Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:25:09.022Z Has data issue: false hasContentIssue false

A link in the chain of the Cambrian zooplankton: bradoriid arthropods invade the water column

Published online by Cambridge University Press:  05 March 2015

MARK WILLIAMS
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
THIJS R. A. VANDENBROUCKE
Affiliation:
UMR 8198 du CNRS: Evo-Eco-Paléo, Université de Lille, Avenue Paul Langevin, bâtiment SN5, 59655 Villeneuve d’Ascq, France
VINCENT PERRIER*
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
DAVID J. SIVETER
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
THOMAS SERVAIS
Affiliation:
UMR 8198 du CNRS: Evo-Eco-Paléo, Université de Lille, Avenue Paul Langevin, bâtiment SN5, 59655 Villeneuve d’Ascq, France
*
Author for correspondence: [email protected]

Abstract

Bradoriids are small bivalved arthropods that had global distribution for about 20 million years beginning at Cambrian Epoch 2 (c. 521 Ma). The majority of bradoriids are considered to be benthic, favouring oxygenated waters, as suggested by their anatomy, lithofacies distribution, faunal associates and provinciality. Most bradoriids were extinct by the end of the Drumian Age (middle of Cambrian Epoch 3). The post-Drumian is characterized by widespread dysoxic shelf lithofacies in southern Britain and Scandinavia and by the abundance of phosphatocopid arthropods. This interval is also associated with two bradoriid species with wide intercontinental distribution: Anabarochilina primordialis, which had a geographical range from the palaeo-tropics to high southern palaeo-latitude, and Anabarochilina australis, which extended through the palaeo-tropics from Laurentia to Gondwana. The wide environmental and geographical range of these species, coupled with a carapace anatomy that suggests an active lifestyle, is used to infer a zooplanktonic lifestyle. A possible driver of this widespread Cambrian bradoriid zooplankton was sea-level rise coupled to the periodic spread of low oxygen conditions onto continental shelves, acting in tandem with anatomical pre-adaptations for swimming. Parallels exist with the myodocope ostracod colonization of the water column during Silurian time, which may also have been influenced by extrinsic environmental controls acting on anatomical pre-adaptations for swimming. Similar biological and environmental mechanisms may have facilitated arthropod zooplankton colonizations across Phanerozoic time.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P., Axheimer, N., Babcock, L. E., Eriksson, M. E., Schmitz, B. & Terfelt, F. 2009. Cambrian high-resolution biostratigraphy and carbon isotope chemostratigraphy in Scania, Sweden: first record of the SPICE and DICE excursions in Scandinavia. Lethaia 42, 216.Google Scholar
Berg-Madsen, V. 1985. A review of the Andrarum Limestone and the upper Alum Shale (Middle Cambrian) of Bornholm, Denmark. Bulletin of the Geological Society of Denmark 34, 133–43.Google Scholar
Bridge, D. McC., Carney, J. N., Lawley, R. S. & Rushton, A. W. A. 1998. The geology of the country around Coventry and Nuneaton. Memoir of the British Geological Survey, Sheet 169 (England and Wales). The Stationary Office, London.Google Scholar
Butterfield, N. J. 2011. Animals and the invention of the Phanerozoic Earth system. Trends in Ecology & Evolution 26, 81–7.CrossRefGoogle ScholarPubMed
Collette, J. H., Hughes, N. C. & Peng, S. 2011. The first report of a Himalayan bradoriid arthropod and the paleogeographic significance of this form. Journal of Paleontology 85, 7682.Google Scholar
Cramer, B. D., Condon, D. J., Söderlund, U., Marshall, C., Worton, G. J., Thomas, A. T., Calner, M., Ray, D. C., Perrier, V., Boomer, I., Patchett, P. J. & Jeppsson, L. 2012. U–Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the ‘Big Crisis’. Geological Society of America Bulletin 124, 1841–57.Google Scholar
Diez Álvarez, M. E., Gozalo, R., Cederström, P. & Ahlberg, P. 2008. Bradoriid arthropods from the lower-middle Cambrian of Scania, Sweden. Acta Palaeontologica Polonica 53, 647–56.Google Scholar
Duan, Y., Han, J., Fu, D., Zhang, X., Yang, X., Komiya, T. & Shu, D. 2014. Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the Lower Cambrian Chengjiang Lagerstätte, South China. Gondwana Research 25, 983–90.Google Scholar
Falkowski, P. 2012. Ocean science: the power of plankton. Nature 483, S17–20.Google Scholar
Ford, S. W. 1873. Descriptions of new species of fossils from the Lower Potsdam Group at Troy, New York. American Journal of Science, Series 5 6, 137–40.Google Scholar
Fortey, R. 2001. Olenid trilobites: the oldest known chemoautotrophic symbionts? Proceedings of the National Academy of Sciences 97, 6574–8.Google Scholar
Hart, M. B. 2000. Climatic modelling in the Cretaceous using the distribution of planktonic Foraminiferida. In Climates: Past and Present (ed. Hart, M. B.), pp. 3341. Geological Society of London, Special Publications no. 181.Google Scholar
Hart, M. B., Hylton, M. D., Oxford, M. J., Price, G. D., Hudson, W. & Smart, C. W. 2003. The search for the origin of the planktic Foraminifera. Journal of the Geological Society, London 160, 341–3.CrossRefGoogle Scholar
Harvey, T. H. P., Williams, M., Condon, D. J., Wilby, P. R., Siveter, David J., Rushton, A. W. A., Leng, M. J. & Gabbott, S. 2011. A refined chronology for the Cambrian succession of southern Britain. Journal of the Geological Society, London 168, 705–16.Google Scholar
Hinz-Schallreuter, I. 1993. Cambrian ostracodes mainly from Baltoscandia and Morocco. Archiv für Geschiebekunde 1, 385448.Google Scholar
Hou, X. G., Aldridge, R. A., Siveter, David J., Siveter, Derek J., Williams, M., Zalasiewcz, J. A. & Ma, X. Y. 2011. An early Cambrian hemichordate zooid. Current Biology 21, 15.Google Scholar
Hou, X. G., Siveter, David J., Williams, M. & Feng, X. H. 2002. A monograph of the Bradoriid arthropods from the Lower Cambrian of SW China. Transactions of the Royal Society of Edinburgh, Earth Sciences 92, 347409.Google Scholar
Hou, X. G., Siveter, David J., Williams, M., Walossek, D. & Bergström, J. 1996. Appendages of the arthropod Kunmingella from the early Cambrian of China: its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda. Philosophical Transactions of the Royal Society of London B351, 1131–45.Google Scholar
Hou, X. G., Williams, M., Siveter, David J., Siveter, Derek J., Aldridge, R. J. & Sansom, R. S. 2010. Soft-part anatomy of the early Cambrian bivalve arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida. Proceedings of the Royal Society B279, 1835–41.Google Scholar
Jones, P. J. & Laurie, J. R. 2006. Bradoriida and Phosphatocopida (Arthropoda) from the Arthur Creek Formation (Middle Cambrian), Georgina Basin, central Australia. Association of Australian Palaeontologists Memoir 32, 205–23.Google Scholar
Landing, E. & Bartowski, K. E. 1996. Oldest shelly fossils from the Taconic Allochthon and late early Cambrian sea levels in eastern Laurentia. Journal of Paleontology 70, 741–61.Google Scholar
Lochmann, C. 1956. Stratigraphy, paleontology, and paleogeography of the Elliptocephala asaphoides strata in Cambridge and Hoosick quadrangles, New York. Geological Society of America Bulletin 67, 1331–96.Google Scholar
Melnikova, L. 2003. Cambrian Bradoriida (Arthropoda) of the Malya Karatau (Kyr-Shabakty Section). Paleontological Journal 37, 394–99.Google Scholar
Melnikova, L., Siveter, David J. & Williams, M. 1997. Cambrian Bradoriida and Phosphatocopida (Arthropoda) of the former Soviet Union. Journal of Micropalaeontology 16, 179–91.Google Scholar
Perrier, V., Siveter, David J., Williams, M. & Lane, P. D. 2014. An Early Silurian ‘Herefordshire’ myodocope ostracod from Greenland and its palaeoecological and palaeobiogeographical significance. Geological Magazine 151, 591–99.CrossRefGoogle Scholar
Perrier, V., Vannier, J. & Siveter, David J. 2007. The Silurian pelagic myodocope ostracod Richteria migrans . Earth and Environmental Science Transactions of the Royal Society of Edinburgh 98, 151–63.Google Scholar
Perrier, V., Vannier, J. & Siveter, David J. 2011. Silurian bolbozoids and cypridinids (Myodocopa) from Europe: pioneer pelagic ostracods. Palaeontology 54, 1361–91.Google Scholar
Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M. J. & McPeek, M. A. 2004. Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences 101, 6536–41.CrossRefGoogle ScholarPubMed
Porebska, E., Kozlowska-Dawidzuik, A. & Masiak, M. 2004. The lundgreni event in the Silurian of the east European platform, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 271–94.Google Scholar
Prigmore, J. K. & Rushton, A. W. A. 1999. Cambrian of South Wales: St David's area. In British Cambrian to Ordovician Stratigraphy (eds Rushton, A. W. A., Owen, A. W., Owens, R. M. & Prigmore, J. K.), pp. 5167. Joint Nature Conservation Committee, Peterborough. Geological Conservation Review Series 18.Google Scholar
Rigby, S. 1997. Comparison: colonization of the planktic realm and land. Lethaia 30, 11–7.Google Scholar
Rigby, S. & Milsom, C. V. 2000. Origins, evolution and diversification of zooplankton. Annual Review of Ecology and Systematics 31, 293313.Google Scholar
Rushton, A. W. A. 1999. Cambrian rocks of England. In British Cambrian to Ordovician Stratigraphy (eds Rushton, A. W. A., Owen, A. W., Owens, R. M. & Prigmore, J. K.), pp. 6987. Joint Nature Conservation Committee, Peterborough. Geological Conservation Review Series 18.Google Scholar
Rushton, A. W. A. & Berg-Madsen, V. 2002. The age of the Middle Cambrian ‘Paradoxides forchhammeri Grit’ of the Wrekin district, Shropshire, England. Transactions of the Royal Society of Edinburgh: Earth Sciences 92, 335–46.Google Scholar
Rushton, A. W. A., Brück, P. M., Molyneux, S. G., Williams, M. & Woodcock, N. H. 2011. A Revised Correlation of the Cambrian Rocks in Britain and Ireland. Geological Society of London, Special Report no. 25, 62 pp.Google Scholar
Schallreuter, R. E. & Siveter, David J. 1985. Ostracodes across the Iapetus ocean. Palaeontology 28, 577–98.Google Scholar
Selden, P. A., Huys, R., Stephenson, M. H., Heward, A. P. & Taylor, P. N. 2010. Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods. Nature Communications 1, 50.CrossRefGoogle ScholarPubMed
Shen, C., Aldridge, R. J., Williams, M., Vandenbroucke, T. R. A. & Zhang, X. G. 2013. The earliest chitinozoans discovered in the Cambrian Duyun fauna of China. Geology 41, 191–4.Google Scholar
Shu, D., Vannier, J., Luo, H. L., Chen, L., Zhang, H. L. & Hu, S. X. 1999. Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (lower Cambrian; Southwest China). Lethaia 32, 279–98.Google Scholar
Signor, P. W. & Vermeij, G. J. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology 20, 297319.Google Scholar
Siveter, David J., Briggs, D. E. G., Siveter, Derek J. & Sutton, M. D. 2010. An exceptionally preserved myodocopid ostracod from the Silurian of Herefordshire, UK. Proceedings of the Royal Society B277, 1539–44.Google Scholar
Siveter, David J., Briggs, D. E., Siveter, Derek J., Sutton, M. D. & Joomun, S. C. 2013. A Silurian myodocope with preserved soft-parts: cautioning the interpretation of the shell-based ostracod record. Proceedings of the Biological Society 280 (1752): 20122664, doi: 10.1098/rspb.2012.2664.Google Scholar
Siveter, David J., Siveter, Derek J., Briggs, D. E. G. & Sutton, M. D. 2007. Brood care in a Silurian ostracod. Proceedings of the Royal Society B274, 465–69.Google Scholar
Siveter, David J., Sutton, M. D., Briggs, D. E. G. & Siveter, Derek J. 2003. An Ostracode crustacean with soft-parts from the Lower Silurian. Science 302, 1749–51.Google Scholar
Siveter, David J., Tanaka, G., Farrell, Ú. C., Martin, M. J., Siveter, Derek J. & Briggs, D. E. G. 2014. Exceptionally preserved 450-million-year-old Ordovician ostracods with brood care. Current Biology 24, 801–6.Google Scholar
Siveter, David J., Vannier, J. & Palmer, D. 1991. Pioneer pelagic ostracods and the chronology of an ecological shift. Journal of Micropalaeontology 10, 151–73.Google Scholar
Siveter, David J., Waloszek, D. & Williams, M. 2003. Klausmuelleria salopensis gen. et sp. nov., a phosphatocopid crustacean with preserved appendages from the lower Cambrian, England. Special Papers in Palaeontology 70, 930.Google Scholar
Siveter, David J. & Williams, M. 1997. Cambrian Bradoriid and Phosphatocopid Arthropods of North America. Special Papers in Palaeontology 57, 169.Google Scholar
Siveter, David J., Williams, M., Abushik, A. F., Berg-Madsen, V. & Melnikova, L. 1993. On Anabarochilina primordialis (Linnarsson). Stereo-Atlas of Ostracod Shells 20, 71–6.Google Scholar
Stein, M., Peel, J. S., Siveter, David J. & Williams, M. 2010. Isoxys (Arthropoda) with preserved soft anatomy from the Sirius Passet Lagerstätte, lower Cambrian of North Greenland. Lethaia 43, 258–65.Google Scholar
Topper, T. P., Skovsted, C. B., Brock, G. A. & Paterson, J. R. 2011. The oldest bivalved arthropods from the early Cambrian of East Gondwana: systematics, biostratigraphy and biogeography. Gondwana Research 19, 310–26.CrossRefGoogle Scholar
Torsvik, T. & Cocks, L. R. M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. In Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. A. T. & Servais, T.), pp. 524. Geological Society of London, Memoir no. 38.Google Scholar
Vannier, J. 2007. Early Cambrian origin of complex marine ecosystems. In Deep Time Perspectives on Climate Change (eds Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N.), pp. 81100. Geological Society Publishing House, Bath. The Micropalaeontological Society.Google Scholar
Vannier, J. & Abe, K. 1995. Size, body plan and respiration in the Ostracoda. Paleontology 38, 843–74.Google Scholar
Vannier, J. & Chen, Y. 2000. The early Cambrian colonization of pelagic niches exemplified by Isoxys . Lethaia 33, 295311.Google Scholar
Vannier, J., Racheboeuf, P. R., Brussa, E. D., Williams, M., Rushton, A. W. A., Servais, T. & Siveter, David J. 2003. Cosmopolitan arthropod zooplankton in the Ordovician seas. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 173–91.Google Scholar
Vannier, J., Williams, M. & Siveter, David J. 1997. The Cambrian origin of the circulatory system of crustaceans. Lethaia 30, 169–84.Google Scholar
Walcott, C. D. 1887. Fauna of the “upper Taconic” of Emmons. Washington County, New York. American Journal of Science 34, 187–99.Google Scholar
Williams, M., Rushton, A. W. A., Cook, A., Zalasiewicz, J.A., Lewis, A., Condon, D. & Winrow, P. 2013. Dating the Cambrian Purley Shales Formation, Midland Microcraton, England. Geological Magazine 150, 937–44.CrossRefGoogle Scholar
Williams, M. & Siveter, David J. 1998. British Cambrian Bradoriid and Phosphatocopid Arthropods. Monograph of the Palaeontographical Society, London, no. 152, 49 pp.Google Scholar
Williams, M., Siveter, David J. & Peel, J. S. 1996. Isoxys (Arthropoda) from the early Cambrian Sirius Passet Lagerstätte, North Greenland. Journal of Paleontology 70, 947–54.Google Scholar
Williams, M., Siveter, David J., Popov, L. E. & Vannier, J. 2007. Biogeography and affinities of the bradoriid arthropods: Cosmopolitan microbenthos of the Cambrian seas. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 202–32.Google Scholar
Williams, M., Siveter, David J., Rushton, A. W. A. & Berg-Madsen, V. 1994. The upper Cambrian bradoriid ostracod Cyclotron lapworthi is a hesslandonid. Transactions of the Royal Society of Edinburgh, Earth Sciences 85, 123–30.Google Scholar
Williams, M., Vannier, J., Corbari, L. & Massabuau, J. C. 2011. Oxygen as a driver of early arthropod micro-benthos evolution. PloS one 6 (12), e28183.Google Scholar
Woods, M., Wilby, P. R., Leng, M. J., Rushton, A. W. A. & Williams, M. 2011. The Furongian (late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia. Journal of the Geological Society, London 168, 851–62.Google Scholar
Wrona, R. 2009. Early Cambrian bradoriide and phosphatocopide arthropods from King George Island, West Antarctica: biogeographic implications. Polish Polar Research 30, 347–77.Google Scholar
Zhang, X. G. 2007. Phosphatized bradoriids (Arthropoda) from the Cambrian of China. Palaeontographica Abteilung A281, 93173.Google Scholar
Zhu, M. Z., Babcock, L. E. & Peng, S. C. 2006. Advances in Cambrian stratigraphy and paleontology: integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–22.Google Scholar