Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T16:10:23.722Z Has data issue: false hasContentIssue false

Intra-basaltic soil formation, sedimentary reworking and eodiagenetic K-enrichment in the Middle to Upper Ordovician Dunn Point Formation of eastern Canada: a rare window into early Palaeozoic surface and near-surface conditions

Published online by Cambridge University Press:  21 December 2011

P. JUTRAS*
Affiliation:
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
J. J. HANLEY
Affiliation:
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
R. S. QUILLAN
Affiliation:
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
M. J. LEFORTE
Affiliation:
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
*
*Author for correspondence: [email protected]

Abstract

Mafic flows of the Middle to Upper Ordovician Dunn Point Formation of eastern Canada were deeply weathered under warm and relatively humid conditions before being buried by subsequent flows. In the absence of superior plants, and in the context of relatively low atmospheric carbon levels, the soils developed alkaline groundwater conditions through mineral–water interactions, which resulted in an enhanced mobility of Al relative to Si in most palaeosols of that formation. Although the vegetation cover was volumetrically insignificant compared with that of subsequent geological times, it was apparently producing very efficient chelates, which, for most palaeosols of the succession, generated a well-defined cheluviation pattern for not only Al and Fe, but also and mainly Ti, which is typically immobile in modern soils. The resulting soils developed an Al–Fe–Ti-depleted upper horizon that was enriched in Si, probably through periodic ground saturation. Long-term climatic variations related to orbital cycles are inferred to have accounted for a second type of soil in the succession, which contrasts with the former by showing a Si-depleted and less Al–Fe–Ti-depleted upper horizon. Some soil material was substantially reworked by surface runoff, but such occurrences can be easily differentiated from in situ soil material in terms of texture, structure and composition. A thick overlying rhyolite flow is thought to be responsible for providing abundant K in solution, which was incorporated in the underlying basalt palaeosols as exchangeable cations within a probably montmorillonitic clay precursor to the Fe–Mg-rich phengite that later developed during deep burial and orogenic compression.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S. P., Dietrich, W. E. & Brimhall, G. H. Jr. 2002. Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geological Society of America Bulletin 114, 11435 8.2.0.CO;2>CrossRefGoogle Scholar
Basu, A. 1981. Weathering before the advent of land plants; evidence from unaltered detrital K-feldspars in Cambrian-Ordovician arenites. Geology 9, 132–3.2.0.CO;2>CrossRefGoogle Scholar
Berner, R. A. 1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science 249, 1382–6.CrossRefGoogle ScholarPubMed
Berner, R. A. 1995. Chemical weathering and its effect on atmospheric CO2 and climate. In Chemical Weathering Rates of Silicate Minerals (eds White, A. F. & Brantley, S. L.), pp. 565–83. Reviews in Mineralogy vol. 31. Washington, DC: Mineralogical Society of America.CrossRefGoogle Scholar
Beukes, N. J., Dorland, H., Gutzmer, J., Nedachi, M. & Ohmoto, H. 2002. Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30, 491–4.2.0.CO;2>CrossRefGoogle Scholar
Blatt, H., Middleton, G. & Murray, R. 1980. Origin of Sedimentary Rocks, 2nd ed. Englewood Cliffs: Prentice-Hall, 782 pp.Google Scholar
Blum, A. E. & Stillings, L. L. 1995. Feldspar dissolution kinetics. In Chemical Weathering Rates of Silicate Minerals (eds White, A. F. & Brantley, S. L.), pp. 291351. Reviews in Mineralogy vol. 31. Washington, DC: Mineralogical Society of America.CrossRefGoogle Scholar
Brimhall, G. H. Jr., Chadwick, O. A., Lewis, C. J., Compston, W., Williams, I. S., Danti, K. J., Dietrich, W. E., Power, M. E., Hendricks, D. & Bratt, J. 1992. Deformational mass transport and invasive processes in soil evolution. Science 255, 695702.CrossRefGoogle ScholarPubMed
Boucot, A. J., Dewey, J. F., Dineley, D. L., Fletcher, R., Fyson, W. K., Griffin, J. G., Hickox, C. F., McKerrow, W. S. & Ziegler, A. M. 1974. Geology of the Arisaig area, Antigonish County, Nova Scotia. Geological Society of America, Special Paper no. 139.Google Scholar
Brookins, D. G. 1988. Eh–pH Diagrams for Geochemistry. Berlin: Springer-Verlag, 176 pp.CrossRefGoogle Scholar
Chen, J., Blume, H.- P. & Beyer, L. 2000. Weathering of rocks induced by lichen colonization – a review. Catena 39, 121–46.CrossRefGoogle Scholar
Cline, G. R., Powell, P. E., Szaniszlo, P. J. & Reid, C. P. P. 1982. Comparison of the abilities of hydroxamic synthetic, and other natural organic acids to chelate iron and other ions in nutrient solution. Soil Science Society of America Journal 46, 1158–64.CrossRefGoogle Scholar
Cornu, S., Lucas, Y., Lebon, E., Ambrosi, J. P., Luizao, F., Rouiller, J., Bonnay, M. & Neal, C. 1999. Evidence of titanium mobility in soil profiles, Manaus, central Amazonia. Geoderma 91, 281–95.CrossRefGoogle Scholar
Feakes, C. R., Holland, H. D. & Zbinden, E. A. 1989. Ordovician paleosols at Arisaig, Nova Scotia, and the evolution of the atmosphere. Catena Supplement 16, 207–32.Google ScholarPubMed
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.2.3.CO;2>CrossRefGoogle Scholar
Gay, A. L. & Grandstaff, D. E. 1980. Chemistry and mineralogy of Precambrian paleosols at Elliot Lake, Ontario, Canada. Precambrian Research 12, 349–73.CrossRefGoogle Scholar
Goldstein, J. 2003. Scanning Electron Microscopy and X-ray Microanalysis, Vol. 1. New York: Springer, 689 pp.CrossRefGoogle Scholar
Hamilton, M. A. & Murphy, J. B. 2004. Tectonic significance of a Llanvirn age for the Dunn Point volcanic rocks, Avalon terranes, Nova Scotia, Canada: implications for the evolution of the Iapetus and Rheic oceans. Tectonophysics 379, 199209.CrossRefGoogle Scholar
Haselwandter, K. & Winkelmann, G. 2007. Siderophores of symbiotic fungi. In Microbial Siderophores (eds Varma, A. & Chincholkar, S. B.), pp. 91–103. Soil Biology, vol. 12.Google Scholar
Hay, R. L. & Sheppard, R. A. 2001. Occurrences of zeolites in sedimentary rocks: an overview. In Natural Zeolites: Occurrence, Properties, Applications (eds Bish, D. L. & Ming, D. W.), pp. 216–34. Reviews in Mineralogy and Geochemistry vol. 45. Washington, DC: Mineralogical Society of America.Google Scholar
Hayes, P. D., Walling, S. D. & Tieh, T. T. 1996. Organic and authigenic mineral geochemistry of the Permian Delaware Mountain Group, West Texas: implications for the chemical evolution of pore fluids. SEPM Special Publication 55, 163–86.Google Scholar
Hodson, M. E. 2002. Experimental evidence for mobility of Zr and other trace elements in soils. Geochimica et Cosmochimica Acta 66, 819–28.CrossRefGoogle Scholar
Hynes, A. 1980. Carbonatization and mobility of Ti, Y, and Zr in Ascot Formation metabasalts, SE Quebec. Contributions to Mineralogy and Petrology 75, 7987.CrossRefGoogle Scholar
Jutras, P., Quillan, R. S. & LeForte, M. J. 2009. Evidence from Middle Ordovician paleosols for the predominance of alkaline groundwater at the dawn of land plant radiation. Geology 37, 91–4.CrossRefGoogle Scholar
Kasting, J. F. 1993. Earth's early atmosphere. Science 259, 920–6.CrossRefGoogle ScholarPubMed
Kenrick, P. & Crane, P. R. 1997. The origin and early evolution of plants on land. Nature 389, 33–9.CrossRefGoogle Scholar
Keppie, J. D., Dostal, J. & Zentilli, M. 1978. Petrology of the Early Silurian Dunn Point & McGillivray Brook Formations, Arisaig, Nova Scotia. Nova Scotia Department of Mines, Report no. 78-5.Google Scholar
Khan, E., Wagh, G. & Sayyed, M. R. 2008. Climatic control on the soil properties: a case study on the soils developed upon Deccan flood basalts, India. 33rd International Geological Congress, Oslo, Norway, 2008, Abstract 1203292.Google Scholar
Kimberley, M. M. & Grandstaff, D. E. 1986. Profiles of elemental concentrations in the Precambrian atmosphere. Precambrian Research 34, 205–29.Google Scholar
Kisakurek, B., Widdowson, M. & James, R. H. 2004. Behaviour of Li isotopes during continental weathering; the Bidar laterite profile, India. Chemical Geology 212, 2744.CrossRefGoogle Scholar
Kraemer, S. M. 2004. Iron oxide dissolution and solubility in the presence of siderophores. Aquatic Sciences 66, 318.CrossRefGoogle Scholar
Krois, P., Stingl, V. & Purtscheller, F. 1990. Metamorphosed weathering horizon from the Oetztal-Stubai crystalline complex (Eastern Alps, Austria). Geology 18, 1095–8.2.3.CO;2>CrossRefGoogle Scholar
Krug, E. C. & Frink, C. R. 1983. Acid rain on acid soil; a new perspective. Science 217, 520–5.CrossRefGoogle Scholar
Lindsay, W. L. 1991. Iron oxide solubilization by organic matter and its effect on iron availability. Plant and Soil 130, 2734.CrossRefGoogle Scholar
Macfarlane, A. W. & Holland, H. D. 1991. The timing of alkali metasomatism in paleosols. Canadian Mineralogist 29, 1043–50.Google ScholarPubMed
Maynard, J. B., Sutton, S. J., Robb, L. J., Ferraz, M. F. & Meyer, F. M. 1995. A paleosol developed on hydrothermally altered granite from the hinterland of the Witwatersrand Basin; characteristics of a source of basin fill. Journal of Geology 103, 357–77.CrossRefGoogle Scholar
McHenry, L. J. 2009. Element mobility during zeolitic and argillic alteration of volcanic ash in a closed-basin lacustrine environment: case study Olduvai Gorge, Tanzania. Chemical Geology 265, 540–52.CrossRefGoogle Scholar
McLennan, S. M., Simonetti, A. & Goldstein, S. L. 2000. Nb and Pb isotopic evidence for provenance and post depositional alteration of the Paleoproterozoic Huronian Supergroup, Canada. Precambrian Research 102, 263–78.CrossRefGoogle Scholar
Ming, D. W. & Mumpton, F. A. 1989. Zeolites in soils. In Minerals in Soil Environments (eds Dixon, J. B. & Weed, S. B.), pp. 837911. Madison: Soil Science Society of America Books.Google Scholar
Murphy, J. B., Dostal, J. & Keppie, J. D. 2008. Neoproterozoic–Early Devonian magmatism in the Antigonish Highlands, Avalon terrane, Nova Scotia: tracking the evolution of the mantle and crustal sources during the evolution of the Rheic Ocean. Tectonophysics 461, 181201.CrossRefGoogle Scholar
Murphy, J. B., Hamilton, M. A. & Leblanc, B. In press. Tectonic significance of Late Ordovician silicic magmatism, Avalon terrane, northern Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences.Google Scholar
Murphy, J. B. & Hynes, A. J. 1986. Contrasting secondary mobility of Ti, P, Zr, Nb and Y in two metabasaltic suites in the Appalachians. Canadian Journal of Earth Sciences 23, 1138–44.CrossRefGoogle Scholar
Murphy, J. B., Keppie, J. D. & Hynes, A. J. 1991. Geology of the Antigonish Highlands. Geological Survey of Canada Paper, 89–10, 114 pp.Google Scholar
Nesbitt, H. W. 2003. Petrogenesis of siliciclastic sediments and sedimentary rocks. In Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit Forming Environments (ed. Lentz, D. R.), pp. 39–52. Geological Association of Canada, GEOTEXT no. 4.Google Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–17.CrossRefGoogle Scholar
Nesbitt, H. W. & Young, G. M. 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97, 129–47.CrossRefGoogle Scholar
Okulitch, A. V. 2004. Geological Time Chart, 2004. Geological Survey of Canada Open-File 3040 (National Earth Science Series, Geological Atlas)-Revision.Google Scholar
Palmer, J. A., Philips, G. N. & McCarthy, T. S. 1989. Paleosols and their relevance to Precambrian atmospheric composition. Journal of Geology 97, 7792.CrossRefGoogle ScholarPubMed
Panahi, A., Young, G. M., & Rainbird, R. H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada. Geochimica et Cosmochimica Acta 64, 2199–220.CrossRefGoogle Scholar
Rainbird, R. H., Nesbitt, H. W. & Donaldson, J. A. 1990. Formation and diagenesis of a sub-Huronian saprolith: comparison with a modern weathering profile. Journal of Geology 98, 801–22.CrossRefGoogle Scholar
Rapp, J. F., Klemme, S., Butler, I. B. & Harley, S. L. 2010. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation. Geology 38, 323–6.CrossRefGoogle Scholar
Renshaw, J. C., Robson, G. D., Trinci, A. P. J., Wiebe, M. G., Livens, F. R., Collison, D. & Taylor, R. J. 2002. Fungal siderophores: structures, functions and applications. Mycological Research 106, 1123–42.CrossRefGoogle Scholar
Retallack, G. J. 2001. Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology 44, 209–35.CrossRefGoogle Scholar
Retallack, G. J. & Feakes, C. R. 1987. Trace fossil evidence for Late Ordovician animals on land. Science 235, 61–3.CrossRefGoogle ScholarPubMed
Rye, R. & Holland, H. D. 2000. Geology and geochemistry of paleosols developed on the Hekpoort basalt, Pretoria Group, South Africa. American Journal of Science 300, 85141.CrossRefGoogle ScholarPubMed
Sackmann, J. & Boothroyd, A. I. 2003. Our Sun. V. A bright young sun consistent with helioseismology and warm temperatures on ancient Earth and Mars. Astrophysical Journal 583, 1024–39.CrossRefGoogle Scholar
Saltzman, M. R. & Young, S. A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33, 109–12.CrossRefGoogle Scholar
Sayyed, M. R. G. & Hundekari, S. M. 2006. Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India); potential for palaeoenvironmental reconstruction. Quaternary International 156–157, 189–99.CrossRefGoogle Scholar
Schaetzl, R. J. & Anderson, S. 2005. Soils: Genesis and Geomorphology. Cambridge: Cambridge University Press, 817 pp.CrossRefGoogle Scholar
Schatz, A. 1963. Soil microorganisms and soil chelation: the pedogenic action of lichens and lichen acids. Agricultural Food Chemistry 11, 112–18.CrossRefGoogle Scholar
Schmets, J., van Muylder, J. & Pourbaix, M. 1966. Titanium. In Atlas of Electrochemical Equilibria in Aqueous Solutions (ed. Pourbaix, M.), pp. 213–22. New York: Pergamon Press.Google Scholar
Sheldon, N. D. 2003. Pedogenesis and geochemical alteration of the Picture Gorge subgroup, Columbia River basalt, Oregon. Geological Society of America Bulletin 115, 1377–87.CrossRefGoogle Scholar
Sheldon, N. D. 2006. Quaternary glacial-interglacial climate cycles in Hawaii. Journal of Geology 114, 367–76.CrossRefGoogle Scholar
Sheldon, N. D. 2008. Records of short-term and rapid climate change from intrabasaltic paleosols. 33rd International Geological Congress, Oslo, Norway, 2008, Abstract 1353236.Google Scholar
Singer, A. 2008. Paleo-environmental interpretation of basalt-derived paleosols. 33rd International Geological Congress, Oslo, Norway, 2008, Abstract 1322697.Google Scholar
Soil Survey Staff. 2010. Keys to Soil Taxonomy, 11th ed. Washington, DC: USDA-Natural Resources Conservation Service, 338 pp.Google Scholar
Tabor, N. J. 2008. Geochemistry of pedogenic minerals from intrabasaltic strata as a means of paleoclimate reconstruction. 33rd International Geological Congress, Oslo, Norway, 2008, Abstract 1350991.Google Scholar
Tabor, N. J., Montanez, I. P., Zierenberg, R. & Currie, B. S. 2004. Mineralogical and geochemical evolution of a basalt-hosted fossil soil (Late Triassic, Ischigualasto Formation, northwest Argentina); potential for paleoenvironmental reconstruction. Geological Society of America Bulletin 116, 1280–93.CrossRefGoogle Scholar
Taylor, T. N., Taylor, E. L. & Krings, M. 2009. Paleobotany: The Biology and Evolution of Fossil Plants, 2nd ed. Oxford: Academic Press, 1253 pp.Google Scholar
Thornber, M. R. 1992. The chemical mobility and transport of elements in the weathering environment. In Regolith Exploration Geochemistry in Tropical and Subtropical Terrains. Handbook of Exploration Geochemistry, vol. 4 (eds Butt, C. R. M. & Zeegers, H.), pp. 7996. Amsterdam: Elsevier.CrossRefGoogle Scholar
Utsunomiya, S., Murakami, T., Nakada, M. L. & Kasama, T. 2003. Iron oxidation state of a 2.45-Byr-old paleosol developed on mafic volcanics. Geochimica et Cosmochimica Acta 67, 213–21.CrossRefGoogle Scholar
Van Baalen, M. R. 1993. Titanium mobility in metamorphic systems: a review. Chemical Geology 110, 233–49.CrossRefGoogle Scholar
Van der Voo, R. & Johnson, R. J. E. 1985. Paleomagnetism of the Dunn Point Formation (Nova Scotia): high paleolatitudes for the Avalon terrane in the Late Ordovician. Geophysical Research Letters 12, 337–40.CrossRefGoogle Scholar
Walker, J. D., & Geissman, J. W., compilers. 2009. Geologic Time Scale. The Geological Society of America. doi: 10.1130/2009.CTS004R2C.CrossRefGoogle Scholar
Weaver, C. E. 1967. Potassium, illite and the ocean. Geochimica et Cosmochimica Acta 31, 2181–96.CrossRefGoogle Scholar
Weaver, C. E. 1989. Clays, Muds, and Shales. Developments in Sedimentology, vol. 44. Burlington: Elsevier, 819 pp.Google Scholar
White, A. F. 1995. Chemical weathering rates of silicate minerals in soils. In Chemical Weathering Rates of Silicate Minerals (eds White, A. F. & Brantley, S. L.), pp. 407–61. Reviews in Mineralogy vol. 31. Washington, DC: Mineralogical Society of America.CrossRefGoogle Scholar
Williams, H. 1979. The Appalachian orogen in Canada. Canadian Journal of Earth Sciences 16, 792807.CrossRefGoogle Scholar
Wood, S. A. 1990. The aqueous geochemistry of the rare-earth elements and yttrium, 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology 82, 159–86.CrossRefGoogle Scholar
Yang, W., Holland, H. D. & Rye, B. 2002. Evidence for low or no oxygen in the late Archean atmosphere from the ~2.76 Ga Mt. Roe #2 paleosol, Western Australia: Part 3. Geochimica et Cosmochimica Acta 66, 3707–81.CrossRefGoogle Scholar
Zbinden, E. A., Holland, H. D., Feakes, C. R. & Dobos, S. K. 1988. The Sturgeon Falls paleosol and the composition of the atmosphere 1.1 Ga BP. Precambrian Research 42, 141–63.CrossRefGoogle ScholarPubMed