Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:01:41.843Z Has data issue: false hasContentIssue false

A Jurassic peraluminous leucogranite from Yiwulüshan, western Liaoning, North China craton: age, origin and tectonic significance

Published online by Cambridge University Press:  28 January 2008

XIAO-HUI ZHANG*
Affiliation:
State Key Laboratory of Lithospheric Evolution and Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China Department of Applied Geology, Curtin University of Technology, Perth WA, Australia
QIAN MAO
Affiliation:
State Key Laboratory of Lithospheric Evolution and Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
HONG-FU ZHANG
Affiliation:
State Key Laboratory of Lithospheric Evolution and Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
SIMON A. WILDE
Affiliation:
Department of Applied Geology, Curtin University of Technology, Perth WA, Australia
*
Author for correspondence: [email protected]

Abstract

The Gangjia granite stock is a garnet-bearing muscovite leucogranitic body emplaced in Yiwulüshan in Western Liaoning Province at the eastern segment of the Yanshan orogenic belt, North China craton. The SHRIMP U–Pb zircon age is 153±5 Ma. The Gangjia granites are peraluminous with A/CNK of more than 1.14, and exhibit a tetrad effect in their REE distribution patterns, as well as non-charge-and-radius-controlled trace element behaviour. This is in contrast to the LREE-enriched patterns of the host Lüshan monzogranites. These geochemical characteristics, together with low Th/U ratios in zircon, suggest that the parental magmas for the Gangjia granites have experienced extensive magmatic differentiation, including interaction between residual melt and a coexisting high-temperature aqueous fluid. Their similar ϵNd(t), model ages, compatible age patterns and common volcanic arc signature in source materials between the Gangjia granites and the host Lüshan monzogranites indicate their comagmatic relationship. These unusual peraluminous leucogranites, coupled with the voluminous adakitic granites hosting them, represent typical post-orogenic magmatism developed under an intra-continental extensional tectonic regime. At the very end of the prolonged Jurassic magmatic evolution in Western Liaoning, extensive fractionation of most probably ferromagnesian phases and plagioclase from a calc-alkaline magma parental to the host Lüshan pluton, with overprint of the magmatic hydrothermal fluid, produced highly evolved peraluminous parental magmas for the Gangjia granites.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbarin, B. 1996. Genesis of the two main types of peraluminous granitoids. Geology 24, 295–8.2.3.CO;2>CrossRefGoogle Scholar
Barbarin, B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46, 605–26.CrossRefGoogle Scholar
Bau, M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology 123, 323–33.CrossRefGoogle Scholar
Bau, M. 1997. The Lanthanide tetrad effect in highly evolved felsic igneous rocks – a reply to the comment by Y. Pan. Contributions to Mineralogy and Petrology 128, 409–12.CrossRefGoogle Scholar
Bau, M. & Dulski, P. 1995. Comparative study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology 119, 213–23.CrossRefGoogle Scholar
Black, L. P., Kamo, S. L., Aleiikoff, J. N., Davis, D. W., Korsch, R. L. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Bonin, B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting mantle and crustal sources? A review. Lithos 78, 124.CrossRefGoogle Scholar
Buchan, C., Pfänder, J., Kröner, A., Brewer, T. S., Tomurtogoo, O., Tomurhuu, D., Cunningham, D. & Windley, B. F. 2002. Timing of accretion and collisional deformation in the Central Asian Orogenic Belt: Implications of granite geochronology in the Bayankhongor ophiolite zone. Chemical Geology 192, 2345.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of Royal Society of Edinburgh: Earth Sciences 83, 126.CrossRefGoogle Scholar
Chen, B. & Jahn, B. M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terane, NW China: Nd–Sr isotope and trace element evidence. Journal of Asian Earth Sciences 23, 691703.CrossRefGoogle Scholar
Compston, W., Williams, I. S., Kirschivink, J. L., Zhang, Z. & Ma, G. 1992. Zircon U–Pb ages for the early Cambrian time-scale. Journal of the Geological Society, London 149, 171–84.CrossRefGoogle Scholar
Darby, B. J., Davis, G. A., Zhang, X. H., Wu, F. Y., Wilde, S. A. & Yang, J. H. 2004. The newly discovered Waziyu metamorphic core complex, Yiwulüshan, western Liaoning province, North China. Earth Science Frontiers 11, 145–55.Google Scholar
Davis, G. A., Xu, B., Zheng, Y. & Zhang, W. 2004. Indosinian extension in the Solonker suture zone: the Sonid Zuoqi metamorphic core complex, Inner Mongolia, China. Earth Science Frontiers 11, 135–43.Google Scholar
Davis, G. A., Wang, C., Zheng, Y. D., Zhang, J. J., Zhang, C. & Gehrels, G. E. 1998. The enigmatic Yinshan fold and thrust belt of northern China: New views on its intraplate contractional styles. Geology 26, 43–6.2.3.CO;2>CrossRefGoogle Scholar
Davis, G. A., Zheng, Y., Wang, C., Darby, B. J., Zhang, C. & Gehrels, G. E. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. In Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation (eds Hendrix, M. S. & Davis, G. A.), pp. 171–97. Geological Society of America, Memoir no. 194.Google Scholar
Dobson, P. F. & Tilton, G. R. 1989. Th, U and Pb systematics of boninite series volcanic rocks from Chichi-jima, Bonin Islands, Japan. In Boninites (ed. Crawford, A. J.), pp. 396415. Cambridge University Press.Google Scholar
Dostal, J. & Chatterjee, A. K. 2000. Contrasting behavior of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology 163, 207–18.CrossRefGoogle Scholar
Fidelis, I. & Siekierski, S. 1966. The regularities in stability constants of some rare earth complexes. Journal of Inorganic and Nuclear Chemistry 28, 185–8.CrossRefGoogle Scholar
Förster, H. J., Tischendorf, G., Trumbull, R. B. & Gottesmann, B. 1999. Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology 40, 1613–45.CrossRefGoogle Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.CrossRefGoogle Scholar
Gao, S., Rudnick, R. L., Carlson, R. W., McDonough, W. F. & Liu, Y. S. 2002. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters 198, 307–22.CrossRefGoogle Scholar
Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W. L., Ayers, J., Wang, X. C. & Wang, Q. H. 2004. Recycling lower continental crust in the North China craton. Nature 432, 892–7.CrossRefGoogle ScholarPubMed
Hoskin, P. W. O. & Black, L. P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology 18, 423–39.CrossRefGoogle Scholar
Hoskin, P. W. O. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 27–62. Reviews in Mineralogy & Geochemistry, no. 53.Google Scholar
Irber, W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta 63, 489508.CrossRefGoogle Scholar
Jahn, B. M., Capdevia, R., Liu, D., Vernon, A. & Badarch, G. 2004 a. Sources of Phanerozoic granitoids in the transect Bayanhongor–Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences 23, 604–53.CrossRefGoogle Scholar
Jahn, B. M., Windley, B., Natal'in, B. & Dobretsov, N. 2004 b. Phanerozoic continental growth in Central Asia. Journal of Asian Earth Sciences 23, 599603.CrossRefGoogle Scholar
Jahn, B. M., Wu, F., Capdevila, R., Martineau, F., Zhao, Z. & Wang, Y. 2001. Highly evolved juvenile granites with tetrad REE patterns: the Wudohe and Baerzhe granites from the Great Xing'an Mountains in NE China. Geochimica et Cosmochimica Acta 59, 171–98.Google Scholar
Jiang, N., Liu, Y. S., Zhou, W. G., Yang, J. H. & Zhang, S. Q. 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochimica et Cosmochimica Acta 71, 2591–608.CrossRefGoogle Scholar
Kawabe, I. 1995. Tetrad effects and fine structures of REE abundance patterns of granitic and rhyolitic rocks: ICP-AES determinations of REE and Y in eight GSJ reference rocks. Geochemical Journal 29, 213–30.CrossRefGoogle Scholar
Kawabe, I., Kitahara, Y. & Naito, K. 1991. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones. Geochemical Journal 25, 31–4.CrossRefGoogle Scholar
Le Fort, P. 1981. Manaslu leucogranite: A collision signature of the Himalaya, a model for its genesis and emplacement. Journal of Geophysical Research 86, 10545–68.CrossRefGoogle Scholar
Lee, S. G., Masuda, A. & Kim, H. S. 1994. An early Proterozoic leucogranitic gneiss with the REE tetrad phenomenon. Chemical Geology 114, 5967.CrossRefGoogle Scholar
Liaoning Bureau of Geology and Mineral Resources (LBGMR). 1998. 1:50000 scale regional geology of Badaohao and related maps Liaoning Province (in Chinese).Google Scholar
Liégeois, J. 1998. Preface – some words on the post-collisional magmatism. Lithos 45, xvxvii.Google Scholar
Liu, C. & Zhang, H. 2005. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xinjiang, China: an intrinsic feature of the pegmatite magma. Chemical Geology 214, 6177.CrossRefGoogle Scholar
Liu, D., Nutman, A. P., Compston, W., Wu, J. & Shen, Q. 1992. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339–42.2.3.CO;2>CrossRefGoogle Scholar
Liu, H., Sun, S., Liu, J. & Zhai, M. 2002. The Mesozoic high-Sr granitoids in the northern marginal region of North China craton: geochemistry and source region. Acta Petrologica Sinica 18, 257–74 (in Chinese with English abstract).Google Scholar
Liu, H., Zhai, M. & Liu, J. 2002. The Mesozoic granitoids in the northern marginal region of North China craton: evolution from post-collisional to anorogenic settings. Acta Petrologica Sinica 18, 433–48 (in Chinese with English abstract).Google Scholar
Liu, W., Siebel, W., Li, X. & Pan, X. 2005. Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China: constraints on basaltic underplating. Chemical Geology 219, 335.CrossRefGoogle Scholar
Ludwig, K. 2001. User manual for Isoplot/EX (2.49). Berkeley Geochronology Center, Special Publication no. 1a. 55 pp.Google Scholar
Lugmair, G. W. & Harti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
Marotta, A. M., Fernandez, M. & Sabadini, R. 1998. Mantle unrooting in collisional setting. Tectonophysics 296, 3146.CrossRefGoogle Scholar
Masuda, A. & Akagi, T. 1989. Lanthanide tetrad effect observed in leucogranites from China. Geochemical Journal 23, 245–53.CrossRefGoogle Scholar
Masuda, A. & Ikeuchi, Y. 1979. Lanthanide tetrad effects observed in marine environment. Geochemical Journal 13, 1922.CrossRefGoogle Scholar
Masuda, A., Kawakami, O., Dohmoto, Y. & Takenaka, T. 1987. Lanthanide tetrad effects in nature: two mutually opposite type W and M. Geochemical Journal 21, 119–24.CrossRefGoogle Scholar
Meng, Q. 2003. What drove late Mesozoic extension of the northern China–Mongolia tract? Tectonophysics 389, 155–74.CrossRefGoogle Scholar
Meng, Q. & Zhang, G. 2000. Geological framework and tectonic evolution of Qinling orogen, central China. Tectonophysics 323, 183–96.CrossRefGoogle Scholar
Menzies, M. A., Fan, W. M. & Zhang, M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In Magmatic Processes and Plate Tectonics (eds Prichard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 71–81. Geological Society of London, Special Publication no. 76.120+km+of+Archean+lithosphere,+Sino-Korean+craton,+China.+In+Magmatic+Processes+and+Plate+Tectonics+(eds+Prichard,+H.+M.,+Alabaster,+T.,+Harris,+N.+B.+W.+&+Neary,+C.+R.),+pp.+71–81.+Geological+Society+of+London,+Special+Publication+no.+76.>Google Scholar
Monecke, T., Kempe, U., Monecke, J., Sala, M. & Wolf, D. 2002. Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral sample from granite-related rare metal deposits. Geochimica et Cosmochimica Acta 66, 1185–96.CrossRefGoogle Scholar
Nabelek, P. & Bartlett, C. 1998. Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, south Dakota, USA, and its source rocks. Lithos 45, 7185.CrossRefGoogle Scholar
O'Reilly, S. Y., Griffin, W. L., Poudjom Djomani, Y. H. & Morgan, P. 2001. Are lithospheres forever? Tracking changes in sub-continental lithospheric mantle through time. GSA Today 11, 410.2.0.CO;2>CrossRefGoogle Scholar
Pan, Y. 1997. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence fro Y/Ho, Zr/Hf, and lanthanide tetrad effect – A discussion of the article by M. Bau (1996). Contributions to Mineralogy and Petrology 128, 405–8.CrossRefGoogle Scholar
Pearce, J. A. 1996. Sources and settings of granitic rocks. Episodes 19, 120–5.CrossRefGoogle Scholar
Pearce, R. R., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Peppard, D. F., Mason, G. W. & Lewey, S. 1969. A tetrad effect in liquid extraction ordering of lanthanide (III). Journal of Inorganic and Nuclear Chemistry 31, 339–43.CrossRefGoogle Scholar
Ritts, B. D., Darby, B. J. & Cope, T. 2001. Early Jurassic extensional basin formation in the Daqingshan segment of the Yinshan belt, northern North China, Inner Mongola. Tectonophysics 339, 239–58.CrossRefGoogle Scholar
Rubatto, D. & Hermann, J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implication for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta 67, 2173–87.CrossRefGoogle Scholar
Sibel, W., Hohndorf, A. & Wendt, I. 1995. Origin of late Variscan granitoids from NE Bavaria, exemplified by REE and Nd isotope systematics. Chemical Geology 125, 249–70.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology; convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 528–48. Geological Society of London, Special Publication no. 42.Google Scholar
Sun, T., Zhou, X., Chen, P., Li, H., Zhou, H., Wang, Z. & Shen, W. 2005. Strongly peraluminous granites of Mesozoic in Eastern Nanling Range, southern China: Petrogenesis and implications for tectonics. Science in China (series D) 48, 165–74.Google Scholar
Vanderhaeghe, O. & Teyssier, C. 2001. Partial melting and flow of orogens. Tectonophysics 342, 451–72.CrossRefGoogle Scholar
Wang, H. & Mo, X. 1995. An outline of tectonic evolution of China. Episodes 18, 616.CrossRefGoogle Scholar
Wang, Z. H., Zhao, Y., Zou, H. B., Li, W. P., Liu, X. W., Wu, H., Xu, G. & Zhang, S. 2007. Petrogenesis of the Early Jurassic Nandaling flood basalts in the Yanshan belt, North China craton: A correlation between magmatic underplating and lithosperic thinning. Lithos 96, 543–66.CrossRefGoogle Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.CrossRefGoogle Scholar
Wilde, S. A., Zhou, X., Nemchin, A. A. & Sun, M. 2003. Mesozoic crust–mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 31, 817–20.CrossRefGoogle Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. In Applications of microanalytical techniques to understanding mineralizaing processes (eds Mckinbben, M. A., Shanks, W. C. III & Ridey, W. I.) pp. 1–35. Reviews in Economic Geology, no. 7.Google Scholar
Williamson, B. J., Shaw, A., Downes, H. & Thirlwall, M. F. 1996. Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central France. Chemical Geology 127, 2542.CrossRefGoogle Scholar
Wu, F. Y., Jahn, B. M., Wilde, S. A., Zhang, X. O. & Yang, J. H. 2005 b. Nature and significance of the early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters 233, 103–19.CrossRefGoogle Scholar
Wu, F. Y., Sun, D., Jahn, B. M. & Wilde, S. A. 2004. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences 23, 731–44.CrossRefGoogle Scholar
Wu, F. Y., Sun, D. Y., Li, H. M., Jahn, B. M. & Wilde, S. A. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology 187, 143–73.CrossRefGoogle Scholar
Wu, F. Y., Yang, J. H., Wilde, S. A. & Zhang, X. O. 2005 a. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong peninsula, NE China. Chemical Geology 221, 127–56.Google Scholar
Wu, F. Y., Yang, J. H. & Zhang, Y. B. 2006. Emplacement ages of the Mesozoic granites in southeastern part of the the Western Liaoning province. Acta Petrologica Sinica 22, 315–25 (in Chinese with English abstract).Google Scholar
Xiao, L. & Clemens, J. D. 2006. Origin of potassic (C-type) adakite magmas: Experimental and field constraints. Lithos 95, 399414.CrossRefGoogle Scholar
Xiao, W., Windley, B. F., Hao, J. & Zhai, M. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 22, 1069, 8.18.21.CrossRefGoogle Scholar
Xie, Z., Gao, T. & Chen, J. 2004. Multi-stage evolution of gneiss from North Dabie: evidence from zircon U–Pb chronology. Chinese Science Bulletin 49, 1963–9.CrossRefGoogle Scholar
Xu, M., Middleton, M. F., Xue, L. F. & Wang, D. P. 2000. Structure of the Lithosphere and Mesozoic sedimentary basins in Western Liaoning, Northern Liaoning, and Songliao, Northeast China. International Geology Review 42, 269–78.CrossRefGoogle Scholar
Yan, G., Mu, B., Xu, B., He, G., Tan, L., Zhao, H. & He, Z. 2000. Geochronology and isotopic features of Sr, Nd, and Pb of the Triassic alkali intrusions in the Yanshan–Yinshan regions. Science in China (series D) 30, 384–7.Google Scholar
Yang, J. H., Wu, F. Y., Shao, J. A., Wilde, S. A., Xie, L. W. & Liu, X. M. 2006. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China Craton. Earth and Planetary Science Letters 246, 336–52.CrossRefGoogle Scholar
Yin, A. & Nie, S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In Tectonic Evolution of Asia (eds Yin, A. & Harrison, T. M.), pp. 442–85. Cambridge University Press.Google Scholar
Zhang, C., Wang, G., Wang, G., Wu, Z., Zhang, L. & Sun, W. 2002. Thrust tectonics in the eastern segment of the intraplate Yanshan orogenic belt, western Liaoning province, north China. Acta Geologica Sinica 76, 6476 (in Chinese with English abstract).Google Scholar
Zhang, H. F., Sun, M., Zhou, X. H., Zhou, M. F., Fan, W. M. & Zheng, J. P. 2003. Secular evolution of the lithosphere beneath the eastern North China craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta 67, 4373–87.CrossRefGoogle Scholar
Zhang, X. H., Liu, H. T., Zhang, H. F. & Wilde, S. A. 2008. Jurassic intrusive complexes from Yiwulüshan, western Liaoning, North China craton: geochronology, petrogenesis and tectonic implications. Contributions to Mineralogy and Petrology (in press).Google Scholar
Zhang, X. H., Wang, H. & Ma, Y. J. 2003. 40Ar/39Ar age constraints on two NNE-trending ductile shear zones from Yanshan orogen, North China craton. International Geology Reviews 45, 936–47.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2005. Late Archean to Paleoproterozoic evolution of the North China craton: key issues revisited. Precambrian Research 136, 177202.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2001. Archean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research 107, 4573.CrossRefGoogle Scholar
Zhao, Z., Xiong, X. & Han, X. 1999. The formation mechanism of REE tetrad in granites. Science in China (Series D) 29, 331–8 (in Chinese).Google Scholar
Zhao, Z., Xiong, X., Han, X., Wang, Y., Wang, Q., Bao, Z. & Jahn, B. 2002. Controls on the REE tetrad effect in granites: evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal 36, 527–43.Google Scholar
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., Lu, F. X., Wang, C. Y., Zhang, M., Wang, F. Z. & Li, H. M. 2004. 3.6 Ga lower crust in central China: new evidence on the assembly of the North China craton. Geology 32, 229–32.CrossRefGoogle Scholar
Zorin, Y. A. 1999. Geodynamics of the western part of the Mongolia–Okhostk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306, 3356.CrossRefGoogle Scholar