. A. & Prinz, M. 1978. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters 38, 129–76.Google Scholar
Furnes, H. 1978. Element mobility during palagonitization of a subglacial hyaloclastite in Iceland. Chemical Geology 22, 249–64.Google Scholar
Furnes, H. 1980. Chemical changes during palagonitization of an alkaline olivine basaltic hyaloclastite, Santa Maria, Azores. Neues Jahrbuch für Mineralogie Abhandlungen 138, 1430.Google Scholar
Furnes, H. & Lippard, S. J. 1979. On the significance of Caledonian pahoehoe, aa, and pillow lava from Bømlo, S.W. Norway. Norsk geologisk Tidsskrift 59, 107–14.Google Scholar
Furnes, H. & El-Anbaawy, M. I. H. 1980. Chemical changes and authigenic mineral formation during palagonitization of a basanite hyaloclastite, Gran Canaria, Canary Islands. Neues Jahrbuch für Mineralogie Abhandlungen 139, 279302.Google Scholar
Furnes, H., Thon, A., Nordås, J. & Garman, L. B. 1982. Geochemistry of Caledonian metabasalts from some Norwegian ophiolite fragments. Contributions to Mineralogy and Petrology 79, 295307.CrossRefGoogle Scholar
Furnes, H., Austrheim, H., Amaliksen, K. G. & Nordås, J. 1983. Evidence for an incipient early Caledonian (Cambrian) orogenic phase in southwestern Norway. Geological Magazine 120, 607–12.Google Scholar
Furnes, H., Ryan, P. D., Grenne, T., Roberts, D., Sturt, B. A. & Prestvik, T. 1984. Geological and geochemical classification of ophiolite fragments in the Scandinavian Caledonides. In The Caledonide Orogen – Scandinavia and Related Areas (eds. Gee, D. G. and Sturt, B. A.). New York: Wiley.Google Scholar
Furnes, H., Pedersen, R. B. & Maaløe, S. Petrology and geochemistry of spinel-peridotite nodules and host basalt, Vestspitsbergen. Norsk geologisk Tidsskrift (in press).Google Scholar
Gurney, J. J. & Harte, B. 1980. Chemical variations in uppermantle nodules from southern African kimberlites. Philosophical Transactions of the Royal Society of London A297, 273–93.Google Scholar
Hajash, A. 1984. Rare earth element abundances and distribution patterns in hydrothermally altered basalts: experimental results. Contributions to Mineralogy and Petrology 85, 409–12.CrossRefGoogle Scholar
Hart, R. A. 1970. Chemical exchange between sea water and deep ocean basalts. Earth and Planetary Science Letters 9, 269–79.CrossRefGoogle Scholar
Hart, S. R. 1969. K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts. Earth and Planetary Science Letters 6, 295303.Google Scholar
Hart, S. R., Erlank, A. J. & Kable, E. J. D. 1974. Sea floor basalt alteration: some chemical and Sr-isotopic effects. Contributions to Mineralogy and Petrology 44, 219–30.CrossRefGoogle Scholar
Hart, S. R. & Nalwalk, A. J. 1970. K, Rb, Cs, and Sr relationships in submarine basalts from the Puerto Rico trench. Geochimica et Cosmochimica Acta 34, 145–55.Google Scholar
Haskin, L. A., Haskin, M. A., Frey, F. A. & Wildeman, T. R. 1968. Relative and absolute abundances of the rare earths. In Origin and Distribution of the Elements (ed. Ahrens, L. H.), pp. 889912. Oxford: Pergamon Press.Google Scholar
Hellman, P. L., Smith, R. E. & Henderson, P. 1979. The mobility of the rare earth elements: evidence and implications from selected terrains affected by burial metamorphism. Contributions to Mineralogy and Petrology 71, 2344.CrossRefGoogle Scholar
Herrmann, A. G., Potts, M. J. & Knake, D. 1974. Geochemistry of the rare earth element in ophiolites from the oceanic and continental crust. Contributions to Mineralogy and Petrology 44, 116.CrossRefGoogle Scholar
Hertogen, J. & Gijbels, R. 1971. Instrumental neutron activation analysis of rock using a low-energy photon detector. Analytica Chimica Acta 56, 6182.CrossRefGoogle Scholar
Hertogen, J. & Gijbels, R. 1976. Calculation of trace element fractionation during partial melting. Geochimica et Cosmochimica Acta 40, 313–22.CrossRefGoogle Scholar
Humphris, S. E., Morrison, M. A. & Thompson, R. N. 1978. Influence of rock crystallization history upon subsequent lanthanide mobility during hydrothermal alteration of basalt. Chemical Geology 23, 125–37.CrossRefGoogle Scholar
Humphris, S. E. & Thompson, G. 1978 a. Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta 42, 107–25.CrossRefGoogle Scholar
Humphris, S. E. & Thompson, G. 1978 b. Trace element mobility during hydrothermal alterations of oceanic basalts. Geochimica et Cosmochimica Acta 42, 127–36.CrossRefGoogle Scholar
Kay, R. W. & Senechal, R. G. 1976. The rare earth geochemistry of the Troodos ophiolite complex. Journal of Geophysical Research 81, 964–70.Google Scholar
Kurat, G., Palme, H., Spettel, H., Baddenhausen, H., Hofmeister, H., Palme, C. & Wånke, H. 1980. Geochemistry of ultramafic xenoliths from Kapfenstein, Austria: evidence for a variety of upper mantle processes. Geochimica et Cosmochimica Acta 44, 4560.Google Scholar
Leeman, W. P. & Vitaliano, C. F. 1976. Petrology of the McKinney basalt, Snake River Plain, Idaho. Bulletin of the Geological Society of America 87, 1777–92.2.0.CO;2>CrossRefGoogle Scholar
Lopez-Escobar, L., Frey, F. A. & Vergara, M. 1976. Andesites from Central-South Chile: trace element abundances and petrogenesis. In Proceedings of the Symposium on ‘Andean and Antarctic Volcanology Problems’ (Santiago, Chile, 1974) (ed. Gonzalez Ferran, O.).Google Scholar
Ludden, J., Gelinas, L. & Trudel, P. 1982. Archean metavolcanics from Rouyn–Noranda district, Abitibi Greenstone Belt, Quebec. 2. Mobility of trace elements and petrogenetic constraints. Canadian Journal of Earth Science 19, 2276–87.Google Scholar
Ludden, J. N. & Thompson, G. 1979. An evaluation of the behaviour of the rare earth elements during the weathering of sea-floor basalts. Earth and Planetary Science Letters 43, 8592.CrossRefGoogle Scholar
Maaløe, S. & Petersen, T. S. 1981. Petrogenesis of oceanic andesites. Journal of Geophysical Research 86 (B11), 10273–86.CrossRefGoogle Scholar
Mark, R. K., Hu, C., Bowman, H. R., Asaro, F., Mckee, E. H. & Coats, R. R. 1975. A high 87Sr/86Sr mantle source for low alkali tholeiite, northern Great Basin. Geochimica et Cosmochimica Acta 39, 1671–8.CrossRefGoogle Scholar
Melson, W. G. 1973. Basaltic glasses from the Deep Sea Drilling Project. Chemical characteristics, composition of alteration products, and fission track ‘ages’. Transactions of the American Geophysical Union 54, 1011–14.Google Scholar
Menzies, F. M., Blanchard, D., Brannon, J. & Korotev, R. 1977. Rare earth geochemistry of fused ophiolitic and alpine lherzolites. II. Beni Bouchera, Ronda and Lanzo. Contributions to Mineralogy and Petrology 64, 5374.Google Scholar
Menzies, F. M., Blanchard, D. & Jacobs, J. 1977. Rare earth and trace element geochemistry of metabasalts from the Point Sal ophiolite, California. Earth and Planetary Science Letters 37, 203–15.Google Scholar
Menzies, F. M., Seyfried, W. J. & Blanchard, D. 1979. Experimental evidence of rare earth element immobility in greenstones. Nature 282, 398–9.Google Scholar
Minsaas, O. & Sturt, B. A. 1984. The Ordovician clastic sequence overlying the Lyngen Gabbro Complex, and its environmental significance. In The Caledonide Orogen – Scandinavia and Related Areas (eds. Gee, D. G. and Sturt, B. A.). New York: Wiley.Google Scholar
Miyashiro, A. 1975. Classification, characteristics and origin of ophiolites. Journal of Geology 83, 285300.Google Scholar
Miyashiro, A. F., Shido, F. & Ewing, M. 1969. Diversity and origin of abyssal tholeiite from the Mid-Atlantic Ridge near 24° and 30° north latitude. Contributions to Mineralogy and Petrology 23, 3852.Google Scholar
Nicholls, I. A. 1978. Primary basaltic magmas for the pre-caldera volcanic rocks of Santorini. In Thera and the Aegean World. I. Thera and the Aegean World (Tsiveriotis) (ed. Doumas, C.), pp. 109–20. Athens.Google Scholar
Nicholls, I. A., Whitford, D. J., Harris, K. L. & Taylor, S. R. 1980. Variation in the geochemistry of mantle sources for tholeiitic and calc-alkaline mafic magmas. Western Sunda volcanic arc, Indonesia. Chemical Geology 30, 177–99.Google Scholar
Nordås, J., Amaliksen, K. G., Brekke, H., Suthern, R., Furnes, H., Sturt, B. A. & Robins, B. 1984. Lithostratigraphy and petrochemistry of Caledonian rocks on Bømlo. In The Caledonide Orogen – Scandinavia and Related Areas (ed. Gee, D. G. and Sturt, B. A.), New York: Wiley.Google Scholar
Norry, M. J., Truckle, P. H., Lippard, S. J., Hawkes-worth, C. J., Weaver, S. D. & Marriner, G. F. 1980. Isotopic and trace element evidence from lavas, bearing on mantle heterogeneity beneath Kenya. Philosophical Transactions of the Royal Society A297, 259–71.Google Scholar
Pearce, J. A. 1980. Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolites. Proceedings of the International Ophiolite Symposium, Nicosia 1979, 261–72.Google Scholar
Pearce, J. A.& Norry, M. J. 1979. Petrogeneticimplications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.CrossRefGoogle Scholar
Reidel, S. P. 1978. Stratigraphy and petrogenesis of the Grande Ronde Basalt in the Lower Salmon and adjacent Snake River Canyons. Ph.D. Dissertation. Pullman, Washington: Washington State University, 415 pp.Google Scholar
Saunders, A. D., Fornari, D. J. & Morrison, M. A. 1982. The composition and emplacement of basaltic magmas produced during the development of continental-margin basins: the Gulf of California, Mexico. Journal of the Geological Society of London 139, 335–46.Google Scholar
Saunders, A. D., Tarney, J., Stern, C. R. & Dalziel, I. W. D. 1979. Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile. Bulletin of the Geological Society of America 90, 237–58.Google Scholar
Saunders, A. D., Tarney, J. & Weaver, S. D. 1980. Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth and Planetary Science Letters 46, 344–60.Google Scholar
Seyfried, W. E. & Mottl, M. J. 1982. Hydrothermal alteration of basalt by seawater under seawaterdominated conditions. Geochimica et Cosmochimica Acta 46, 9851002.CrossRefGoogle Scholar
Shaw, S. M. 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34, 237–43.Google Scholar
Shido, F., Miyashiro, A. & Ewing, M. 1974. Compositional variations in pillow lavas from the Mid-Atlantic Ridge. Marine Geology 16, 177–90.CrossRefGoogle Scholar
Staudigel, H. & Hart, S. R. 1983. Alteration of basaltic glass: mechanism and significance for the oceanic crust–seawater budget. Geochimica et Cosmochimica Acta 47, 3750.Google Scholar
Sturt, B. A., Andersen, T. B. & Furnes, H. 1984. The Skei Group, Leka. An unconformable clastic sequence overlying the Leka ophiolite. In The Caledonide Orogen – Scandinavia and Related Areas (eds. Gee, D. G. and Sturt, B. A.). New York: Wiley.Google Scholar
Sturt, B. A., Roberts, D. & Furnes, H. 1984. A conspectus of Scandinavian Caledonian ophiolites. In Ophiolites and Oceanic Lithosphere (eds. Gass, I. G., Lippard, S. J. and Shelton, A. W. ), pp. 381–91. Special Publication of the Geological Society of London.Google Scholar
Tarney, J., Saunders, A. D. & Weaver, S. D. 1977. Geochemistry of volcanic rocks from the island arcs and marginal basins of the Scotia arc region. In Island Arcs, Deep Sea Trenches and Back-Arc Basins (eds. Talwani, M. and Pitman, W. C.), pp. 367–77. American Geophysical Union.CrossRefGoogle Scholar
Tarney, J., Wood, D. A., Saunders, A. D., Cann, J. R. & Varet, J. 1980. Nature of mantle heterogeneity in the North Atlantic: evidence from deep sea drilling. Philosophical Transactions of the Royal Society of London A297, 179202.Google Scholar
Thompson, G. 1973. A geochemical study of the low-temperature interaction of sea-water and oceanic igneous rocks. Transactions of the American Geophysical Union 54, 1015–19.Google Scholar
Thompson, R. N., Dickin, A. P., Gibson, I. L. & Morrison, M. A. 1982. Elemental fingerprints of isotopic contamination of Hebridean Palaeocene mantle-derived magmas by Archaen sial. Contributions to Mineralogy and Petrology 79, 159–68.Google Scholar
Thompson, R. N., Gibson, I. L., Marriner, G. F., Mattey, D. P. & Morrison, M. A. 1980. Trace-element evidence of multistage mantle fusion and polybaric fractional crystallization in the Palaeocene lavas of Skye, N.W. Scotland. Journal of Petrology 21, 265–93.CrossRefGoogle Scholar
Thompson, R. N., Morrison, M. A., Hendry, G. L. & Parry, S. J. 1984. An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Philosophical Transactions of the Royal Society of London A310, 549–90.Google Scholar
Tindle, A. G. & Pearce, J. A. 1981. Petrogenetic modelling of in situ fractional crystallization in the zoned Loch Doon Pluton, Scotland. Contributions to Mineralogy and Petrology 78, 196207.Google Scholar
van Kooten, E. B. 1980. Some experimentally determined zircon/liquid partition coefficients for the rare earth elements. Geochimica et Cosmochimica Acta 44, 895–7.Google Scholar
Watson, E. B. 1980. Some experimentally determined zircon/liquid partition coefficients for the rare earth elements. Geochimica et Cosmochimica Acta 44, 895–7.Google Scholar
Watson, E. B. & Capobianco, C.-J. 1981. Phosphorus and the rare earth elements in felsic magmas: an assessment of the role of apatite. Geochimica et Cosmochimica Acta 45, 2349–58.CrossRefGoogle Scholar
Weaver, S. D., Saunders, A. D., Pankhurst, R. J. & Tarney, J. 1979. A geochemical study of magmatism associated initial stages of back arc spreading. Contributions to Mineralogy and Petrology 68, 151–69.Google Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.Google Scholar
Whitford, S. J., Nicholls, I. A. & Taylor, S. R. 1979. Spatial variations in the geochemistry of Quaternary lavas across the Sunda arc in Java and Bali. Contributions to Mineralogy and Petrology 70, 341–56.CrossRefGoogle Scholar
Wood, D. A. 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 1130.Google Scholar
Wood, D. A., Joron, J.-L. & Treuil, M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters 45, 326–36.CrossRefGoogle Scholar
Wood, D. A., Gibson, I. L. & Thompson, R. N. 1976. Elemental mobility during zeolite facies metamorphism of the Tertiary basalts of Eastern Iceland. Contributions to Mineralogy and Petrology 55, 241–54.Google Scholar
Wood, D. A., Marsh, N. G., Tarney, J., Joron, J.-L., Tryer, P. & Treuil, M. 1981. Geochemistry of igneous rocks recovered from a transect across the Mariana trough, arc, fore-arc, and trench, sites 453 through 461, Deep Sea Drilling Project Leg 60. In Initial Reports of the Deep Sea Drilling Project Leg 60 (eds.Hussong, D. M., Uyeda, S. et al. ), pp. 611–45. Washington (U.S. Govt. Printing Office).Google Scholar
Wood, D. A., Mattey, D. P., Joron, J.-L., Marsh, N. G., Tarney, J. & Treuil, M. 1980. A geochemical study of 17 selected samples from basement cores recovered at sites 447, 448, 449, 459 and 451, Deep Sea Drilling Project Leg 59. In Initial Reports of the Deep Sea Drilling Project Leg 59 (eds. Kroenke, L., Scott, R. et al. ), pp. 743–52. Washington (U.S. Govt. Printing Office).Google Scholar
Zielinski, R. A. 1982. The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: a case study in the Troublesome Formation, Colorado, U.S.A. Chemical Geology 35, 185204.Google Scholar