Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T02:10:39.923Z Has data issue: false hasContentIssue false

Integrated conodont biostratigraphy and carbon isotope chemostratigraphy in the Lower–Middle Ordovician of southern Sweden reveals a complete record of the MDICE

Published online by Cambridge University Press:  22 February 2016

RONGCHANG WU*
Affiliation:
Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
MIKAEL CALNER
Affiliation:
Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
OLIVER LEHNERT
Affiliation:
Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden GeoZentrum Nordbayern, Lithosphere Dynamics, Friedrich-Alexander, University of Erlangen-Nürnberg, Schlossgarten 5, D-91054, Erlangen, Germany Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
*
Author for correspondence: [email protected]; [email protected]

Abstract

One of the few and most complete records of the MDICE (Middle Darriwilian Isotope Carbon Excursion) is herein documented from Baltoscandia. Based on a core section penetrating the condensed Lower–Middle Ordovician succession (~46 m) on the island of Öland, southeastern Sweden, we provide an integrated scheme for carbon isotope chemostratigraphy (313 samples) and conodont biostratigraphy (29 samples) for this period. The carbonate succession in the Tingskullen core records 12 conodont zones and 6 subzones, including the Oepikodus evae, Trapezognathus diprion, Baltoniodus triangularis, B. navis, B. norrlandicus, Lenodus antivariabilis, L. variabilis, Yangtzeplacognathus crassus, Eoplacognathus pseudoplanus (Microzarkodina hagetiana and Microzarkodina ozarkodella subzones), E. suecicus, Pygodus serra (E. foliaceus, E. reclinatus, E. robustus and E. lindstroemi subzones) and Pygodus anserinus zones in ascending order. The δ13Ccarb record reveals an apparently complete record of the MDICE, including a rising limb, a well-defined peak and a falling limb. The anomaly covers a thickness of c. 27 m in the core and spans the Eoplacognathus pseudoplanus, E. suecicus, Pygodus serra and P. anserinus conodont zones. Combined with the new, detailed conodont biostratigraphy, the MDICE in the Tingskullen core can be used for detailed correlation with successions from Baltica, North America, the Argentine Precordillera, South China and North China.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J. & Tinn, O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation tool and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 189201.CrossRefGoogle Scholar
Ainsaar, T., Meidla, T. & Martma, T. 1999. Evidence for a widespread carbon isotopic event associated with late Middle Ordovician sedimentological and faunal changes in Estonia. Geological Magazine 136, 4962.CrossRefGoogle Scholar
Ainsaar, L., Meidla, T. & Tinn, O. 2004. Middle and Upper Ordovician stable isotope stratigraphy across the facies belts in the East Baltic. In WOGOGOB-2004: Conference Materials (eds Hints, O. & Ainsaar, L.), pp. 1112. Tartu: Tartu University Press.Google Scholar
Ainsaar, L., Meidla, T., Tinn, O., Martma, T. & Dronov, A. 2007. Darriwilian (Middle Ordovician) carbon isotope stratigraphy in Baltoscandia. Acta Palaeontologica Sinica 46 (Suppl.), 18.Google Scholar
Albanesi, G. L., Bergström, S. M., Schmitz, B., Serra, F., Feltes, N. A., Voldman, G. G. & Ortega, G. 2013. Darriwilian (Middle Ordovician) δ13Ccarb chemostratigraphy in the Precordillera of Argentina: documentation of the middle Darriwilian Isotope Carbon Excursion (MDICE) and its use for intercontinental correlation. Palaeogeography, Palaeoclimatology, Palaeoecology 389, 4863.CrossRefGoogle Scholar
An, T. X. 1981. Recent progress in Cambrian and Ordovician conodont biostratigraphy of China. Geological Society of America Special Paper 187, 209–17.Google Scholar
An, T. X. 1987. Early Paleozoic Conodonts from South China. Beijing: Peking University Publishing House, 238 pp. (in Chinese).Google Scholar
Azmy, K., Stouge, S., Christiansen, J. L., Harper, D. A. T., Knight, I. & Boyce, D. 2010. Carbon-isotope stratigraphy of the Lower Ordovician succession in Northeast Greenland: implications for correlations with St. George Group in western Newfoundland (Canada) and beyond. Sedimentary Geology 225, 6781.CrossRefGoogle Scholar
Bagnoli, G. & Stouge, S. 1997. Lower Ordovician (Billingenian – Kunda) conodont zonation and provinces based on sections from Horns Udde, north Öland, Sweden. Bullettino della Societa Paleontologica Italiana 35, 109–63.Google Scholar
Banner, J. L. & Hanson, G. N. 1990. Calculation of simultaneous isotopic and trace element variations during water interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta 54, 3123–37.CrossRefGoogle Scholar
Bergström, S. M. 1971. Conodont biostratigraphy of the Middle and Upper Ordovician of Europe and Eastern North America. Geological Society of America Memoir 127, 83161.CrossRefGoogle Scholar
Bergström, S. M., Calner, M., Lehnert, O. & Noor, A. 2011. A new upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 1. Stratigraphical review with regional comparisons. GFF 133, 149–71.CrossRefGoogle Scholar
Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C. & Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42, 97107.CrossRefGoogle Scholar
Bergström, S. M., Lehnert, O., Calner, M. & Joachimski, M. M. 2012. A new upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 2. Significance of δ13C chemostratigraphy. GFF 134, 3963.CrossRefGoogle Scholar
Bergström, J., Pärnaste, H. & Zhou, Z. Y. 2013. Trilobites and biofacies in the Early–Middle Ordovician of Baltica and a brief comparison with the Yangtze Plate. Estonian Journal of Earth Sciences 62 (4), 205–30.CrossRefGoogle Scholar
Brenchley, P. J., Carden, G. A., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., Meidla, T. & Nõlvak, J. 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin 115, 89104.2.0.CO;2>CrossRefGoogle Scholar
Buggisch, W., Keller, M. & Lehnert, O. 2003. Carbon isotope record of the Late Cambrian and Early Ordovician carbonates of the Argentine Precordillera. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 357–73.CrossRefGoogle Scholar
Calner, M., Lehnert, O., Wu, R. C., Dahlqvist, P. & Joachimski, M. M. 2014. δ13C chemostratigraphy in the Lower–Middle Ordovician succession of Öland (Sweden) and the global significance of the MDICE. GFF 136, 4854.CrossRefGoogle Scholar
Edwards, C. T. & Saltzman, M. R. 2014. Carbon isotope (δ13Ccarb) stratigraphy of the Lower–Middle Ordovician (Tremadocian–Darriwilian) in the Great Basin, western United States: implications for global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology 399, 120.CrossRefGoogle Scholar
Epstein, A. G., Epstein, J. B. & Harris, L. D. 1977. Conodont color alteration – an index to organic metamorphism. US Geological Survey Professional Paper 995, 127.Google Scholar
Guo, Y. R., Zhao, Z. Y., Xu, W. Y., Shi, X. Y., Gao, J. R., Bao, H. P., Liu, J. B., Zhang, Y. L. & Zhang, Y. Q. 2014. Sequence stratigraphy of the Ordovician System in the Ordos Basin. Acta Sedimentologica Sinica 32 (1), 4460 (in Chinese with English abstract).CrossRefGoogle Scholar
Harper, D. A. T. 2006. The Ordovician biodiversification: setting an agenda for marine life. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 148–66.CrossRefGoogle Scholar
Jaanusson, V. 1960. The Viruan (Middle Ordovician) of Öland. Publications from the Palaeontological Institution of the University of Uppsala 28, 207–88. (Reprinted from: The Bulletin of the Geological Institutions of the University of Uppsala Vol. XXXVIII).Google Scholar
Jaanusson, V. 1961. Discontinuity surfaces in limestones. Publications from the Palaeontological Institution of the University of Uppsala 35, 221–41. (Reprinted from: The Bulletin of the Geological Institutions of the University of Uppsala Vol. XL).Google Scholar
Jaanusson, V. 1976. Faunal dynamics in the Middle Ordovician (Viruan) of Baltoscandia. In The Ordovician System (ed. Bassett, M. G.), pp. 301–26. Cardiff: University of Wales Press and National Museum of Wales.Google Scholar
Jaanusson, V. 1982. Introduction to the Ordovician of Sweden. In Field Excursion Guide. 4th International Symposium on the Ordovician System (eds Bruton, D. L. & Williams, S. H.), pp. 110. Paleontological Contributions from the University of Oslo 279.Google Scholar
Jaanusson, V. 1995. Confacies differentiation and upper Middle Ordovician correlation in the Baltoscandian basin. Proceedings of the Estonian Academy of Science, Geology 44, 7386.CrossRefGoogle Scholar
Jeppsson, L., Anehus, R. & Fredholm, D. 1999. The optimal acetate buffered acetic acid technique for extracting phosphatic fossils. Journal of Paleontology 73, 964–72.CrossRefGoogle Scholar
Kaljo, D., Martma, T. & Saadre, T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 138–55.CrossRefGoogle Scholar
Lehnert, O., Meinhold, G., Wu, R. C., Calner, M. & Joachimski, M. M. 2014. δ13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician) carbonate succession of the Siljan district, central Sweden. Estonian Journal of Earth Sciences 63 (4), 277–86.Google Scholar
Leslie, S. A., Saltzman, M. R., Bergström, S. M., Repetski, J. E., Howard, A. & Seward, A. M. 2011. Conodont biostratigraphy and stable isotope stratigraphy across the Ordovician Knox/Beekmantown unconformity in the central Appalachians. In Ordovician of the World (eds Gutiérrez-Marco, J. C., Rábano, I. & Diego, G.-B.), pp. 301–8. Publicaciones del Instituto Geológico y Minero de España, Serie, Cuadernos del Museo Geomin-Minero Vol. 14.Google Scholar
Li, Z. H., Stouge, S., Chen, X. H., Wang, C. S., Wang, X. F. & Zeng, Q. L. 2010. Precisely compartmentalized and correlated Lower Ordovician Oepikodus evae Zone of the Floian in the Huanghuachang Section, Yichang, Hubei Province. Acta Palaeontologica Sinica 49, 108–24 (in Chinese with English abstract).Google Scholar
Lindström, M. 1971. Lower Ordovician conodonts of Europe. Geological Society of America Memoir 127, 2161.CrossRefGoogle Scholar
Löfgren, A. 1978. Arenigian and Llanvirnian conodonts from Jämtland, northern Sweden. Fossils and Strata 19, 1129.Google Scholar
Löfgren, A. 1994. Arenig (Lower Ordovician) conodonts and biozonation in the eastern Siljan District, central Sweden. Journal of Paleontology 68, 1350–68.CrossRefGoogle Scholar
Löfgren, A. 2000. Early to early Middle Ordovician conodont biostratigraphy of the Gillberga quarry, northern Öland, Sweden. GFF 122, 321–38.CrossRefGoogle Scholar
Löfgren, A. 2003. Conodont faunas with Lenodus variabilis in the upper Arenigian to lower Llanvirnian of Sweden. Acta Palaeontologica Polonica 48, 417–36.Google Scholar
Ludvigson, G. A., Jacobson, S. R., Witzke, B. J. & González, L. A. 1996. Carbonate component chemostratigraphy and depositional history of the Ordovician Decorah Formation, Upper Mississippi Valley. Geological Society of America Special Paper 306, 6786.Google Scholar
Ludvigson, G. A., Witzke, B. J., Schneider, C. L., Smith, E. A., Emerson, N. R., Carpenter, S. J. & González, L. A. 2004. Late Ordovician (Turonian – Chatfieldian) carbon isotope excursions and their stratigraphic and paleoceanic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 187214.CrossRefGoogle Scholar
Marshall, J. D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine 129, 143–60.CrossRefGoogle Scholar
Meidla, T., Ainsaar, L., Backman, J., Dronov, A., Holmer, L. & Sturesson, U. 2004. Middle–Upper Ordovician carbon isotope record from Västergötland (Sweden) and East Baltic. In WOGOGOB-2004 Conference Materials (eds Hints, O. & Ainsaar, L.), pp. 67–8. Tartu: Tartu University Press.Google Scholar
Munnecke, A., Zhang, Y. D., Liu, X. & Cheng, J. F. 2011. Stable carbon isotope stratigraphy in the Ordovician of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 1743.CrossRefGoogle Scholar
Pärnaste, H., Bergström, J. & Zhou, Z. Y. 2013. High resolution trilobite stratigraphy of the Lower–Middle Ordovician Öland Series of Baltoscandia. Geological Magazine 150, 509–18.CrossRefGoogle Scholar
Patzkowsky, M. E., Slupik, L. M., Arthur, M. A., Pancost, R. D. & Freeman, K. H. 1997. Late Middle Ordovician environmental change and extinction: harbinger of the Late Ordovician or continuation of Cambrian patterns? Geology 25, 911–4.2.3.CO;2>CrossRefGoogle Scholar
Saltzman, M. R. 2005. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology 33, 573–6.CrossRefGoogle Scholar
Saltzman, M. R. & Young, S. A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33, 109–12.CrossRefGoogle Scholar
Schmitz, B., Bergström, S. M. & Wang, X. F. 2010. The middle Darriwilian (Ordovician) δ13C excursion (MDICE) discovered in the Yangtze Platform succession in China: implications of its first recorded occurrences outside Baltoscandia. Journal of the Geological Society, London 167, 249–59.CrossRefGoogle Scholar
Schmitz, B., Harper, D. A. T., Peucker-Ehrenbrink, B., Stouge, S., Alwmark, C., Chronholm, A., Bergström, S. M., Tassinari, M. & Wang, X. F. 2008. Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nature Geoscience 1, 4953.CrossRefGoogle Scholar
Serpagli, E. 1974. Lower Ordovician conodonts from Precordilleran Argentina (Province of San Juan). Bollettino della Società Paleontologica Italiana 13, 1798.Google Scholar
Servais, T., Lehnert, O., Li, J., Mullins, G. L., Munnecke, A., Nützel, A. & Vecoli, M. 2008. The Ordovician Biodiversification: revolution in the oceanic trophic chain. Lethaia 41, 99109.CrossRefGoogle Scholar
Servais, T., Owen, A. W., Harper, D. A. T., Kröger, B. & Munnecke, A. 2010. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 99119.CrossRefGoogle Scholar
Stouge, S. 2004. Ordovician siliciclastics and carbonates of Öland, Sweden. In International Symposium on “Early Palaeozoic Palaeogeography and Palaeolimate” (IGCP 503), September 1–3, 2004, Erlangen, Germany (eds Munnecke, A., Servais, T. & Schulbert, C.), pp. 91111. Erlanger Geologische Abhandlungen – Sonderband 5.Google Scholar
Stouge, S. & Bagnoli, G. 1988. Early Ordovician conodonts from Cow Head Peninsula, western Newfoundland. Palaeontographica Italica 75, 89179.Google Scholar
Tjernvik, T. 1952. Om de lägsta ordoviciska lagren i Närke. Geologiska Föreningens I Stockholm Förhandlingar 74, 5170.CrossRefGoogle Scholar
Tjernvik, T. 1956. On the Early Ordovician of Sweden. Stratigraphy and fauna. Bulletin of the Geological Institutions of the University of Uppsala 36, 107284.Google Scholar
Torsvik, T. H., Smethurst, M. A., Van der Voo, R., Trench, A., Abrahamsen, N. & Halvorsen, E. 1992. Baltica. A synopsis of Vendian–Permian palaeomagnetic data and their palaeotectonic implications. Earth-Science Reviews 33, 133–52.CrossRefGoogle Scholar
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321, 550–4.CrossRefGoogle ScholarPubMed
van Wamel, W. A. 1974. Conodont biostratigraphy of the Upper Cambrian and Lower Ordovician of north-western Öland, southeastern Sweden. Utrecht Micropaleontological Bulletins 10, 1126.Google Scholar
Viira, V. 1974. Konodonty Ordovika Pribaltiki [Ordovician Conodonts of the East Baltic]. Tallinn: Valgus, 142 pp.Google Scholar
Wang, Z. H. & Bergström, S. M. 1999. Conodonts across the base of the Darriwilian Stage in South China. Acta Micropalaeontologica Sinica 16, 325–50 (in Chinese with English abstract).Google Scholar
Wang, Z. H., Bergström, S. M., Zhen, Y. Y., Chen, X. & Zhang, Y. D. 2013. On the integration of Ordovician conodont and graptolite biostratigraphy: new examples from Gansu and Inner Mongolia in China. Alcheringa 37, 510–28.CrossRefGoogle Scholar
Wang, X. F., Stouge, S., Chen, X. H., Li, Z. H., Wang, C. S., Finney, S. C., Zeng, Q. L., Chen, H. M. & Erdtmann, E.-D. 2009. The global stratotype section and point for the base of the Middle Ordovician series and the third stage (Dapingian). Episodes 32, 96113.Google Scholar
Wang, X. F., Stouge, S., Erdtmann, B.-D., Chen, X. H., Li, Z. H., Wang, C. S., Zeng, Q. L., Zhou, Z. Q. & Cheng, H. M. 2005. A proposed GSSP for the base of the Middle Ordovician Series: the Huanghuachang section, Yichang, China. Episodes 28, 105–17.CrossRefGoogle Scholar
Webby, B. D., Droser, M. L., Paris, F. & Percival, I. G. (eds) 2004. The Great Ordovician Biodiversification Event. New York: Columbia University Press, 484 pp.CrossRefGoogle Scholar
Westergård, A. H. 1922. Sveriges olenidskiffer. – I. Utbredning och Lagerföljd. II. Fauna 1. Trilobita. Sveriges Geolologiska Undersökning Series Ca 18, 205 pp.Google Scholar
Young, S. A., Saltzman, M. R. & Bergström, S. M. 2005. Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in eastern and central North America: regional expression of a perturbation of the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 5376.CrossRefGoogle Scholar
Zhang, J. H. 1998a. Middle Ordovician conodonts from the Atlantic Faunal Region and the evolution of key conodont genera. Meddelanden från Stockholms Universitets institution för Geologi Och Geokemi 298, 527.Google Scholar
Zhang, J. H. 1998b. Conodonts from the Guniutan Formation (Llanvirnian) in Hubei and Hunan Provinces, south-central China. Stockholm Contributions in Geology 46, 1161.Google Scholar
Zhang, Y. D., Munnecke, A., Chen, X., Cheng, J. F. & Liu, X. 2011. Biostratigraphic and chemostratigraphic correlation for the base of the Middle Ordovician between Yichang and western Zhejiang areas, South China. Acta Geologica Sinica 85, 320–9.CrossRefGoogle Scholar
Zhang, J. H. & Sturkell, E. F. F. 1998. Aserian and Lasnamägian (Middle Ordovician) conodont biostratigraphy and lithology at Kullstaberg and Lunne in Jämtland, central Sweden. GFF 120, 7583.Google Scholar