Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T16:14:04.929Z Has data issue: false hasContentIssue false

In situ U–Th–Pbtotal dating of polychronous monazite in the Koraput anorthosite pluton, Eastern Ghats Granulite Belt (India), and implications

Published online by Cambridge University Press:  30 October 2017

D. SAIKIA
Affiliation:
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research, Bhopal, India
P. NASIPURI*
Affiliation:
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research, Bhopal, India Centre for Research on Environment and Sustainable Technologies, Indian Institute of Science Education and Research, Bhopal, India
A. BHATTACHARYA
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, 721 302, India
*
Author for correspondence: [email protected]

Abstract

U–Th–Pbtotal age determinations in monazite in a noritic anorthosite at the margin of the Koraput anorthosite pluton constrain the time of emplacement and sub-solidus chemical modifications in the Grenvillian-age anorthosite pluton in the Eastern Ghats Province (EGP), India. The monazites hosted within dynamically recrystallized orthopyroxene and plagioclase grains are large (50–500 μm in diameter) and complexly zoned. Based on the textural–chemical heterogeneities, these monazites are classified into three groups. Group-I monazites exhibit a low-ThO2 core mantled by a high-ThO2 rim. By contrast, the group-II monazites exhibit high-ThO2 cores laced by ThO2-poor mantles, and outermost rims with still lower ThO2 contents. Skeletal group-III monazites at polygonized grain/phase boundaries exhibit patchy and concentric zones with decreasing ThO2 towards the margin. The U–Th–Pbtotal chemical ages obtained using electron probe microanalyses exhibit four age clusters. The oldest age population (mean 939 ± 4.5 Ma) obtained in cores in group-I, II and III monazites with patchy zones corresponds with the emplacement of the Koraput anorthosite, and this age population is consistent with 980–930 Ma emplacement ages reported in other EGP anorthosite massifs. Younger monazites mantling the cores in group-II monazites and in group-III monazites with mean ages of 877 ± 5 Ma and 749 ± 18 Ma possibly reflect episodic monazite growth by fluid-aided dissolution–precipitation culminating with the disintegration of Rodinia at ~750 Ma. The youngest age population (mean 574 ± 19 Ma) in the outermost monazite rims and monazite veins represents renewed monazite growth during the Pan African assembly of the Grenvillian-age EGP domain with the proto-Indian cratons.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacharya, A., Das, H. H., Bell, E., Bhattacharya, A., Chatterjee, N., Saha, L. & Dutt, A. 2016. Restoration of Late Neoarchean–Early Cambrian tectonics in the Rengali orogen and its environs (eastern India): the Antarctic connection. Lithos 263, 190212.CrossRefGoogle Scholar
Bhattacharya, A., Raith, M., Hoernes, S. & Banerjee, D. 1998. Geochemical evolution of the massif-type anorthosite complex at Bolangir in the Eastern Ghats Belt of India. Journal of Petrology 39, 1169–95.CrossRefGoogle Scholar
Bhattacharya, S., Sen, S. K. & Acharyya, A. 1994. The structural setting of the Chilka Lake granulite-migmatite-anorthosite suite with emphasis on the time relation of charnockites. Precambrian Research 66, 393409.CrossRefGoogle Scholar
Biswal, T. K., De Waele, B. & Ahuja, H. 2007. Timing and dynamics of the juxtaposition of the Eastern Ghats Mobile Belt against the Bhandara craton, India: a structural and zircon U–Pb SHRIMP study of the fold-thrust belt and associated nepheline syenite plutons. Tectonics 26, TC4006. doi: 10.1029/2006TC002005.CrossRefGoogle Scholar
Black, L. P., Harley, S. L., Sun, S. S. & McCulloch, M. T. 1987. The Rayner Complex of East Antarctica: complex isotopic systematics with a Proterozoic mobile belt. Journal of Metamorphic Geology 5, 126.CrossRefGoogle Scholar
Bose, M. K. 1960. On garnet coronites from Koraput, Orissa. Geological Magazine 98, 409–16.CrossRefGoogle Scholar
Bose, M. K. 1979. On the Eastern Ghats Precambrian granulite belt and associated anorthosites. Indian Journal Earth Science 6, 200–19.Google Scholar
Bose, S., Das, K., Torimoto, J., Arima, M. & Dunkley, D. J. 2016. Evolution of the Chilka Lake granulite complex, northern Eastern Ghats Belt, India: first evidence of ~ 780 Ma decompression of the deep crust and its implication on the India–Antarctica correlation. Lithos 263, 161–89.CrossRefGoogle Scholar
Bose, S., Dunkley, D. J., Dasgupta, S., Das, K. & Arima, M. 2011. India–Antarctica–Australia–Laurentia connection in the Paleoproterozoic–Mesoproterozoic revisited: evidence from new zircon U–Pb and monazite chemical age data from the Eastern Ghats Belt, India. Geological Society of America Bulletin 123, 2031–49.CrossRefGoogle Scholar
Broska, I., Petrík, I. & Williams, C. T. 2000. Coexisting monazite and allanite in peraluminous granitoids of the Tribeč Mountains, Western Carpathians. American Mineralogist 85, 2232.CrossRefGoogle Scholar
Boynton, W. V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry, Vol. 2 (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.CrossRefGoogle Scholar
Chatterjee, N., Crowley, J. L., Mukherjee, A. & Das, S. 2008. Geochronology of the 983-Ma Chilka Lake Anorthosite, Eastern Ghats Belt, India: implications for pre-Gondwana tectonics. The Journal of Geology 116, 105–18.CrossRefGoogle Scholar
Chatterjee, A., Das, K., Bose, S. & Hidaka, H. 2017. Age-integrated tectonic evolution across the orogen-craton boundary: age zonation and shallow- to deep crustal participation during Late Cambrian cratonisation of Eastern Ghats Belts, India. Lithos, published online 4 August 2017. doi: 10.1016/j.lithos.2017.07.020 CrossRefGoogle Scholar
Cherniak, D. J., Watson, E. B., Grove, M. & Harrison, T. M. 2004. Pb diffusion in monazite: a combined RBS/SIMS study. Geochimica et Cosmochimica Acta 68, 829–40.CrossRefGoogle Scholar
Chetty, T. R. K. & Murthy, D. S. N. 1994. Collisional tectonics in the late Precambrian Eastern Ghats Mobile Belt; mesoscopic to satellite-scale structural observations. Terra Nova 6, 7281.CrossRefGoogle Scholar
Crowe, W. A., Nash, C. R., Harris, L. B., Leeming, P. M. & Rankin, L. R. 2003. The geology of the Rengali Province: implications for the tectonic development of northern Orissa, India. Journal of Asian Earth Sciences 21, 697710.CrossRefGoogle Scholar
Das, K., Bose, S., Karmakar, S. & Chakraborty, S. 2012. Petrotectonic framework of granulites from northern part of Chilka Lake area, Eastern Ghats Belt, India: compressional vis-à-vis transpressional tectonics. Journal of Earth System Science 121, 117.CrossRefGoogle Scholar
Das, S., Nasipuri, P., Bhattacharya, A. & Swaminathan, S. 2008. The thrust-contact between the Eastern Ghats Belt and the adjoining Baster craton (Eastern India): evidence from mafic granulites and tectonic implications. Precambrian Research 162, 7085.CrossRefGoogle Scholar
Dharma Rao, C. V., Santosh, M. & Zhang, S.-H. 2014a. U–Pb zircon geochronology of ferrodiorites and quartz diorites from the Turkel Anorthosite Complex: a Neoarchaean convergent margin in eastern India. Geological Journal 50, 530–8.Google Scholar
Dharma Rao, C. V., Santosh, M. & Zhang, S.-H. 2014b. Neoproterozoic massif type anorthosites and related magmatic suites from the Eastern Ghats Belt, India: implications for slab window magmatism at the terminal stage of collisional orogeny. Precambrian Research 240, 6078.Google Scholar
Dobmeier, C. J., Lütke, S., Hammerschmidt, H. & Mezger, K. 2006. Emplacement and deformation of the Vinukonda granite—implications for the geological evolution of peninsular India and for Rodinia reconstructions. Precambrian Research 146, 165–78.CrossRefGoogle Scholar
Dobmeier, C. J. & Raith, M. M. 2003. Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B. E. & Dasgupta, S.), pp. 145–68. Geological Society of London, Special Publication no. 206.Google Scholar
Dobmeier, C. J. & Simmat, R. 2002. Post-Grenvillean transpression in the Chilka Lake area, Eastern Ghats Belt—implications for the geological evolution of peninsular India. Precambrian Research 113, 243–68.CrossRefGoogle Scholar
Fitzsimons, I. C. W., Kinny, P. D. & Harley, S. L. 1997. Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova 9, 4751.CrossRefGoogle Scholar
Gardés, E., Jaoul, O., Montel, J. M., Seydoux-Guillame, A. M. & Wirth, R. 2006. Pb diffusion in monazite: an experimental study of Pb2+ + Th4+↔2Nd3+ inter diffusion. Geochimica et Cosmochimica Acta 70, 2325–36.CrossRefGoogle Scholar
Gupta, S., Bhattacharya, A., Raith, M. & Nanda, J. K. 2000. Pressure-temperature deformation history across a vestigial craton-mobile belt boundary: the western margin of Eastern Ghats Belt at Deobhog, India. Journal of Metamorphic Geology 18, 683–97.CrossRefGoogle Scholar
Halpin, J. A., Gerakiteys, C. L., Clarke, G. L., Belusova, E. A. & Griffin, W. L. 2005. In-situ U–Pb geochronology and Hf isotope analyses of the Rayner complex, East Antarctica. Contributions to Mineralogy and Petrology 148, 689706.CrossRefGoogle Scholar
Harley, S. L., Fitzsimons, I. C. W. & Zhao, Y. 2013. Antarctica and supercontinent evolution: historical perspectives, recent advances and unresolved issues. In Antarctica and Supercontinent Evolution (eds Harley, S. L., Fitzsimons, I. C. W. & Zhao, Y.), pp. 134. Geological Society of London Special Publication no. 383.Google Scholar
Harlov, D. E. & Hetherington, C. J. 2010. Partial high-grade alteration of monazite using alkali-bearing fluids: experiment and nature. American Mineralogist 95, 1105–8.CrossRefGoogle Scholar
Hetherington, C. J., Harlov, D. E. & Budzyń, B. 2010. Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineralogy and Petrology 99, 165–84.CrossRefGoogle Scholar
Hippe, K., Möller, A., Quadt, A. V., Peytcheva, I. & Hammerschmidt, K. 2015. Zircon geochronology of the Koraput alkaline complex: insights from combined geochemical and U–Pb–Hf isotope analyses, and implications for the timing of alkaline magmatism in the Eastern Ghats Belt, India. Gondwana Research 34, 205–20.CrossRefGoogle Scholar
Hoshino, M., Watanabe, Y. & Ishihara, S. 2012. Crystal chemistry of monazite from the granitic rocks of Japan: petrographic implications. The Canadian Mineralogist 50, 1331–46.CrossRefGoogle Scholar
Kato, T., Suzuki, K. & Adachi, M. 1999. Computer program for the CHIME age calculation. Journal of Earth and Planetary Sciences 46, 4956.Google Scholar
Korhonen, F. J., Clark, C., Brown, M., Bhattacharya, S. & Taylor, R. 2013. How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India. Precambrian Research 234, 322–50.CrossRefGoogle Scholar
Korhonen, F. J., Saw, A. K., Clark, C., Brown, M. & Bhattacharya, S. 2011. New constraints on UHT metamorphism in the Eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology. Gondwana Research 20, 764–81.CrossRefGoogle Scholar
Krause, O., Dobmier, C., Raith, M. M. & Mezger, K. 2001. Age of emplacement of massif-type anorthosites in the Eastern Ghats Belt, India: constraints from U–Pb zircon dating and structural studies. Precambrian Research 109, 2538.CrossRefGoogle Scholar
Lackey, J. S., Hinke, H. J. & Valley, J. W. 2002. Tracking contamination in felsic magma chambers with δ18O of magmatic garnet and zircon. Extended Abstracts, Geochimica et Cosmochimica Acta 66 (Suppl. 1), 428.Google Scholar
Leelanandam, C. & Reddy, N. M. 1988. Precambrian anorthosites from Peninsular India – problems & perspectives. Indian Journal of Geology 60, 111–36.Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., Waele, B. D., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Linthout, K. 2007. Tripartite division of the system 2REE(PO)4-CaTh(PO4)2-2ThSiO4 discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh (PO4)2 . Canadian Mineralogist 45, 503–8.CrossRefGoogle Scholar
Ludwig, K. R. 2012. Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Chronological Center, Special Publication 5.Google Scholar
Mahapatro, S. N., Nanda, J. K. & Tripathy, A. K. 2010. The Jugsaipatna Anorthosite Complex, Eastern Ghats Belt, India. Magmatic lineage and petrogenetic implications. Journal of Asian Earth Science 38, 147–61.CrossRefGoogle Scholar
Mahapatro, S. N., Tripathy, A. K., Nanda, J. K. & Rath, S. C. 2013. Petrology of the Udayagiri Anorthosite Complex, Eastern Ghats Belt, India. Journal of the Geological Society of India 82, 319–29.CrossRefGoogle Scholar
Maji, A., Bhattacharya, A. & Raith, M. 1997. The Turkel anorthosite complex revisited. Proceedings of the Indian Academy of Science 106, 313–25.Google Scholar
Maji, A. K. & Sarkar, S. S. 2004. Quantitative genetic modelling of the Turkel anorthosite, Eastern Ghats Mobile Belts, India. Journal of Asian Earth Science 24, 199211.CrossRefGoogle Scholar
Majka, J., Be'eri-Shlevin, Y., Gee, D. G., Ladenberger, A., Claesson, S., Konečný, P. & Klonowska, I. 2012. Multiple monazite growth in the Åreskutan migmatite: evidence for a polymetamorphic Late Ordovician to Late Silurian evolution in the Seve Nappe Complex of west-central Jämtland, Sweden. Journal of Geosciences 57, 1323.Google Scholar
McDonough, W. F. & Sun, S.-S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.CrossRefGoogle Scholar
Mezger, K. & Cosca, M. A. 1999. The thermal history of the Eastern Ghats belt (India), as revealed by U–Pb and 40Ar–39Ar dating of metamorphic and magmatic minerals: implications for the SWEAT correlation. Precambrian Research 94, 251–71.CrossRefGoogle Scholar
Montel, J. M., Foret, S., Veschambre, M., Nicollet, C. & Provost, A. 1996. Electron microprobe dating of monazite. Chemical Geology 131, 3753.CrossRefGoogle Scholar
Mukherjee, A. B., Bhattacharya, A. & Chakravorty, S. C. 1986. Convergent phase equilibria at the anorthosite-granulite interface near Bolangir, Orissa, India and thermal evolution of a part of the Indian shield. Precambrian Research 3, 69104.CrossRefGoogle Scholar
Mukherjee, A. B., Jana, P. & Das, S. 1999. The Banpur-Balugaon and Bolangir Anorthosite Diapirs of the Eastern Ghats, India: implications for the Massif Anorthosite Problem. International Geology Review 4, 206–42.CrossRefGoogle Scholar
Nanda, J. K. & Panda, P. K. 1999. Anorthosite–leuconorite–norite complex from Jugasaipatna, Kalahandi district, Eastern Ghats Belt of Orissa sector. Gondwana Research Group Memoir 5, 89104.Google Scholar
Nasipuri, P. & Bhattacharya, A. 2007. Melt-assisted interior to margin switch from dislocation to diffusion creep in coarse grained plagioclase: evidence from a deformed anorthosite pluton. Journal of Structural Geology 29, 1327–38.CrossRefGoogle Scholar
Nasipuri, P., Bhattacharya, A. & Satyanarayanan, M. 2011. Localized pluton deformation and linked focused flow of low-volume fraction residual melt in deforming plagioclase cumulates. Geological Society of America Bulletin 123, 669–80.CrossRefGoogle Scholar
Nasipuri, P. & Bhadra, S. 2013. Structural framework for the emplacement of the Bolangir anorthosite massif in the Eastern Ghats Granulite Belt, India: implications for post-Rodinia pre-Gondwana tectonics. Mineralogy and Petrology 107, 861–80.CrossRefGoogle Scholar
Parrish, R. R. 1990. U–Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences 27, 1431–50.CrossRefGoogle Scholar
Paul, D. K., Barman, T. R., McNaughton, N. J., Fletcher, I. R., Potts, P. J., Ramakrishnan, M. & Augustine, A. F. 1990. Archean–Proterozoic evolution of Indian charnockites: isotopic and geochemical evidences from granulites of the Eastern Ghats belt. Journal of Geology 98, 253326.CrossRefGoogle Scholar
Prabhakar, N. 2013. Resolving poly-metamorphic Paleoarchean ages by chemical dating of monazites using multi-spectrometer U, Th and Pb analyses and subcounting methodology. Chemical Geology 347, 255–70.CrossRefGoogle Scholar
Prasad, S., Bhattacharya, A., Raith, M. M. & Bhadra, S. 2005. The origin of orthopyroxene/biotite + plagioclase coronas from the Bolangir anorthosite complex (India), and implications for reconstructing P-T paths. American Mineralogist 90, 291303.CrossRefGoogle Scholar
Raith, M., Bhattacharya, A. & Hoernes, D. 1997. A HFSE and REE enriched ferrodiorite suite from the Bolangir Anorthosite Complex, Eastern Ghats Belt. Proceedings of the Indian Academy of Sciences – Earth and Planetary Sciences 106, 299311.Google Scholar
Raith, M. M., Mahapatro, S. N., Upadhyay, D., Berndt, J., Mezger, K. & Nanda, J. K. 2014. Age and PT evolution of the Neoproterozoic Turkel Anorthosite Complex, Eastern Ghats Province, India. Precambrian Research 254, 87113.CrossRefGoogle Scholar
Ramakrishnan, M., Nanda, J. K. & Augustine, P. F. 1998. Geological evolution of the Proterozoic Eastern Ghats Mobile Belt. Geological Survey of India Special Publication 44, 121.Google Scholar
Rasmussen, B., Fletcher, I. R. & Sheppard, S. 2005. Isotopic dating of the migration of a low grade metamorphic front during orogenesis. Geology 33, 773–6.CrossRefGoogle Scholar
Rasmussen, B. & Muhling, J. R. 2007. Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contributions to Mineralogy and Petrology 154, 675–89.CrossRefGoogle Scholar
Rekha, S., Bhattacharya, A. & Viswanath, T. A. 2013. Microporosity linked fluid focusing and monazite instability in greenschist facies para-conglomerates, western India. Geochimica et Cosmochimica Acta 105, 187205.CrossRefGoogle Scholar
Rickers, K., Mezger, K. & Raith, M. M. 2001. Evolution of the continental crust in the Proterozoic Eastern Ghats Belt, India and new constraints for Rodinia reconstruction: implications from Sm–Nd, Rb–Sr and Pb–Pb isotopes. Precambrian Research 112, 183210.CrossRefGoogle Scholar
Sarkar, A., Bhanumathi, L. & Balasubrahmanyan, M. N. 1981. Petrology, geochemistry, and geochronology of the Chilka Lake igneous complex, Orissa State, India. Lithos 14, 93111.CrossRefGoogle Scholar
Schandl, E. S. & Gorton, M. P. 2004. A textural and geochemical guide to the identification of hydrothermal monazite; criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology 99, 1027–35.CrossRefGoogle Scholar
Schärer, U., de Parseval, P., Polve, M. & de Saint Blanquat, M. 1999. Formation of the Trimouns talc–chlorite deposits (Pyrenees) from persistent hydrothermal activity between 112 Ma and 97 Ma. Terra Nova 11, 30–7.CrossRefGoogle Scholar
Sengupta, P., Dasgupta, S., Bhattacharya, P. K., Fukuoka, M., Chakraborti, S. & Bhowmik, S. 1990. Petrotectonic imprints in the sapphirine granulites from Anantagiri, Eastern Ghats mobile belt, India. Journal of Petrology 31, 971–96.CrossRefGoogle Scholar
Shaw, R. K., Arima, M., Kagami, H., Fanning, C. M., Shiraishi, K. & Motoyoshi, Y. 1997. Proterozoic events in the Eastern Ghats Granulite Belt, India: evidence from Rb–Sr, Sm–Nd systematics and SHRIMP dating. Journal of Geology 105, 645–56.CrossRefGoogle Scholar
Spear, F. S., Pyle, J. M. & Cherniak, D. 2009. Limitations of chemical dating of monazite. Chemical Geology 266, 218–30.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Stepanov, A., Herman, J., Rubatto, D. & Rapp, R. P. 2012. Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology 300–301, 200–20.CrossRefGoogle Scholar
Suzuki, K. & Adachi, M. 1991a. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th–U–total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal 25, 357–76.CrossRefGoogle Scholar
Suzuki, K. & Adachi, M. 1991b. The chemical Th–U–total Pb isochron ages of zircon and monazite from the gray granite of the Hida Terrane, Japan. Journal of Earth and Planetary Science 38, 1138.Google Scholar
Suzuki, K. & Kato, T. 2008. CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Research 14, 569–86.CrossRefGoogle Scholar
Tak, M. W. 1971. Some observations on the petro-mineralogical and chemical studies of the anorthositic rocks of the Bolangir-Patna district, Orissa. Indian Minerals 26, 168.Google Scholar
Tak, M. W., Mitra, D. & Chatterjee, P. K. 1966. A note on the occurrence of anorthosite in the Bolangir-Patna District, Orissa. Indian Minerals 20, 339–42.Google Scholar
Torsvik, T. H. 2003. The Rodinia jigsaw puzzle. Science 300, 1379–81.CrossRefGoogle ScholarPubMed
Townsend, K. J., Miller, C. F., D'Andrea, J. L., Ayers, J. C., Harrison, T. M. & Coath, C. D. 2000. Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chemical Geology 172, 95112.CrossRefGoogle Scholar
Veevers, J. J. 2007. Pan-Gondwanaland post-collisional extension marked by 650–500 Ma alkaline rocks and carbonatites and related detrital zircons: a review. Earth Science Reviews 83, 147.CrossRefGoogle Scholar
Veevers, J. J. & Saeed, A. 2009. Permian-Jurassic Mahanadi and Pranhitae-Godavari Rifts of Gondwana India: provenance from regional paleoslope and U–Pb/Hf analysis of detrital zircons. Gondwana Research 16, 633–54.CrossRefGoogle Scholar
Watson, E. B. & Harrison, M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.CrossRefGoogle Scholar
Williams, M. L., Jercinovic, M. J., Goncalves, P. & Mahan, K. 2006. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chemical Geology 225, 115.CrossRefGoogle Scholar
Williams, M. L., Jercinovic, M. J. & Hetherington, C. J. 2007. Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences 35, 137–75.CrossRefGoogle Scholar
Williams, M. L., Jercinovic, M. J. & Terry, M. P. 1999. Age mapping and dating of monazite on the electron microprobe: deconvoluting multistage tectonic histories. Geology 27, 1023–6.2.3.CO;2>CrossRefGoogle Scholar
Xing, L., Trail, D. & Watson, E. B. 2009. Monazite/melt partition coefficients for U, Th: preliminary results from experiments. American Geophysical Union (Fall Meeting abstract #V51A-1666).Google Scholar
Xing, L., Trail, D. & Watson, E. B. 2013. Th and U partitioning between monazite and felsic melt. Chemical Geology 358, 4653.CrossRefGoogle Scholar
Zhu, X. K. & O'Nions, R. K. 1999 a. Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: a case study from the Lewisian terrain. Earth and Planetary Science Letters 171, 209–20.CrossRefGoogle Scholar
Zhu, X. K. & O'Nions, R. K. 1999 b. Monazite chemical composition; some implications for monazite geochronology. Contributions to Mineralogy and Petrology 137, 351–63.CrossRefGoogle Scholar
Zhu, X. K., O'Nions, R. K., Belshaw, N. S. & Gibb, A. J. 1997. Significance of in situ SIMS chronometry of zoned monazite from the Lewisian Granites, northwest Scotland. Chemical Geology 135, 3553.CrossRefGoogle Scholar
Supplementary material: File

Saikia et al supplementary material

Saikia et al supplementary material 1

Download Saikia et al supplementary material(File)
File 375.6 KB